
HAL Id: hal-03295901
https://hal.science/hal-03295901v2

Preprint submitted on 2 Nov 2021 (v2), last revised 31 Mar 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kakeya-type sets for Geometric Maximal Operators
Anthony Gauvan

To cite this version:

Anthony Gauvan. Kakeya-type sets for Geometric Maximal Operators. 2021. �hal-03295901v2�

https://hal.science/hal-03295901v2
https://hal.archives-ouvertes.fr


Kakeya-type sets for Geometric Maximal

Operators

Anthony Gauvan

October 25, 2021

Abstract
Given any family of rectangles G, one defines a natural number λ[G] called its analytic split

and satisfying
log(λ[G]) ≲p ∥MG∥pp

for all 1 < p < ∞, where MG is the Hardy-Littlewood type maximal operator associated to
the family G. As an application, we completely characterize the boundeness of planar rarefied
directional maximal operators on Lp for 1 < p < ∞. Precisely, if Ω is an arbitrary set of angles
in [0, π

4
), we prove that any rarefied basis G of the directional basis RΩ yields an operator MG

that has the same Lp-behavior as the directional maximal operator MΩ for 1 < p < ∞.

We work in the euclidean plane R2 ; if u is a measurable subset we denote by |u| its Lebesgue
measure. If x, y, z are parameters, the notation C(x, y, z) or κ(x, y, z) stand for positive constants
only depending on the parameters x, y, z. We write A ≲ B when there is an absolute constant C
such that A ≤ C ×B. In the case where C depends on parameters x, y, z we will write A ≲x,y,z B.
We denote by R the collection containing all rectangles of R2 ; for r ∈ R we define its orientation
as the angle ωr ∈ [0, π) that its longest side makes with the Ox-axis and its eccentricity as the ratio
κr ∈ (0, 1] of its shortest side by its longest side.

1 Introduction

If G is an arbitrary family in R, we define the derivation basis G∗ as

G∗ =
{
t⃗+ hr : t⃗ ∈ R2, h > 0, r ∈ G

}
.

The derivation basis G∗ is the smallest collection invariant by dilation and translation that contains
any element of G. We define the geometric maximal operator MG generated by G as

MGf(x) := sup
x∈r∈G∗

1

|r|

∫
r

|f |

for any f ∈ L1
loc(R

2) and x ∈ R2. The supremum is taken on elements r in G∗ that contain the
point x. Hence we have by definition

MG = MG∗

and so any maximal operators encountered in this note are by definition invariant by translation
and dilation. For p ∈ (1,∞] we define the operator norm ∥MG∥p of MG by

∥MG∥p = sup
∥f∥p=1

∥MGf∥p.

If ∥MG∥p < ∞ we say that MG is bounded on Lp(R2). We will say that the operator MG is a good
operator when it is bounded on Lp for any p > 1. On the other side, we say that the operator
MG is a bad operator when it is unbounded on Lp for any 1 < p < ∞. The Lp-boundeness of a
maximal operator MG is related to the geometry that the family G exhibits ; we try to recall what
is known so far.
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Directional basis

A lot of research has been done in the case where G is equal to

RΩ := {r ∈ R : ωr ∈ Ω}

where Ω is an arbitrary set of direction in [0, π). In other words, RΩ contains all rectangles whose
longest side make an angle ω ∈ Ω with the Ox-axis. We say that RΩ is a directional basis and to
alleviate the notation we write

MRΩ := MΩ.

In the literature, the operator MΩ is said to be a directional maximal operator. The study of those
operators goes back at least to Cordoba and Fefferman’s article [8] On differentiation of integrals in
which they use geometric techniques to show that if Ω =

{
π
2k

}
k≥1

then MΩ has weak-type (2, 2).

In [5] Kakeya sets and directional maximal operators in the plane, M. Bateman completely
characterized the Lp-boundeness of directional operators. Precisely he proved the following theorem.

Theorem 1. Fix an arbitrary set of directions Ω ⊂ [0, π). The directional maximal operator MΩ

is either bounded on Lp for any 1 < p < ∞ or either unbounded on Lp for any 1 < p < ∞. In other
words, an operator MΩ is either good or bad.

To prove this, M. Bateman associates to a set of directions a sub-tree of the dyadic tree and
introduces a quantity called split. We invite the reader to look at this article and also to look out
for [6] where M. Bateman and N. Katz deploy the same techniques but in a context more particular.
In this note, we fully exploit the tree vocabulary in order to study geometric maximal operators
that are not necessarily directional.

Theorem 1 precisely states that a set of directions Ω yields a directional operator MΩ that is
either good or bad. Merging the vocabulary, we will say that a set of directions Ω is a good set of
directions when MΩ is good and that it is a bad set of directions when MΩ is bad. The notion of
good/bad is well understood for a set of directions Ω. To say it bluntly, Ω is good if and only if it
can be included in a finite union of lacunary sets of finite order. If this is not possible, Ω is a bad
set of directions.

Question

A simple question arises : can one find a family G included in R such that the operator MG is
unbounded on L1+ϵ for some small ϵ > 0 and bounded on L1+A for some large A > 1 ? We believe
that such a family does not exist and we thank P. Hagelstein and A. Stokolos for communicating us
the following conjecture.

Conjecture. Any maximal operator MG generated by a family G included in R is either bounded
on Lp for all finite p > 1 or either unbounded on Lp for all finite p > 1. In other words, given an
family G included in R, can one prove that the maximal operator MG is either good or bad ?

