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ON THE INTEGER TRANSFINITE DIAMETER OF INTERVALS OF THE FORM r s , u OR [0, ( √ a -√ b) 2 ] AND OF FAREY INTERVALS

Firstly, we consider intervals of the form r s , u where r, s are positive integers with gcd(r, s)=1 and u is a real number, or of the form [0, ( √ a-√ b) 2 ] where a, b are positive integers. Thanks to a lemma of Chudnovsky, we give first a lower bound of the integer transfinite diameter of such intervals. Then, using the method of explicit auxiliary functions and our recursive algorithm, we explain how to get an upper bound for this quantity. We finish with some numerical examples. Secondly, we prove inequalities on the integer transfinite diameter of Farey intervals, i.e., intervals of the type a q , b s where |as -bq| = 1.

worth including in this paper. For example, we can obtain t Z Z 0, 1 64 ≤ 0.01520467, whereas J. Aguirre and J.C. Peral had t Z Z 0, 1 64 ≤ 0.01520616. Thus, we turn our attention to the integer transfinite diameter of intervals of the type r s , u , where r, s are positive integers with

Introduction

Let K be a compact subset of C. The transfinite diameter of K is defined by

t(K) = lim inf inf |P | 1 n ∞,K , n ≥ 1 P ∈ C[X] n → ∞ P monic deg(P ) = n
where |P | ∞,K = sup z∈K |P (z)| for P ∈ C[X], while the integer transfinite diameter of K is defined by

t Z Z (K) = lim inf inf |P | 1 n ∞,K n ≥ 1 P ∈ Z Z[X] n → ∞ deg(P ) = n
If I is a real interval of length |I|, we have the well-known properties t(I) = |I| 4 and, if |I| ≥ 4, t Z Z (I) = t(I) = |I| 4 (for more details, see [F1]). Therefore, we restrict our attention to intervals I with |I| < 4. In this case, we know that t(I) ≤ t Z Z (I) ≤ t(I) = 1 2 |I|. The first inequality came from the definition and the second one is due to D. Hilbert [H]. Many authors have been interested in the study of t Z Z (I). The case I = [0, 1] was particularly studied because of a theoretical result of Gelfond and Schnirelman [L] showing that, if t Z Z ([0, 1]) = 1/e = 0.3678 were to hold, then a simple proof of the prime number theorem would follow. However, we know that 0.4213 ≤ t Z Z ([0, 1] ≤ 0.422685. The lower bound is due to I. Pritsker [Pr] while the author proved the upper bound [F2]. The exact value of t Z Z (I) remains unknown for I with |I| < 4.

In [F1], we gave lower and upper bounds for several Farey intervals i.e., I = r s , p q with |ps -qr| = 1. Using more polynomials than us (polynomials found heuristically), J. Aguirre and J.C. Peral [AP] have improved the upper bound of each our intervals. Thanks to our recursive algorithm described in Section 3, we can improve their bounds slightly, but not by enough to be gcd(r, s)=1 and u is a real number or of the type [0, ( √ a -√ b) 2 ] where a, b are positive integers. Using methods developed in [F1] and our recursive algorithm, we obtain lower and upper bounds for them. To illustrate the method, we give some numerical examples.

Then we consider an interval I = a q , b s , where |as-bq| = 1, and an interval J = c qs , d (q + s) 2 with |c(q + s) 2 -dqs| = 1. We prove the following inequalities:

Theorem 1. t Z Z (J) ≤ t Z Z (I) 2 ≤ max( q s , s q )t Z Z (J).

The lower bounds

In [F1], we proved the following result:

Theorem 2.

t Z Z r s , p q ≥ 1 q + s ∞ i=0 (1 + λ i ) -1 2 i+1 ,
where λ 0 = qs (q + s) 2 and λ i+1 =

λ i (1 + λ i ) 2 .
The essential tool of the proof is a lemma of Chudnovsky [C] that is applied to a particular family of polynomials introduced by C. J. Smyth [S1]. Now, consider I = r s , u where r, s are positive integers with gcd(r, s)=1 and u is a real number. Euclid's algorithm allows us to find the largest fraction p q such that r s , p q ⊂ I, so that t Z Z r s , p q ≤ t Z Z (I). Then, we apply Theorem 2 to the interval r s , p q and we deduce a lower bound for I.

