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The absolute trace of totally positive algebraic integers

Introduction

Let α be a totally positive algebraic integer of degree d ≥ 2 (i.e. its conjugates α 1 = α, ..., α d are all positive real numbers). The trace of α is defined by tr(α) = The Schur-Siegel-Smyth trace problem (so called by P. Borwein in his book [START_REF] Borwein | Computational excursions in analysis and number theory[END_REF]) is the following:

Fix ρ < 2. Then show that all but finitely many totally positive algebraic integers α satisfy tr(α) d > ρ.

Remark: Solving this problem is equivalent to prove that 2 is the smallest limit point of T .

The problem was solved in 1918 by I. Schur for ρ < √ e [START_REF] Schur | Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten[END_REF] then in 1945 by C. L. Siegel for ρ < 1.7337 [START_REF] Siegel | The trace of totally positive and real algebraic integers[END_REF]. The results of Schur and of Siegel involved inequalities on the discriminant of an algebraic integer which is the quantity:

Disc(α) = 1≤i<j≤d (α i -α j ) 2 .
In 1984, C.J. Smyth solved the problem for ρ < 1.7719 [START_REF] Smyth | Totally positive algebraic integers of small trace[END_REF] by using for the first time the principle of auxiliary functions. It lies on the fact that the resultant of two polynomials with integer coefficients and without common factors is a nonzero integer. His idea was at the origin of many works on the subject. In 1997, the author, M. Grandcolas and G. Rhin solved the problem for ρ < 1.7735 [START_REF] Flammang | Small Salem numbers[END_REF]. In 2004, J. McKee and C.J. Smyth for ρ < 1.7783786 [START_REF] Mckee | Salem numbers of trace -2 and traces of totally positive algebraic integers[END_REF], in 2006, J. Aguirre, M. Bilbao and J. C. Peral for ρ < 1.7800 [START_REF] Aguirre | The trace of totally positive algebraic integers[END_REF]. In 2007, J. Aguirre and J. C. Peral solved the problem for ρ < 1.7836 [START_REF] Aguirre | The integer Chebyshev constant of Farey intervals[END_REF] then in 2008 for ρ < 1.784109 [START_REF] Aguirre | The trace problem for totally positive algebraic integers. With an appendix by Jean-Pierre Serre[END_REF]. In all these works, the polynomials involved in the auxiliary functions were found heuristically and have all positive roots. In 2003, Q. Wu [START_REF] Wu | On the linear independence measure of logarithms of rational numbers[END_REF] linked the auxiliary functions with the integer transfinite diameter ( see Section 3 below) and developed an algorithm which allows a systematic search for relevant polynomials. In 2009, we improved the previous algorithm as described in Section 4 and the polynomials are now found by induction. Hence, we call this new algorithm the recursive algorithm. This led us to solve the problem for ρ < 1.78702 [START_REF] Flammang | Trace of totally positive algebraic integers and integer transfinite diameter[END_REF]. J. McKee [START_REF] Mckee | Computing totally positive algebraic integers of small trace[END_REF] solved the problem in 2011 for ρ < 1.78839 using several of our polynomials with complex roots appearing in the auxiliary function. In 2011 also, Y. Liang and Q. Wu [START_REF] Liang | The trace problem for totally positive algebraic integers[END_REF] solved the problem for ρ < 1.79193. Finally, in 2016 [START_REF] Flammang | Une nouvelle minoration pour la trace absolue des entiers algébriques totalement positifs[END_REF], a slight variant in the use of our recursive algorithm allowed us to improve the known lower bounds and we get : if α is a totally positive algebraic integer of degree d whose

minimal polynomial is different from x -1, x 2 -3x + 1, x 3 -5x 2 + 6x -1, x 4 -7x 3 + 13x 2 -7x + 1 and x 4 -7x 3 + 14x 2 -8x + 1 then tr(α) d ≥ 1.792812.
Besides, J.P. Serre (see Appendix B in [START_REF] Aguirre | The Trace Problem for Totally Positive Algebraic Integers, Number Theory and Polynomials[END_REF]) showed that this method does not give such an inequality for any ρ larger than 1.898302... Nevertheless, it is interesting to try to get lower bounds for tr(α) d . For instance, it was used for the search of Salem numbers of smallest degree with trace equal to -2 by J.F. McKee and C.J. Smyth [START_REF] Mckee | Salem numbers of trace -2 and traces of totally positive algebraic integers[END_REF].