In this direction, P. Hagelstein and A. Stokolos proved in [10] Tauberian conditions for geometric
maximal operators that if the operator MG satisfies a tauberian inequality then it is bounded on Lp

for large p < ∞. Precisely, they show that if there exist 0 < η0 < 1 and C0 > 0 such that

| {MG1E > η0} | ≤ C0 × |E|

for any bounded measurable set E, then MG is at least bounded on Lp0 for a large p0. The problem
here is that p0 depends a priori on the basis G.

Another interesting problem can be phrased as follows : given G included in R find the optimal
Orlicz space LΦ on which the operator MG is bounded. This question won’t be adressed here but the
interested reader might consult Stokolos’ article [13] On the differentiation of integrals of functions
from Lϕ(L) or more recently D’Aniello, Moonens and Rosenblatt’s article [3] Differentiating Orlicz
spaces with rare bases of rectangles or D’Aniello and Moonens’ article [4] Differentiating Orlicz
spaces with rectangles having fixed shapes in a set of directions.
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Results

To any family G contained in R we associate a quantity λ[G] ∈ N ∪∞ that we call analytic split of
G. Loosely speaking, the analytic split λ[G] indicates whether or not G contains a lot of rectangles
in terms of orientation and eccentricity. Our main contribution is the following theorem.

Theorem 2. For any family G and any 1 < p < ∞ we have

Ap × log(λ[G]) ≤ ∥MG∥pp

where Ap is a constant only depending on p.

An important feature of this inequality is that we do not make any assumption on the family
G. Observe that the analytic split of a family G indicates if the family G is large i.e. if MG is an
operator with large Lp-norms. We give an application of theorem 2 to rarefied directional basis. Fix
an arbitrary set of directions Ω in [0, π) ; we will say that a basis G composed of rectangles is a
rarefied directional basis of RΩ if we have

{ωr : r ∈ G} = Ω

and if moreover for any ω ∈ Ω we have

inf
r∈G,ωr=ω

κr = 0.

This means that for any ω ∈ Ω and ϵ > 0, the family G contains a rectangle r such that ωr = ω and
κr < ϵ. Loosely speaking the basis G is a rarefied version of the directional basis RΩ while keeping
all of its directions available with arbitrary thin rectangles. The following theorem is corollary of
theorem 2 ; it completely characterizes the Lp-boundeness of rarefied directional maximal operator.

Theorem 3. Suppose that Ω is a bad set of directions that is to say suppose that MΩ is a bad
operator. With the above notations, the maximal operator MG associated to any rarefied basis G of
RΩ is a bad operator i.e. it is unbounded on Lp for any 1 < p < ∞.

A priori since we only have G ⊂ RΩ we have MG ≤ MΩ and so for any 1 < p < ∞ we have
∥MG∥p ≤ ∥MΩ∥p. However Theorem 3 states if we have ∥MΩ∥p = ∞ then actually ∥MG∥p = ∞.
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Plan

This note is structured as follow.

• In section 2 we introduce the notion of Kakeya-type sets. Loosely speaking, a Kakeya-type set
A ⊂ R2 for MG is a geometric set that yields interesting lower bounds on the quantity ∥MG∥pp
for any 1 < p. Then we define a collection T composed of parallelograms. The collection T
has a natural structure of binary tre and for technical reasons, we prefer to work with family
G included in T rather than included in R.

• In section 3 we develop a vocabulary adapted to the dyadic structure of the collection T .
For example, we will consider special subsets of T like path or (sub-)tree. This language is
convenient for us and we will use it to define precisely the analytic split

λ[G] ∈ N ∪ {∞}
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of an arbitrary family G included in T in section 4. Our main goal is to prove the following
estimate for any 1 < p < ∞

log(λ[G]) ≲p ∥MG∥pp.

Observe that G is an arbitrary family.

• In section 5 we recall how M. Bateman proves the following estimate for any 1 < p < ∞

log(λ[G]) ≲p ∥M[G]∥pp.

In this case, [G] is not an arbitrary family since it has a tree structure. In section 6, we make
a brief pause to comment Bateman’s work in [5] ; this will be useful for applications.

• In section 7, we prove different geometric estimates on rectangles which are necessary in order
to prove theorem 2. Those estimates are of independent interest.

• Finally in section 8 we prove that for any family G and any 1 < p < ∞ we have

log(λ[G]) ≲p ∥MG∥pp.

Namely we prove theorem 2. To conclude, as an application of theorem 2, we characterize the
Lp-boundeness of rarefied directional maximal operators. Precisely we prove theorem 3.

2 Kakeya-type sets and parallelograms

In this section we introduce the notion of Kakeya-type sets and the collection

T = {un(k) : n ≥ 0, 0 ≤ k ≤ 2n − 1}

where un(k) is the parallelogram whose vertices are the points (0, 0), (0, 1
2n ), (1,

k−1
2n ) and (1, k

2n ).

Kakeya-type sets

We detail how to obtain a lower bound for ∥MG∥p using a characteristic function 1A. Specifically,
we explain how we can construct a set A with elements of G∗ that gives non trivial lower bound.

We say that a maximal operator MG admits a Kakeya-type set A ⊂ R2 of level (η, ϵ) with ϵ, η > 0
when we have

|A| ≤ ϵ× |{MG1A > η}| .

In this case, for any p > 1 we have

∥MG∥p ≥ ηϵ−
1
p .

Indeed, we have
∫
(MG1A)

p ≥ ηpϵ−1|A| ; since |A| = ∥1A∥pp. This leads to the following proposition.

Proposition 1. Suppose there exists η0 > 0 such that for any ϵ > 0 the maximal operator MG

admits a Kakeya-type set A of level (η0, ϵ). In this case, the maximal operator MG is unbounded on
Lp for any 1 ≤ p < ∞.