Let I be the interval [0, ( √ a - √ b) 2 ]
where a, b are positive integers. We search for the smallest integer q > 0 such that 0, 1 q ⊂ I. Again, we apply Theorem 2 to the interval 0, 1 q to obtain a lower bound for I.

3 The upper bounds 3.1 The case I = r s , u

Let I be an interval of the form r s , u , where r, s are integers and u is a real number. Here, we will use the principle of explicit auxiliary functions and our recursive algorithm to get an upper bound for I.

First, we choose two integers p, q such that x(t) = qt -p r -ts maps r s , u into [b, ∞) with the conditions x(u) = b and 0 < b < 1, and x r s → ∞. We know that our recursive algorithm is very efficient on [0, ∞) , which is why we impose the latter condition. The first condition implies that qr -ps = -1. Now, suppose that we can find a sequence of polynomials (Q j ) 1≤j≤J in Z[X], a sequence of positive real numbers (c j ) 1≤j≤J and a real m such that

(3.1) ∀x ∈ [b, ∞), f (x) = log |q + sx| - 1≤j≤J c j log |Q j (x)| ≥ m,
which can also be written

∀x ∈ [b, ∞), J j=1 |Q j (x)| b j ≤ e -N m |q + sx| N ,
where (b j ) 1≤j≤J is a sequence of integers and N is an integer such that

1≤j≤J b j deg(Q j ) ≤ N .
We deduce from the previous inequality

∀x ∈ [b, ∞), |R(x)| ≤ e -mN |q + sx| N ,
where we put R(x)

= J j=1 |Q j (x)| b j and note that deg(R) ≤ N .
Here we make a change of variable to get back to the interval I. We define y = p + rx q + sx . Since

x The polynomial P is explicit and we obtain t Z Z (I) ≤ e -m . Now, we have to find the polynomials Q j , the real numbers c j and the minimum m of the function f which is called an auxiliary function. This notion was introduced into number theory by C. J. Smyth in [S2].

We need the following definition: let K be a compact subset of C, if ϕ is a positive function defined on K, the ϕ-generalized integer transfinite diameter of K is defined by

t Z,ϕ (K) = lim inf inf sup |P (z)| 1 n ϕ(z) . n ≥ 1 P ∈ Z[X] z ∈ K n → ∞ deg(P ) = n
This version of weighted integer transfinite diameter was introduced by F. Amoroso [A] and is an important tool in the study of rational approximations of logarithms of rational numbers.

In the auxiliary function (3.1), we replace the coefficients c j by rational numbers a j /q, where q is a positive integer such that q.c j is an integer for all 1 ≤ j ≤ J. Then we can write:

(3.2) ∀x > b, f (x) = log |q + sx| - t r log |Q(x)| ≥ m.
where

Q = J j=1 Q a j j ∈ Z Z[X] is of degree r = J j=1 a j deg Q j and t = J j=1 c j deg Q j (this formulation
was introduced by J. P. Serre). Thus we seek a polynomial Q

∈ Z Z[X] such that sup x>b |Q(x)| t/r |q + sx| -1 ≤ e -m .
If we suppose that t is fixed, it is equivalent to find an effective upper bound for the weighted integer transfinite diameter over the interval [b, ∞) with the weight ϕ(x) = |q + sx| -1 :

t Z Z,ϕ ([b, ∞)) = lim inf inf sup |P (x)| t r ϕ(x) . r ≥ 1 P ∈ Z Z[X] x > b r → ∞ deg(P ) = r
Remark: Even though we have replaced the compact set K by the infinite interval [b, ∞), the weight ϕ ensures that the quantity

t Z Z,ϕ ([b, ∞)) is finite.
The main challenge is to find a set of "good "polynomials Q j , i.e., which gives the best possible value for m. Until 2003, the polynomials were found heuristically. This was the case in [F1] when we have bounded the integer transfinite diameter of Farey intervals. In 2003, Q. Wu [Wu] developed an algorithm to systematically search for "good "polynomials. His method was the following. We consider an auxiliary function as defined by (3.1). We fix a set E 0 of control points, uniformly distributed on the real interval L = [b, A] where A is "sufficiently large ". Thanks to the LLL algorithm, we find a polynomial Q small on E 0 withrespect to the quadratic norm. We test this polynomial in the auxiliary function and we keep only the factors of Q which have a nonzero exponent. The convergence of this new function gives local minima that we add to the set of points E 0 to get a new set of control points E 1 . We use again the LLL algorithm with the set E 1 and the process is repeated.