Another kind of inequality was established by the author, G. Rhin and C.J. Smyth in 1997 [START_REF] Flammang | The integer transfinite diameter of intervals and totally real algebraic integers[END_REF]. We got : if α is a totally positive algebraic integer of degree d ≥ 2 with minimum conjugate α 1 then, with a finite number of explicit exceptions, tr(α)

d ≥ 1.6 + α 1 .
We used the method of auxiliary functions with heuristic search of "good "polynomials. In 2006, J. Aguirre, M. Bilbao and J C Peral [START_REF] Aguirre | The trace of totally positive algebraic integers[END_REF] using the same method but adding new polynomials to ours improved the constant 1.6 to the constant 1.66. Now, thanks to our recursive algorithm, we prove the following result:

Theorem 1. Let α be a totally positive algebraic integer of degree d ≥ 2 with least conjugate α 1 . Then,

tr(α) d ≥ 1.68 + α 1
unless α is a zero of one of the polynomials listed in Table 1.

Table 1: List of all monic irreducible polynomials with positive roots, least root α 1 in (0,1) and Trace/Degreeα 1 at most 1.68

Polynomials P tr(P)/deg(P) -α 1 x 2 -3x + 1 1.1180340 x 2 -4x + 2 1.4142136 x 2 -5x + 5 1.1180340 x 3 -5x 2 + 6x -1 1.4686044 x 3 -6x 2 + 8x -2 1.6751309 x 3 -6x 2 + 9x -3 1.5320889 x 3 -7x 2 + 14x -7 1.5803129 x 3 -8x 2 + 19x -13 1.4686044 x 3 -9x 2 + 24x -19 1.5320889 x 4 -7x 3 + 13x 2 -7x + 1 1.5222229 x 4 -7x 3 + 14x 2 -8x + 1 1.5770909 x 4 -9x 3 + 27x 2 -31x + 11 1.6056743 x 5 -9x 4 + 26x 3 -29x 2 + 11x -1 1.6688217 x 6 -11x 5 + 42x 4 -68x 3 + 46x 2 -12x + 1 1.6702846 x 6 -13x 5 + 64x 4 -151x 3 + 177x 2 -96x + 19 1.6703513
This result implies that the only totally positive algebraic integers that satisfy tr(α) d < 1.68 + α 1 are those whose minimal polynomial belongs to the list above. The proof of this appears in [START_REF] Flammang | The integer transfinite diameter of intervals and totally real algebraic integers[END_REF] for the constant 1.6.

Proof of Theorem 1

The proof of the theorem is based on the following result: The b j are found recursively. We start with b 0 equals to 0 and P 0 is the polynomial-power used in [START_REF] Flammang | On the absolute trace of polynomials having all zeros in a sector[END_REF] to prove that tr(α) d ≥ 1.792812 = m(0) for all totally positive algebraic integers not a zero of the polynomials making up P 0 . The polynomials involved in P 0 and their coefficients are available on [10]. Thus, we take b 1 = 0.1138. Our recursive algorithm allows us to find a polynomial-power P b 1 such that m(b 1 ) is as big as possible. Then the process is iterated. We explain in the following sections how the P b j and the minima m(b j ) are calculated.