We formally give a method to construct interesting Kakeya-type sets for MG with elements of
G∗. Suppose there is a collection {pi}i∈I ⊂ G∗ such that for each i ∈ I there is a subset si ⊂ pi
satisfying

|si| ≥ η|pi|

and ∣∣∣∣∣⋃
i∈I

si

∣∣∣∣∣ < ϵ

∣∣∣∣∣⋃
i∈I

pi

∣∣∣∣∣ .
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A L

Figure 1: Suppose that for any ϵ > 0 one can find a set A such that the set L := {MG1A > 1
2} is

much bigger than A i.e. |A| ≪ |L|. In this case, MG is a bad operator.

In this case, the set A :=
⋃

i∈I si is a Kakeya-type set of level (η, ϵ). Indeed, we have the following
inclusion ⋃

i∈I

pi ⊂ {MG1A > η}

because pi ∈ G∗ for any i ∈ I and so

|A| ≤ ϵ |{MG1A > η}| .

Discretization of a basis

Instead of working with rectangles we will consider that our family G is in the collection T composed
of pulled-out parallelograms which is defined as follow. For n ≥ 0 and 0 ≤ k ≤ 2n − 1 consider the
parallelogram un(k) whose vertices are the points (0, 0), (0, 1

2n ), (1,
k−1
2n ) and (1, k

2n ). We say that
un(k) is a pulled-out parallelogram of scale n and we define the collection T as

T = {un(k) : n ≥ 0, 0 ≤ k ≤ 2n − 1} .

The following proposition precises that we do not lose information if we consider that our family
are contained in T and not in R. We won’t prove it since this kind of reduction is well known in
the literature, see [5] or [1] for example.

Proposition 2. Fix an arbitrary family G in R. Without loss of generality, we can suppose that
we have

{ωr : r ∈ G} ⊂ [0,
π

4
).

There exists at least one family Ga contained in T satisfying the following inequality

1

cd
×MGa

≤ MG ≤ cd ×MGa

where cd = c2 is a constant who only depends on the dimension d = 2. We will say that the family
Ga is an approximation of the family G.
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(1, k
2n
)

(1, k+1
2n

)

(0, 1
2n
)

O

un(k)

Figure 2: A parallelogram of scale n.

We give an example : consider the family G = R{0}. In this case, we denote the operator MG

by MS : in the the literature, MS is called the strong maximal operator. We would like an explicit
pointwise approximation of MS by an operator MG0

where G0 is a family in T , as announced in
proposition 2. Observe that the family G0 defined as

G0 := {un(0) ∈ T : n ≥ 0}

satisfies proposition 2 in this case. More generally, we can construct an approximation Ga of G as
follow. For any r ∈ G consider the parallelogram ur ∈ T ∗ that is the biggest, in term of measure,
parallelogram included in r. We claim that the family G∗

a defined as

G∗
a = {ur ∈ T ∗ : r ∈ G∗}

is an approximation of G. In other words, this proposition means that we can discretize any basis

G ⊂ R

into a basis
Ga ⊂ T

at the loss of a dimensional constant. In regard of the Lp-boundeness, MG or MGa are equivalent
and thus this substitution is irrelevant. Hence, we can work with T instead of R without loss of
generality.

3 Structure of T

The collection of parallelograms T has a natural structure of binary tree and we develop a vocabulary
adapted to this structure. Our goal is to find a way to detect family G in T such that ∥MG∥pp is
large.

Tree, root, path and leaves

For any u ∈ T of scale n ≥ 1, there exist a unique uf ∈ T of scale n− 1 such that u ⊂ uf . We say
that uf is the parent of u. In the same fashion, observe that there are only two elements uh, ul ∈ T
of scale n+1 such that uh, ul ⊂ u. We say that uh and ul are the children of u. Observe that u ∈ T
is the child of v ∈ T if and only if u ⊂ v and 2|u| = |v| : we will often use those two conditions.
We take advantage of this structure to define particular structured subsets of T : paths, trees and
leaves.

We say that a sequence (finite or infinite) {ui}i∈N ⊂ T is a path if it satisfies ui+1 ⊂ ui and
2|ui+1| = |ui| for any i i.e. if ui is the parent of ui+1 for any i. Different situations can occur. A
finite path P has a first element u and a last element v (defined in a obvious fashion) and we will
write P (u, v) := P . On the other hand, an infinte path P has no endpoint.
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T

Figure 3: The family T composed of pulled-out parallelograms. We develop a language adapted to
its structure of binary tree.

For any family G contained in T , there is a unique parallelogram r ∈ T such that any u ∈ G is
included in r and |r| is minimal. We say that this element rG := r is the root of G and we define
the set [G] as

[G] := {u ∈ T : ∃v ∈ G, v ⊂ u ⊂ rG} .
A subset of T of the form [G] is called a tree generated by G. We define the set LG as

LG = {u ∈ G : ∀v ∈ G, v ⊂ u ⇒ v = u} .

An element of LG is called a leaf of G. Observe that we have the following identity

[G] = [LG]

and
LG = L[G].

The first identity says that the leaves of a tree [G] can be seen as the minimal set that generates
[G]. The second identity states that [G] is not bigger than G in the sense that it does not have more
leaves. If P is an infinite path, we have by definition LP = ∅.

Linear composition

Let G be an arbitrary family in T and let r be the root of [G]. We fix an arbitrary element r̃ in T
and we consider the family G̃ defined as follow : the family G̃ has the same disposition than G in
T but [G̃] is rooted at r̃. In order to formulate it precisely consider the unique bijective linear map
with positive determinant L : R2 → R2 such that

L(r) = r̃

and define the family G̃ as
G̃ := {L(u) : u ∈ G} ⊂ T.