In 2006, we made two improvements to this previous algorithm in the use of the LLL algorithm. The first one is, at each step, to take into account not only the new control point but also the new polynomials of the best auxiliary function. The second one is the introduction of a corrective coefficient t. The idea is to get good polynomials Q j by induction. Thus, we call this algorithm the recursive algorithm. The first step consists in the optimization of the auxiliary function f 1 = log(q + sx) -t log x. We have t = c 1 where c 1 is the value that gives the best function f 1 . We suppose that we have some polynomials Q 1 , Q 2 , . . . , Q J and a function f as good as possible for this set of polynomials in the form (??)E2. We seek a polynomial R ∈

Z Z[x] of degree k (k = 10 for instance) such that sup x∈L |Q(x)R(x)| t r+k |q + sx| -1 ≤ e -m , where Q = J j=1 Q j . We want the quantity sup x∈L |Q(x)R(x)||q + sx| (r+k) t
to be as small as possible. We apply the LLL algorithm to the linear forms

Q(x i )R(x i )|q + sx i | (r+k) t .
The x i are control points, which are uniformly distributed points on the interval L to which we have added points where f has local minima. Thus we find a polynomial R whose irreducible factors R j are good candidates to enlarge the set {Q 1 , . . . , Q J }. We only keep the factors R j that have a nonzero coefficient in the newly optimized auxiliary function f . After optimization, some previous polynomials Q j may have a zero exponent and so are removed. We stop when two consecutive steps do not give any new polynomial.

Besides, we have to optimize the c j , that is to solve a problem of the following form: find max

C min x∈X f (x, C)
where f (x, C) is a linear form with respect to C = (c 0 , c 1 , . . . , c k ) (c 0 is the coefficient of x and is equal to 1) and X is a compact domain of C, the maximum is taken over c j ≥ 0 for j = 0, . . . , k.

A classical solution consists in taking very many control points (x i ) 1≤i≤N and in solving the standard problem of linear programming:

max C min 1≤j≤N f (x i , C).
The result depends then on the choice of the control points.

The idea of the semi infinite linear programming (introduced into Number Theory by C. J. Smyth [S2]) consists in repeating the previous process adding at each step new control points and verifying that this process converges to m, the value of the linear form for an optimum choice of C . The algorithm is the following:

(1) We choose an initial value for C i.e., C 0 and we calculate

m 0 = min x∈X f (x, C 0 ).
(2) We choose a finite set X 0 of control points belonging to X, and we have

m 0 ≤ m ≤ m 0 = min x∈X 0 f (x, C 0 ).
(3) We add to X 0 the points where f (x, C 0 ) has local minima to get a new set X 1 of control points. (4) We solve the usual linear programming problem:

max C min x∈X 1 f (x, C).
We get a new value for C denoted by C 1 and a result of the linear programming equal to m 1 = min x∈X f (x, C 1 ). Then we have

m 0 ≤ m 1 ≤ m ≤ m 1 = min x∈X 1 f (x, C 1 ) ≤ m 0 ,
(5) We repeat the steps from (2) to (4) and thus we get two sequences

(m i ) et (m i ) which satisfy m 0 ≤ m 1 ≤ . . . ≤ m i ≤ m ≤ m i ≤ . . . ≤ m 1 ≤ m 0 ,
We stop when there is a good enough convergence, for example when m i -m i ≤ 10 -6 . Supposing that p iterations are sufficient, we then take m = m p .

The case

I = [0, ( √ a - √ b) 2 ] Let I be an interval [0, ( √ a- √ b) 2 ]
where a, b are positive integers. We define α to be the integer part of

√ a + √ b a -b 2 . Then, the change of variable x(t) = αt -1 -t maps I to [b, ∞) where b is the fractional part of √ a + √ b a -b 2 .
Here, we consider the auxiliary function defined on [b, ∞) by:

f (x) = log |α + x| - 1≤j≤J c j log |Q j (x)|.
Then we proceed in a similar way to the method described in the paragraph above to get an upper bound for t Z Z (I).