Now, it is routine to show that we have for any f ∈ L1
loc

MG̃f =
1

|det(L)|
×MG(f ◦ L)

and so we have for any 1 < p < ∞
∥MG̃∥p = ∥MG∥p.

Hence, what truly matters when considering a family G contained in T is not its absolute position
in the tree T but its structural disposition in the binary tree.
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[F1] [F2]

Figure 4: Two fig trees of scale n = 2 but with different heights.

[G]

[F ]

Figure 5: We can compute on this example the analytic split of G ; we have λ[G] = 3.

4 Analytic split of a family G

We associate to any family G included in T a natural number λ[G] ∈ N ∪ {∞} that we call analytic
split. At the end of this note, we will prove that we have for any 1 < p < ∞

log(λ[G]) ≲p ∥MG∥pp.

Hence the analytic split does indicate if the family G yields a maximal operator MG with large
Lp-norm.

For any tree [G], we define its boundary ∂[G] as the set of path in [G] that are maximal for the
inclusion i.e. P ∈ ∂[G] if and only if P is a path included in [G] such that if P ′ ⊂ [G] is a path
that contains P then P = P ′. Observe that if [G] is finite then there is a natural bijection between
L[G] and ∂[G] as any leaf u ∈ L[G] defines a path P (rG, u) ∈ ∂[G] and any path P ∈ ∂[G] has an
endpoint u that belongs to L[G]. For any tree [G] and path P ∈ ∂[G] we define the splitting number
of P relatively to [G] as

sP,[G] := # {u ∈ [G] \ P : ∃v ∈ P, u ⊂ v, 2|u| = |v|} .
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One can easily compute the splitting number of a path with a representation of the tree. Loosely
speaking, while walking down along the path P , the quantity sP,[G] is the number of times that one
can leave P and remains in [G]. Observe that the splitting number of a path P is defined relatively
to a tree [G] i.e. we might have sP,[G] ̸= sP,[E] for different trees.

We say that a tree [F ] is a fig tree of scale n and height h when

• [F ] is finite and #∂[F ] = 2n

• for any P ∈ ∂[F ] we have sP,[F ] = n and #P = h.

Observe that by construction we always have

h ≥ n.

A basic example of fig tree of scale n is the tree [Bn] defined as [Bn] =
{
u ∈ T : |u| ≥ 1

2n

}
. In this

case, the height of [Bn] is n. However this is the only fig tree satisfying this. One can see any fig
tree [F ] of scale n as a uniformly stretched version of [Bn].

Finally we say that a tree [G] has an analytic split

λ[G] = n

when [G] contains a fig tree [F ] of scale n and do not contains any fig tree of scale n + 1. In the
case where [G] contains fig trees of arbitrary high scale, we set

λ[G] = ∞.

More generally for any family G contained in T (i.e. when G is not necessarily a tree), we define
its analytic split as

λG := λ[G].

Observe then that because [G] = [LG] we have λG = λLG
. In the following section, we explain why

the notion of analytic split is relevant.

5 Bateman’s construction

We detail why a fig tree [F ] of scale n yields a maximal operator M[F ] satisfying for any 1 < p < ∞

log(n) ≲p ∥M[F ]∥pp.

Combined with the definition of the analytic split, the following proposition comes easily. Pay
attention that in Bateman’s work, this estimate is only available for a tree [G].

Proposition 3. Fix a tree [G] in T . For any 1 < p < ∞ we have

∥M[G]∥pp ≥ Bp × log(λ[G])

where Bp > 0 is a constant only depending on p.

Proof. For any collection X,Y ⊂ T , if X ⊂ Y then by definition we have MX ≤ MY . The conclusion
comes from the fact that [G] contains a fig tree [F ] of scale λ[G] by definition.

We indicate how one can prove the following theorem. From now on, the constant C > 1 is a
fixed constant, say C = 2600.
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Theorem 4 (Bateman’s construction). Suppose that [F ] is a fig tree of scale n and height h. In
this case the maximal operator M[F ] admits a Kakeya-type set, that we denote A2, of level(

1

4
, C2 log(n)−1

)
≃

(
1

4
, log(n)−1

)
.

Using results of section 2, this implies that for any 1 < p < ∞ we have

∥M[F ]∥pp ≥ Bp × log(n)

with Bp = 4−pC−2.

To prove theorem 4, M. Bateman explicitly constructs a Kakeya-type set of the desired level ; we
recall how he achieves this construction. Fix a arbitrary fig tree [F ] of scale n and height h rooted
at u0(0) ; we are looking for a Kakeya-type set A2 of level(

1

4
, C2 log(n)−1

)
.

We shall construct this Kakeya-type set A2 as a realisation of a random set that we denote, in the
same fashion, A2(ω). This is done in three steps.

Step 1 : construction of A2(ω)

O

−→e u
u

−→e u + u

Figure 6: A representation of d(u).

For u ∈ T , we denote by e⃗u ∈ R2 its lower right vertice and by d(u) the parallelogram defined as

d(u) := u ∪ {e⃗u + u} .

We fix a 2h mutually independent random variables

rk : (Ω,F ,P) → L[F ]

who are uniformly distributed in the set L[F ] i.e. for any k ≤ 2h and any u ∈ L[F ] we have

P(rk = u) = 1
2n . We define then the random set A as

A =
⋃

k≤2h

(
t⃗k + d(rk)

)

10



where t⃗k = (0, k−1
2h

) is a deterministic vector. Define the first and second halves of A as A1 :=
A ∩ ([0, 1]× R) and A2 := A ∩ ([1, 2]× R). By definition we have

A1 =
⋃

k≤2h

(
t⃗k + rk

)
and

A2 =
⋃

k≤2h

(
t⃗k + e⃗rk + rk

)
.

Step 2 : Bateman’s estimate

We state Bateman’s main result in [5]. This estimate states that, with positive probability, |A1| is
much bigger than |A2|.

Theorem 5 (Bateman’s estimate). We have

P

(
|A1(ω)| ≥

log(n)

Cn
, |A2| ≤

C

n

)
> 0.

O

A(ω)

Figure 7: A realisation of A(ω). Even if this is not flagrant here, the point is that the blue area
tends to becomes log(n) times bigger than the red area.

The proof of this theorem is quite difficult. It involves fine geometric estimates, percolation
theory and the use of the so-called notion of stickiness of thin tubes of the euclidean plane. We
refer to [5] for its proof and for more information but we would suggest to take a look at [6] first.
Indeed, in [6], M. Bateman and N. Katz built a scheme of proof that is similar to the one in [5] but
in a simpler setting.

Step 3 : the set A2 is a Kakeya-type set of level (1
4
, C2 log(n)−1)

With positive probability the set A2 is a Kakeya-type set of level

(
1

4
, C2 log(n)−1)
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for M[F ]. Indeed, pick any realisation

ω ∈
{
|A1(ω)| ≥

log(n)

Cn
, |A2| ≤

C

n

}
and we show that

A2 := A2(ω)

is a Kakeya-type set as announced. To do this, observe that by construction, for any x ∈ t⃗k+rk(ω) :=
t⃗k + rk, we have

1

|⃗tk + 2rk|

∫
t⃗k+2rk

1A2
(y)dy >

|
{
t⃗k + 2rk

}
∩
{
t⃗k + e⃗rk + rk

}
|

4|rk|
=

1

4

and so

A1 ⊂
{
M[F ]1A2

>
1

4

}
.

Since we also have

|A1| ≥
log(n)

C2
|A2|

this shows that A2 is a Kakeya-type set of level ( 14 , C
2 log(n)−1).

6 Bateman’s main result

The work of Bateman in [5] (and also Bateman and Katz in [6]) is of particular importance for us
for different reasons.

• The vocabulary and notion that we have developed for T is largely inspired by [5].

• As we have explained, Bateman proved that if [F ] is a fig tree of scale n then for any 1 < p < ∞
we have

log(n) ≲p ∥M[F ]∥pp.

• However in [5], the author only considers tree [T ] with the following features : the tree [T ] is
infinite and has no leaf i.e. L[T ] = ∅.

In contrast, in this note, we consider arbitrary family G included in T (i.e. G is not necessarily a
tree or a path or any structured subset) and we will prove that we still have for any 1 < p < ∞ we
have

log(λ[G]) ≲p ∥MG∥pp.
Before we prove this estimate, we would like to detail the work of Bateman in [5]. Consider a
directional basis RΩ and an approximation of this family G. We aim to know more about the
structure of G ; we simply construct an explicit approximation G. For this purpose, we define the
tree [TΩ] as follow

[TΩ] := {un(k) ∈ T : tan(Ω) ∩ [
k − 1

2n
,
k

2n
) ̸= ∅}.

Observe that by construction the tree [TΩ] is an infinite tree that has no leaf i.e.

L[TΩ] = ∅.

We claim that we have the following pointwise inequality

1

cd
×M[TΩ] ≤ MΩ ≤ cd ×M[TΩ]

where cd = c2 is a constant who only depends on the dimension d = 2. In other words, we have the
following proposition.

12



Proposition 4. For any set of directions Ω ⊂ [0, π
4 ), the family [TΩ] included in T is an approxi-

mation of the directional family RΩ. Moreover, the family [TΩ] is an infinite tree with no leaf.

The notion of split according to Bateman

In [5], M. Bateman introduces a notion of split adapted to trees that are infinite and who have no
leaf. We are going to recall how he defines this notion. Let [T ] an infinite tree with no leaf i.e.

L[T ] = ∅.

We recall that for a path P ∈ ∂[T ] we have defined the splitting number of P relatively to [T ] as

sP,[T ] := # {u ∈ [T ] \ P : ∃v ∈ P, u ⊂ v, 2|u| = |v|} .

Define then the following quantity

S([T ]) := min
P∈∂[T ]

sP,[T ].

As in [5], we can finally define the split s[T ] of the tree [T ] as

s[T ] := sup
[T ′]⊂[T ]

S([T ′])

where the supremum is taken on all infinite tree [T ′] included in [T ] that has no leaf. The following
proposition states that on infinite tree with no leaf, the notion of split and analytic split coincide.

Proposition 5. Let [T ] an infinite tree with no leaf. We have

s[T ] = λ[T ].

We leave the proof of this proposition to the reader. In this note, we have defined the analytic
split because it is more adapted to our setting since we consider arbitrary family G. Indeed, the
analytic split involves the orientation and the eccentricity that a family G exhibits whereas the split
s[T ] is more suited for infinite tree with no leaf, but in this case, the eccentricity plays no role.

Figure 8: The first three trees are infinite and have no leaf : one can compute their split, it is
respectively s[T ] = λ[T ] = 0, 1, 3. The last tree is not infinite and do have leaves. However we have
λ[T ] = 1.

A theorem of Bateman

In [5] Bateman completely characterizes the boundeness on Lp for any 1 < p < ∞ of the operator
M[TΩ] where Ω ⊂ [0, π

4 ) is an arbitrary set of directions. He proved the following theorem.

Theorem 6. Suppose that [T ] is an infinite tree with no leaf. Then either we have s[T ] = ∞ and in
this case the operator M[T ] is bad or we have s[T ] < ∞ and in this case the operator M[T ] is good.