Numerical examples

Applying the method describe above, we prove that:

Results 1.

0.097580 ≤ t Z Z 1 2 , 1 √ 3 ≤ 0.104355 0.039854 ≤ t Z Z 7 5 , √ 2 ≤ 0.047285 0.0496984 ≤ t Z Z 27 10 , e ≤ 0.054964 0.102371 ≤ t Z Z ([3, π]) ≤ 0.115497 0.1295 ≤ t Z Z ([0, ( √ 2 -1) 2 ]) ≤ 0.133449 0.284642 ≤ t Z Z ([0, ( √ 3 -1) 2 ]) ≤ 0.295697 Proof:
We detail the proof for the first interval. We search (p 0 , q 0 ) ∈ Z Z 2 such that q 0 -2p 0 = -1 ( ) with q 0 > 0 as small as possible: p 0 = q 0 = 1 is convenient. Then, the general solution of the equation ( ) is of the type:

(p k = 1 + k, q k = 1 + 2k), k ∈ Z Z. For k = 3, we have: 1 2 , 4 7 ⊂ 1 2 , 1 √
3 so that we apply Theorem 2 to this interval to get the lower bound. We are in the case where

1 √ 3 < p 0 q 0 thus b = q 2 / √ 3 -p 2 1 -2/ √ 3 = √ 3 -1.
We optimize the auxiliary function

f (x) = log |5 + 2x| - 1 leqj≤J c j log |Q j (x)| on [ √ 3 -1, ∞).
For the third interval, we have (p 0 , q 0 ) = (19, 7) then here, p 0 q 0 < e. In this case, we put b = q -1 e -p -1 27 -10e .

The polynomials involved in the previous inequalities can be read off from Table 1 to Table 6 below.

Proof of Theorem 1

We put I = a q , b s where |as -bq| = 1 and J = c qs , d (q + s) 2 with |c(q + s) 2 -dqs| = 1.

The left hand-side inequality

We suppose that t Z Z (I) = e -m I . Thus, for all > 0, sufficiently small for m = m I -> 0, there exists a polynomial

H 1 ∈ Z Z[t], deg(H 1 ) = D, satisfying (5.1) max t∈I |H 1 (t)| 1/D ≤ e -m .
We can write H 1 (t) = (ts -b) D-k K(t) where deg(K) = k ≤ D and ts -b does not divide K.

Now, put x = a -tq ts -b then x ≥ 0. H 1 becomes H 1 a + bx q + sx = ±1 q + sx D (q + sx) k K a + bx q + sx H 2 (x)
where deg(H 2 ) = deg(K) ≤ D. From (5.1), we deduce that ∀x ≥ 0, |H 2 (x)| 1/D ≤ e -m (q + sx).

If we put f (x) = log(q + sx) -

1 D log |H 2 (x)| for all x ≥ 0, we have inf x≥0 f (x) ≥ m.
We define the function g by : ∀x > 0, g

(x) = 1 2 [f (x) + f ( 1 x )].
There exists a polynomial

H 3 ∈ Z Z[x], deg(H 3 ) ≤ deg(H 2 ) such that g(x) = 1 2 log (q + s) 2 + qs(x + 1 x -2) - 1 D log |H 3 (x + 1 x -2) . Now, put y = x + 1 x -2 and h(y) = log (q + s) 2 + qsy -1 D log |H 3 (y)|. Then (5.2) inf y≥0 h(y) ≥ 2m.
Next, put z = cy + d qsy + (q + s) 2 , so that z belongs to the interval J. From (5.2), we deduce that

∀z ∈ J, |qsz -c||H 3 d -z(q + s) 2 qsz -c | 1/D ≤ e -2m , i.e., ∀z ∈ J, |(qsz -c) D-deg(H 3 ) H 3 d -z(q + s) 2 qsz -c (qsz -c) deg(H 3 ) H 4 (z) | 1/D ≤ e -2m ,
where deg(H 4 ) = deg(H 3 ).

Hence, there exists a polynomial

H 5 (z) = (qsz -c) D-deg(H 4 ) H 4 (z) ∈ Z Z[z], deg(H 5 ) = D such that ∀z ∈ J, |H 5 (z)| 1/D ≤ e -2m . It means that t Z Z (J) ≤ |H 5 (z)| 1/D ≤ (e -(m I -) ) 2 .
Finally, for that tends towards 0, we obtain

t Z Z (J) ≤ t Z Z (I) 2 .

The right-hand side inequality

We suppose that t Z Z (J) = e -m J . Thus, for all > 0, sufficiently small for m = m J -> 0, there exists a polynomial

H 1 ∈ Z Z[t], deg(H 1 ) = D, satisfying (5.3) max t∈J |H 1 (t)| 1/D ≤ e -m .
We can write H 1 (t) = (qst -c) D-k K(t) where deg(K) = k ≤ D and qst -c does not divide K.

Now, put x = d -t(q + s) 2 qst -c then x ≥ 0. then H 1 becomes H 1 cx + d qsx + (q + s) 2 = ±1 qsx + (q + s) 2 D (qsx + (q + s) 2 ) k K cx + d qsx + (q + s) 2 H 2 (x)
, where deg(H 2 ) = deg(K) ≤ D. From (5.3), we deduce that

(5.4) ∀x ≥ 0, |H 2 (x)| 1/D ≤ e -m (qsx + (q + s) 2 ).
For all x ≥ 0, it is possible to find y ≥ 0 such that x = y + 1 y -2. Thus, (5.4) becomes:

(5.5)

y D H 2 y + 1 y -2 1/D
≤ e -m (q + sy)(qy + s).

At last, put z = a + by q + sy so that z belongs to the interval I. From (5.5), we deduce

(a -qz) D (sz -b) D H 2 a -qz sz -b + sz -b a -qz -2 1/D ≤ e -m |(s 2 -q 2 )z + aq -bs|,
i.e., there exists a polynomial

H 3 ∈ Z Z[z], deg(H 3 ) = 2 deg(H 2 ) such that | (a -qz) D-deg(H 2 ) (sz -b) D-deg(H 2 ) H 3 (z) H 4 (z) | 1/D ≤ e -m |(s 2 -q 2 )z + aq -bs|, with deg(H 4 ) = 2D. Thus, we have |H 4 (z)| 1/2D ≤ e -m |(s 2 -q 2 )z + aq -bs| 1/2 . As the func- tion z → (s 2 -q 2 )z +aq -bs is monotonic on the interval I, it follows that ∀z ∈ I, ||H 4 (z)| 1/2D ≤ e -m/2 max q s , s q
. This means that t Z Z (I) ≤ e -(m J -)/2 max q s , s q .

Now, letting → 0, we get

t Z Z (I) ≤ t Z Z (I) 1/2 max q s , s q . Table 1: t Z Z 1 2 , 1 √ 3 j c j Q j 1 0.194694226959 x -1 2 0.035494760974 x -2 3 0.002816285615 x -3 4 0.004358713735 2x 3 -12x 2 + 20x -9 5 0.018800399043 x 3 -7x 2 + 14x -7 6 0.008005832569 x 4 -10x 3 + 33x 2 -41x + 16 7 0.001938639658 x 4 -10x 3 + 32x 2 -39x + 15 8 0.004174431074 x 4 -10x 3 + 33x 2 -42x + 17 9 0.001311916586
x 5 -11x 4 + 47x 3 -95x 2 + 88x -29 10 0.000845050740