One can see that what allows Bateman to characterizes the operator M[T ] is the analytic split
of [T ] i.e. the structure of [T ]. We invite the reader to look at [5] for a proof of the theorem. We
also suggest to look at [1] and [6] for more details.

13



7 Geometric estimates

In order to prove theorem 2 i.e. to prove that for any 1 < p < ∞ we have

log(λ[G]) ≲p ∥MG∥pp

where G is an arbitrary family in T , we need different geometric estimates. Indeed, our strategy will
consist in exploiting Bateman’s construction of the (random) set A2 but with thinner parallelograms.
We begin by proving geometric estimates on R which will help us to prove geometric estimates on
R2. Finally we prove a geometric estimate on R2 involving maximal operators that is crucial. Those
different estimates are of independant interest.

Geometric estimates on R

If I is a bounded interval on R and τ > 0 we denote by τI the interval that has the same center as
I and τ times its length i.e.

|τI| = τ |I| .
The following lemma can be found in [2].

Lemma 1 (Austin’s covering lemma). Let {Iα}α∈A a finite family of bounded intervals on R. There
is a disjoint subfamily

{Iαk
}k≤N

such that ⋃
α∈A

Iα ⊂
⋃
k≤N

3Iαk

We apply Austin’s covering lemma to prove two geometric estimates on intervals of the real line.
The first one concerns union of dilated intervals.

Lemma 2. Fix τ > 0 and let {Iα}α∈A a finite family of bounded intervals on R. We have

Bτ ×

∣∣∣∣∣ ⋃
α∈A

τIα

∣∣∣∣∣ ≤
∣∣∣∣∣ ⋃
α∈A

Iα

∣∣∣∣∣ ≤ Cτ ×

∣∣∣∣∣ ⋃
α∈A

τIα

∣∣∣∣∣
where Cτ = sup{τ, 1

τ } and Bτ = inf{τ, 1
τ }. In other words we have∣∣∣∣∣ ⋃
α∈A

Iα

∣∣∣∣∣ ≃τ

∣∣∣∣∣ ⋃
α∈A

τIα

∣∣∣∣∣ .
Proof. Suppose that τ > 1. We just need to prove that

Bτ ×

∣∣∣∣∣ ⋃
α∈A

τIα

∣∣∣∣∣ ≤
∣∣∣∣∣ ⋃
α∈A

Iα

∣∣∣∣∣
since it is obvious that I ⊂ τI in this case. We apply Austin’ covering lemma to {Iα}α∈A which
gives a disjoint subfamily

{Iαk
}k≤N

such that ⋃
α∈A

Iα ⊂
⋃
k≤N

3Iαk
.

Obviously we have ∣∣∣∣∣ ⋃
α∈A

Iα

∣∣∣∣∣ ≥ ∑
k≤N

|Iαk
|

14



and so ∣∣∣∣∣ ⋃
α∈A

Iα

∣∣∣∣∣ ≥ ∑
k≤N

1

3τ
|3τIαk

| ≥ 1

3τ

∣∣∣∣∣∣
⋃
k≤N

3τIαk

∣∣∣∣∣∣ .
Hence it suffices to prove that ⋃

α∈A

τIα ⊂
⋃
k≤N

3τIαk

to conclude. Let x ∈ τIα we write
x = cα + τy

where cα is the center of Iα and such that cα + y ∈ Iα. There exists a k ≤ N such that

cα + y ∈ 3Iαk

and so by definition x ∈ 3τIαk
which concludes. The case τ < 1 is similar.

Now that we have dealt with union of dilated intervals we consider union of translated intervals.

Lemma 3. Let µ > 0 be a positive constant. For any finite family of intervals {Iα}α∈A on R and
any finite family of scalars {tα}α∈A ⊂ R such that, for all α ∈ A

|tα| < µ× |Iα|

we have ∣∣∣∣∣ ⋃
α∈A

Iα

∣∣∣∣∣ ≃µ

∣∣∣∣∣ ⋃
α∈A

(tα + Iα)

∣∣∣∣∣ .
Proof. To begin with, observe that we have for any α ∈ A

tα + Iα ⊂ (1 + µ)Iα.

We apply Austin’s covering lemma to the family {Iα}α∈A which gives a disjoint subfamily {Iαk
}k≤N

such that ⋃
α∈A

Iα ⊂
⋃
k≤N

3Iαk
.

In particular we have ∣∣∣∣∣∣
⊔
k≤N

Iαk

∣∣∣∣∣∣ ≃
∣∣∣∣∣ ⋃
α∈A

Iα

∣∣∣∣∣ .
We consider now the family

{(1 + µ)Iαk
}k≤N

which is a priori not disjoint. We apply again Austin’s covering lemma which gives a disjoint

subfamily that we will denote
{
(1 + µ)Iαkl

}
l≤M

who satisfies

⋃
k≤N

(1 + µ)Iαk
⊂

⋃
l≤M

3(1 + µ)Iαkl
.

In particular we have ∣∣∣∣∣∣
⊔
l≤M

(1 + µ)Iαkl

∣∣∣∣∣∣ ≃
∣∣∣∣∣∣
⋃
k≤N

(1 + µ)Iαk

∣∣∣∣∣∣ .
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To conclude, it suffices to observe that for any α ∈ A we have

tα + Iα ⊂ (1 + µ)Iα

because |tα| ≤ µ× |Iα|. Hence the family

{tαkl
+ Iαkl

}l≤M

is disjoint and so finally∣∣∣∣∣∣
⊔
l≤M

(
tαkl

+ Iαkl

)∣∣∣∣∣∣ =
∑
l≤M

∣∣∣Iαkl

∣∣∣ ≥ 1

3(1 + µ)

∣∣∣∣∣∣
⋃
l≤M

3(1 + µ)Iαkl

∣∣∣∣∣∣ ≃µ

∣∣∣∣∣ ⋃
α∈A

Iα

∣∣∣∣∣
where we have used lemma 2 in the last step.