x 5 -14x 4 + 72x 3 -168x 2 + 174x -62 11 0.000018382517

x 5 -13x 4 + 60x 3 -123x 2 + 113x -37 12 0.000659169385

x 6 -15x 5 + 87x 4 -245x 3 + 347x 2 -232x + 58 13 0.000522369339

x 6 -15x 5 + 84x 4 -224x 3 + 297x 2 -185x + 43 14 0.000661169596

x 6 -16x 5 + 96x 4 -274x 3 + 389x 2 -260x + 65 15 0.000060014755

x 7 -18x 6 + 129x 5 -474x 4 + 958x 3 -1059x 2 + 592x -130 16 0.000046641048 2x 7 -33x 6 + 217x 5 -736x 4 + 1388x 3 -1453x 2 + 781x -167 17 0.000968791114 x 7 -18x 6 + 129x 5 -475x 4 + 966x 3 -1080x 2 + 613x -137 18 0.000283740742 x 7 -19x 6 + 145x 5 -571x 4 + 1240x 3 -1469x 2 + 873x -202 19 0.001171298002 x 8 -21x 7 + 180x 6 -820x 5 + 2170x 4 -3416x 3 + 3124x 2 -1518x + 301 20 0.000599474735 x 8 -20x 7 + 165x 6 -731x 5 + 1896x 4 -2938x 3 + 2648x 2 -1267x + 247 21 0.000513081115 x 12 -31x 11 + 422x 10 -3333x 9 + 17000x 8 -58960x 7 + 142509x 6 -241765x 5 + 285610x 4 -229089x 3 + 118442x 2 -35464x + 4657 22 0.000266864041 x 12 -31x 11 + 422x 10 -3333x 9 + 17001x 8 -58975x 7 + 142601x 6 -242068x 5 + 286200x 4 -229789x 3 + 118939x 2 -35658x + 4689 Table 2: t Z Z 7 5 , √ 2 j c j Q j 1 0.162145981678 x -1 2 0.016639017547 2x -1 3 0.047659908308 x 2 -3x + 1 4 0.008735631418 x 2 -4x + 2 5 0.006909486855 x 2 -5x + 2 6 0.008890960380 x 3 -6x 2 + 9x -3 7 0.007016724017 x 4 -9x 3 + 20x 2 -14x + 3 8 0.000210255230 x 4 -7x 3 + 13x 2 -7x + 1 9 0.001167637570 x 5 -10x 4 + 33x 3 -46x 2 + 26x -5 10 0.005671721498 x 6 -13x 5 + 60x 4 -121x 3 + 111x 2 -46x + 7 11 0.000866481352 x 6 -13x 5 + 61x 4 -132x 3 + 138x 2 -65x + 11 12 0.000552782161 x 7 -15x 6 + 86x 5 -239x 4 + 344x 3 -256x 2 + 93x -13 13 0.001261761511 x 7 -14x 6 + 77x 5 -209x 4 + 297x 3 -219x 2 + 79x -11 14 0.001985253256 x 7 -15x 6 + 85x 5 -229x 4 + 315x 3 -222x 2 + 76x -10 15 0.000621304236 2x 7 -27x 6 + 138x 5 -343x 4 + 446x 3 -303x 2 + 101x -13 16 0.001330105312 x 9 -20x 8 + 159x 7 -657x 6 + 1551x 5 -2168x 4 + 1799x 3 -863x 2 + 220x -23 17 0.000656024029 x 9 -19x 8 + 147x 7 -597x 6 + 1388x 5 -1908x 4 + 1555x 3 -733x 2 + 184x -19 18 0.000658635577 x 10 -23x 9 + 217x 8 -1104x 7 + 3347x 6 -6301x 5 + 7439x 4 -5436x 3 + 2366x 2 -559x +55 19 0.000367168471 x 10 -22x 9 + 198x 8 -959x 7 + 2763x 6 -4941x 5 + 5550x 4 -3873x 3 + 1617x 2 -368x +35 20 0.000486211368
x 10 -23x 9 + 217x 8 -1106x 7 + 3364x 6 -6357x 5 + 7531x 4 -5518x 3 + 2406x 2 -569x +56 21 0.000294675856

x 10 -22x 9 + 199x 8 -968x 7 + 2795x 6 -4999x 5 + 5608x 4 -3905x 3 + 1626x 2 -369x +35 22 0.000155171828

x 12 -27x 11 + 309x 10 -1978x 9 + 7867x 8 -20424x 7 + 35410x 6 -41270x 5 + 32141x 4 -16392x 3 + 5234x 2 -947x + 74 23 0.000751307129

x 12 -26x 11 + 288x 10 -1791x 9 + 6945x 8 -17655x 7 + 30136x 6 -34807x 5 + 27052x 4 -13857x 3 + 4467x 2 -819x + 65 24 0.000018796797

x 12 -28x 11 + 332x 10 -2201x 9 + 9074x 8 -24482x 7 + 44308x 6 -54232x 5 + 44648x 4 -24206x 3 + 8246x 2 -1594x + 133 25 0.000014657665