Geometric estimates on R2

We denote by P the set containing all parallelogram p ⊂ R2 whose vertices are of the form
(t, a), (t, b), (s, c) and (s, d) where t − s > 0 and b − a = d − c > 0. We say that lp := t − s is
the length of p and that wp := b − a is the width of p. We do not have necessarily lp ≥ wp. For
p ∈ P and and a positive ratio 0 < τ < 1 we denote by P(p, τ) the collection defined as

P(p, τ) := {s ∈ P : s ⊂ p, ls = lp, |s| ≥ τ |p|} .

In other words, we have s ∈ P(p, τ) if and only if s is included in p and has the same length as p
and its area is greater than τ |p|. We won’t use directly the following proposition but its proof is
instructive.

Proposition 6 (geometric estimate I). Fix τ > 1 and any finite family of parallelograms {pi}i∈I ⊂
P. For each i ∈ I, select an element si ∈ P(pi, τ). The following holds∣∣∣∣∣⋃

i∈I

si

∣∣∣∣∣ ≥ τ

3

∣∣∣∣∣⋃
i∈I

pi

∣∣∣∣∣ .
Proof. We let U =

⋃
i∈I pi and V =

⋃
i∈I si. Fix x ∈ R and for i ∈ I, denote by pxi and sxi the

segments pi ∩ {x× R} and si ∩ {x× R}. Observe that we have by hypothesis

|sxi | ≥ τ |pxi |.

By definition, we have the following equality∣∣∣∣∣⋃
i∈I

pxi

∣∣∣∣∣ =
∫

1U (x, y)dy

and as well as ∣∣∣∣∣⋃
i∈I

sxi

∣∣∣∣∣ =
∫

1V (x, y)dy.

We apply Austin’s covering lemma to the family {pxi }i∈I which gives a subfamily J ⊂ I such that

the segments
{
pxj

}
j∈J

are disjoint intervals satisfying⋃
i∈I

pxi ⊂
⋃
j∈J

3pxj .
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(pi, si)

Figure 9: Each red parallelogram si satisfy si ⊂ pi and |si| ≥ 1
4 |pi where pi is a blue parallelogram.

Hence, the red shaded area takes at least ≃ 1
4 of the blue one.

This yields ∣∣∣∣∣⋃
i∈I

sxi

∣∣∣∣∣ ≥ ∑
j∈J

∣∣sxj ∣∣ ≥ τ

3

∣∣∣∣∣⋃
i∈I

pxi

∣∣∣∣∣ .
An integration over x ∈ R concludes the proof.

We aim to give a more general version of proposition 6 using lemma 2 and 3. We can prove the
following proposition. For p ∈ P, we define the parallelogram h(p) ∈ P as

h(p) :=

2⋃
k=−2

(0, kwp) + p.

In other words, h(p) is a parallelogram who has same length and orientation than p but is 5 times
wider i.e. wh(p) = 5wp.

Proposition 7 (geometric estimate II). Fix 0 < τ < 1 and any finite family of parallelograms
{pi}i∈I ⊂ P. For each i ∈ I, select an element si ∈ P(h(pi), τ). The following estimate holds∣∣∣∣∣⋃

i∈I

si

∣∣∣∣∣ ≥ τ

54

∣∣∣∣∣⋃
i∈I

pi

∣∣∣∣∣ .
Proof. As in the proof of lemma 6, denote U =

⋃
i∈I pi and V =

⋃
i∈I si. Fix x ∈ R and for i ∈ I,

denote by pxi and sxi the segments pi ∩ {x× R} and si ∩ {x× R}. For any i ∈ I, observe that there
is a scalar ti satisfying |ti| ≤ µ× |pi| with

µ = 5

such that
ti + τpxi ⊂ sxi .

Applying lemma 3, we then have (since 9× (1 + µ) = 54)∣∣∣∣∣⋃
i∈I

sxi

∣∣∣∣∣ ≥
∣∣∣∣∣⋃
i∈I

(ti + τpxi )

∣∣∣∣∣ ≥ 1

54

∣∣∣∣∣⋃
i∈I

τpxi

∣∣∣∣∣ .
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c c2

p

s′
c2

Figure 10: An illustration of the situation in proposition 9. We have s′ ⊂ {Mp1c2 > 1
4} and

s′ ⊂ h(c). Moreover |s′| is quite large i.e. we have |s′| ≃ |c|.

We conclude using lemma 2

1

54

∣∣∣∣∣⋃
i∈I

τpxi

∣∣∣∣∣ ≥ τ

54

∣∣∣∣∣⋃
i∈I

pxi

∣∣∣∣∣
by integrating on x as before.

Geometric estimate involving a maximal operator

We state a last geometric estimate involving maximal operator that will turn out to be crucial. We

begin by a specific case. Consider c = [0, 1]2 and c2 =
−−−→
(1, 0) + c and any element p ∈ P included in

c such that
lp = lc

and

|p| ≤ 1

2
|c|.

Proposition 8. There is a parallelogram s ∈ P(h(c), 1
4 ) depending on p such that the following

inclusion holds

s ⊂
{
Mp1c2 >

1

16

}
.

Proof. Without loss of generality, we can suppose that the lower left corner of p is O. The upper
left corner of p is the point (0, wp) and we denote by (d, 1) and (d+wp, 1) its lower right and upper
right corners. Since p ⊂ c we have

d+ wp ≤ 1.