x 13 -31x 12 + 416x 11 -3191x 10 + 15570x 9 -50902x 8 + 114432x 7 -178754x 6 +193820x 5 -144150x 4 + 71665x 3 -22651x 2 + 4101x -323 x 5 -13x 4 + 62x 3 -136x 2 + 136x -49 14 0.002838151941

x 5 -14x 4 + 73x 3 -175x 2 + 190x -73 15 0.003090337490

x 5 -14x 4 + 69x 3 -153x 2 + 153x -55 16 0.000877501362

x 5 -14x 4 + 70x 3 -157x 2 + 158x -57 17 0.000783458036

x 7 -21x 6 + 174x 5 -732x 4 + 1678x 3 -2091x 2 + 1315x -325 18 0.000718382052

x 8 -23x 7 + 216x 6 -1080x 5 + 3143x 4 -5451x 3 + 5503x 2 -2959x + 651 19 0.000776048203

x 9 -25x 8 + 264x 7 -1542x 6 + 5481x 5 -12283x 4 + 17346x 3 -14882x 2 + 7040x -1401 20 0.000669081482

x 13 -39x 12 + 673x 11 -6800x 10 + 44870x 9 -204169x 8 + 659163x 7 -1529181x 6 +2549851x 5 -3019341x 4 + 2468843x 3 -1320786x 2 + 414697x -57780 21 0.000505379075

x 13 -39x 12 + 673x 11 -6801x 10 + 44892x 9 -204377x 8 + 660280x 7 -1532961x 6 +2558282x 5 -3031903x

4 + 2481202x 3 -1328481x 2 + 417440x -58206 Table 4: t Z Z ([3, π]) j c j Q j 1 0.069920470860 x 2 0.054008763288 x -1 3 0.004496196393 x -2 4 0.019096822557 x 2 -3x + 1 5 0.001274142158 x 2 -4x + 1 6 0.000255157554 x 2 -4x + 2 7 0.000316881818 x 3 -6x 2 + 9x -3 8 0.005641656329 x 3 -5x 2 + 6x -1 Table 5: t Z Z ([0, ( √ 2 -1) 2 ]) j c j Q j 1 0.115071100342 x -1 2 0.042666343105 x -2 3 0.006877529069 x -3 4 0.008229041311
x 2 -5x + 5 5 0.005431600967 x 3 -8x 2 + 18x -10 6 0.000180696893 x 4 -11x 3 + 40x 2 -55x + 24 7 0.000156842585 x 4 -11x 3 + 39x 2 -53x + 23 8 0.000204367141 2x 4 -18x 3 + 56x 2 -70x + 29 9 0.001513115862 x 4 -10x 3 + 34x 2 -45x + 19 10 0.000644176350

x 5 -12x 4 + 55x 3 -119x 2 + 119x -43 11 0.001573791306

x 5 -13x 4 + 63x 3 -141x 2 + 144x -53 12 0.000719661252

x 5 -13x 4 + 62x 3 -135x 2 + 133x -47 13 0.000865530666

x 5 -13x 4 + 62x 3 -136x 2 + 136x -49 14 0.001236127494

x 5 -13x 4 + 63x 3 -140x 2 + 141x -51 15 0.000391029270

x 5 -14x 4 + 73x 3 -175x 2 + 190x -73 16 0.000918506387

x 6 -16x 5 + 99x 4 -302x 3 + 479x 2 -375x + 113 17 0.000697517226

x 6 -16x 5 + 98x 4 -296x 3 + 466x 2 -363x + 109 18 0.000463327673

x 7 -18x 6 + 132x 5 -510x 4 + 1119x 3 -1392x 2 + 908x -239 19 0.000367368001

x 7 -18x 6 + 133x 5 -520x 4 + 1156x 3 -1455x 2 + 957x -253 20 0.000732687113

x 7 -18x 6 + 132x 5 -511x 4 + 1125x 3 -1404x 2 + 917x -241 21 0.000025639888 2x 11 -55x 10 + 667x 9 -4704x 8 + 21414x 7 -66001x 6 + 140395x 5 -205912x 4 + 203889x 3 -129715x 2 + 47698x -7679 22 0.000716635362