The upper right corner of 1
2p is the point ( 12 (d + wp),

1
2 ) and so for any 0 ≤ y ≤ 1 − 1

2 (d + wp) we
have

(0, y) +
1

2
p ⊂ c.

This yields our inclusion as follow. Let t⃗ ∈ R2 be a vector such that the center of the parallelogram
p̃ = t⃗+ 2p is the point (1, 0). By construction we directly have

|p̃ ∩ c2| ≥
1

16
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but moreover for any 0 ≤ y ≤ 1
2 we have

| {(0, y) + p̃} ∩ c2| ≥
1

16

since the upper right quarter of p̃ is relatively to c2 in the same position than p relatively to c.
Finally, denoting by p∗ the parallelogram p̃ ∩ [0, 1]× R, the parallelogram s defined as

s :=
⋃

0≤y≤ 1
2

((0, y) + p∗)

satisfies the condition claimed. This concludes the proof.

We state now the previous proposition in its general form. We fix an arbitrary element c ∈ P
whose lower left vertex is the point O, and we denote by e⃗c ∈ R2 its lower right vertex and by lc > 0
its width. We consider the parallelogram c2 := e⃗c+ c and any element p ∈ P included in c such that

lp = lc

and

|p| ≤ 1

2
|c|.

Proposition 9. There is parallelogram s ∈ P(h(c), 1
4 ) depending on p such that the following

inclusion holds

s ⊂
{
Mp1c2 >

1

4

}
.

Proof. There is a unique linear function f : R2 → R2 with positive determinant such that

f(c) = [0, 1]2.

Using this function and the previous lemma, the conclusion comes.

8 Proof of theorem 2

We are now ready to prove that for an arbitrary family G contained in T and any 1 < p < ∞ one
has

Bp × log(λ[G]) ≤ ∥MG∥pp.

To do so, we prove that MG admits a Kakeya-type set of level(
1

16
, 84C2 log(n)−1

)
≃

(
1

2
, log(n)−1

)
.

Our strategy is simple : the family G generates a tree [G] and we denote as in section 5

A2 := A2(ω)

the Kakeya-type set for M[G]. We prove that this set A2 is also a Kakeya-type set of desired level
for MG.
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Using Bateman’s construction

The family G generates a tree [G] ; we fix a fig tree [F ] ⊂ [G] of scale λ[G] and we denote by h ∈ N
its height. Consider as before the random set A associated to [F ]

A :=
⋃

k≤2h

t⃗k + d(rk).

We fix a realisation ω ∈ Ω such that

|A1(ω)| ≥
log(n)

C2
|A2(ω)|.

We want to take advantage of A2 := A2(ω) but this time using elements of G and not elements of
[F ].

Applying proposition 9

For any u ∈ L[F ] denote by e⃗u its lower right vertice and fix gu an element of G such that

gu ⊂ u.

Once again, we insist on the fact that we have

gu ∈ G

but not necessarily u ∈ G. What is known for sure is that

u ∈ [G].

To each couple (u, gu) we can apply the proposition 9 because gu ⊂ u and so

|gu| ≤
1

2
|u|.

This gives a parallelogram su ∈ P(h(u), 1
4 ) such that

su ⊂
{
Mgu1e⃗u+u >

1

16

}
.

Because gu ∈ G we obviously have
M{gu} ≤ MG

and so

su ⊂
{
MG1e⃗u+u >

1

16

}
.

Considering the union over k ≤ 2h we have

B1 :=
⋃

k≤2h

t⃗k + srk ⊂
{
MG1A2

>
1

16

}

and so finally

|B1| ≤
∣∣∣∣{MG1A2

>
1

16

}∣∣∣∣ .
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Estimating |B1|
It remains to compute |B1|. To do so, observe that we can use proposition 7 with the families{
t⃗k + rk

}
k≤2h

and
{
t⃗k + srk

}
k≤2h

. This yields

|B1| ≥
1

21× 4
|A1|

and so we finally have

|A2| ≤
84C2

log(n)

∣∣∣∣{MG1A2
>

1

16

}∣∣∣∣ .
In other words, the set A2 is a Kakeya-type set of level ( 1

16 , 84C
2 log(n)−1) for the maximal operator

MG. As before, this implies a lower bound on ∥MG∥p and this concludes the proof.

9 Proof of theorem 3

We finally detail how one can derive theorem 3 from theorem 2. The proof of the claims are routine
and we leave them to the reader. We recall that a basis G is called a rarefaction of RΩ when we
have {ωR : R ∈ G} = Ω and moreover for any ω ∈ Ω

inf
R∈G,ωR=ω

κR = 0.

This means that for any ω ∈ Ω and ϵ > 0, the family G contains a rectangle R such that

ωR = ω

and
κR < ϵ.

We fix a rarefied family G of RΩ and let Ga ⊂ T be an approximation of the family G. We claim
that we can choose Ga such that

[Ga] = [TΩ]

i.e. the tree generated by Ga is the tree [TΩ]. Indeed, we have G ⊂ RΩ and so we can choose Ga

such that we have
Ga ⊂ [TΩ].

Now the hypothesis on G implies that we have in this case

[Ga] = [TΩ].

We can finally prove theorem 3. We suppose that Ω is a bad set of directions ; in other words we
suppose that we have

λ[TΩ] = ∞.

For any 1 < p < ∞, we have the following inequalities

∥MG∥pp ≃ ∥MGa∥pp ≳p log(λ[Ga]) = log(λ[TΩ]) = ∞

since we have [Ga] = [TΩ]. Hence we have for any 1 < p < ∞

∥MG∥pp = ∞

which concludes.
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