x 11 -29x 10 + 370x 9 -2738x 8 + 13041x 7 -41928x 6 + 92748x 5 -141021x 4 + 144313x 3 -94600x 2 + 35735x -5893 23 0.000397521950

x 11 -29x 10 + 369x 9 -2717x 8 + 12853x 7 -40986x 6 + 89835x 5 -135252x 4 + 136992x 3 -88857x 2 + 33207x -5417 24 0.000524876998

x 11 -29x 10 + 370x 9 -2738x 8 + 13040x 7 -41913x 6 + 92655x 5 -140713x 4 + 143727x 3 -93962x 2 + 35368x -5807 25 0.000612892287

x 11 -29x 10 + 369x 9 -2717x 8 + 12852x 7 -40973x 6 + 89766x 5 -135058x 4 + 136679x 3 -88566x 2 + 33062x -5387 26 0.000148377159

x 12 -33x 11 + 484x 10 -4167x 9 + 23428x 8 -90515x 7 + 246146x 6 -474230x 5 + 641859x 4 -594750x 3 + 357931x 2 -125575x + 19423 27 0.000103216390

x 12 -33x 11 + 485x 10 -4192x 9 + 23699x 8 -92192x 7 + 252704x 6 -491157x 5 + 671055x 4 -627975x 3 + 381809x 2 -135365x + 21163 28 0.000133150862

x 12 -32x 11 + 455x 10 -3799x 9 + 20732x 8 -77852x 7 + 206129x 6 -387456x 5 + 512803x 4 -465781x 3 + 275478x 2 -95228x + 14551 29 0.000246669901

x 13 -35x 12 + 552x 11 -5191x 10 + 32453x 9 -142327x 8 + 450113x 7 -1038385x 6 +1745715x 5 -2110202x 4 + 1780812x 3 -992518x 2 + 327128x -48119 30 0.000039809568

x 14 -38x 13 + 655x 12 -6783x 11 + 47114x 10 -232039x 9 + 835104x 8 -2229770x 7 +4435843x 6 -6539179x 5 + 7027795x 4 -5336585x 3 + 2705220x 2 -819024x + 111689 0.000528294702 4x 5 -44x 4 + 180x 3 -343x 2 + 305x -101 9 0.000696152224 x 5 -14x 4 + 72x 3 -167x 2 + 173x -64 10 0.009486871917 x 5 -13x 4 + 63x 3 -141x 2 + 144x -53 11 0.000692925074 x 5 -14x 4 + 70x 3 -158x 2 + 161x -59 12 0.001337857384 x 5 -14x 4 + 71x 3 -163x 2 + 168x -62 13 0.000171441668 x 5 -15x 4 + 82x 3 -203x 2 + 225x -88 14 0.000196328975 x 6 -17x 5 + 111x 4 -355x 3 + 586x 2 -475x + 148 15 0.000542120909 x 6 -17x 5 + 111x 4 -355x 3 + 586x 2 -474x + 147 16 0.005326448972 x 6 -16x 5 + 100x 4 -311x 3 + 506x 2 -408x + 127 17 0.000722607689 x 7 -19x 6 + 146x 5 -587x 4 + 1332x 3 -1705x 2 + 1140x -307 18 0.001404371641 x 7 -19x 6 + 146x 5 -587x 4 + 1333x 3 -1709x 2 + 1145x -309 19 0.000116819748 x 7 -19x 6 + 146x 5 -588x 4 + 1340x 3 -1727x 2 + 1165x -317 20 0.000502577474 x 7 -19x 6 + 146x 5 -588x 4 + 1339x 3 -1722x 2 + 1157x -313 21 0.000262250259 x 7 -20x 6 + 161x 5 -677x 4 + 1606x 3 -2148x 2 + 1498x -419 22 0.000701618498 x 7 -18x 6 + 133x 5 -522x 4 + 1171x 3 -1495x 2 + 1002x -271 

  > b we have y ∈ I. We define P (y) = R qy -p r -sy (r -sy) N . Thus deg(P ) = deg(R) + (Ndeg(R)) = N and the previous inequality becomes ∀y ∈ I, |P (y)| ≤ e -mN , because qr -ps = -1.

Table 3 :

 3 t Z Z

	27 10	, e

Table 6

 6 

	: t Z Z ([0, (	√	3 -1) 2 ])