The proof of Theorem 1 (originally used in [START_REF] Flammang | The integer transfinite diameter of intervals and totally real algebraic integers[END_REF]) now follows easily. Let α and α 1 be as in the statement of the theorem. By replacing α by α -α 1 we can assume that α 1 ∈ (0, 1). Then we take b = α 1 in Proposition 1 and we obtain tr(α)

d ≥ 1.68 + α 1 + log | d i=1 P α 1 (α i )| 1/d i.e., tr(α) d ≥ 1.68 + α 1 + 1≤j≤J c j log | d i=1 |Q j (α i )| 1/d where P α 1 = J j=1 Q c j j .
The polynomials Q j and the exponents c j are available on [10]

Since the minimal polynomial P of α does not divide any Q j then 

d i=1 Q j (α i ) is a nonzero integer because it is the resultant of P and Q j . Hence, if α is not a root of Q j , we have tr(α) d ≥ 1.68 + α 1 .

Remark:

The following sections reproduce the corresponding sections of [START_REF] Flammang | Une nouvelle minoration pour la trace absolue des entiers algébriques totalement positifs[END_REF].

3 Auxiliary function and generalized integer transfinite diameter

Generalized integer transfinite diameter

Let K be a compact subset of C. The transfinite diameter of K is defined by

t(K) = lim inf inf |P | 1 n ∞,K n ≥ 1 P ∈ C[X] n → ∞ P monic deg(P ) = n where |P | ∞,K = sup z∈K |P (z)| for P ∈ C[X].
We define the integer transfinite diameter of K by

t Z Z (K) = lim inf inf |P | 1 n ∞,K n ≥ 1 P ∈ Z Z[X] n → ∞ deg(P ) = n
Finally, if ϕ is a positive function defined on K, the ϕ-generalized integer transfinite diameter of K is defined by

t Z,ϕ (K) = lim inf inf sup |P (z)| 1 n ϕ(z) . n ≥ 1 P ∈ Z[X] z ∈ K n → ∞ deg(P ) = n
This version of weighted integer transfinite diameter was introduced by F. Amoroso [START_REF] Amoroso | f-transfinite diameter and number theoretic applications[END_REF] and is an important tool in the study of rational approximations of logarithms of rational numbers.

Link with the auxiliary functions

Let b be in [0,1). The auxiliary function involved here is of the following type:

for x > b, f (x) = x - 1≤j≤J c j log |Q j (x)| (1)
where the c j are positive real numbers and the polynomials

Q j are nonzero polynomials in Z Z[x].
In (1), we replace the coefficients c j by rational numbers a j /q where q is a positive integer such that q.c j is an integer for all 1 ≤ j ≤ J. Then we can write:

for x > b, f (x) = x - t r log |Q(x)| ≥ m (2)
where

Q = J j=1 Q a j j ∈ Z Z[X] is of degree r = J j=1 a j deg Q j and t = J j=1 c j deg Q j (this formulation
was introduced by J. P. Serre). Note that we have

t r = 1 q . We seek a polynomial Q ∈ Z Z[X] such that sup x>b |Q(x)| t/r e -x ≤ e -m .
If we suppose that t is fixed, it is equivalent to find an effective upper bound for the weighted integer transfinite diameter over the interval [b, ∞) with the weight ϕ(x) = e -x :

t Z Z,ϕ ([b, ∞)) = lim inf inf sup |P (x)| t r ϕ(x) r ≥ 1 P ∈ Z Z[X] x > b r → ∞ deg(P ) = r
Remark: Even if we have replaced the compact K by the infinite interval [b, ∞), the weight ϕ ensures that the quantity t Z Z,ϕ ([b, ∞)) is finite.

Construction of an auxiliary function

The main point is to find a set of "good "polynomials Q j , i.e., which gives the best possible value for m. Until 2003, the polynomials were found heuristically. For example, in [START_REF] Smyth | Totally positive algebraic integers of small trace[END_REF] and [START_REF] Aguirre | The integer Chebyshev constant of Farey intervals[END_REF], the authors have searched a collection of polynomials with small absolute trace all of whose roots are positive real numbers. In 2003, Q. Wu [START_REF] Wu | On the linear independence measure of logarithms of rational numbers[END_REF] has developed an algorithm that allows a systematic search of "good "polynomials. His method was the following. We consider an auxiliary function as defined by [START_REF] Aguirre | The trace of totally positive algebraic integers[END_REF]. We fix a set E 0 of control points, uniformly distributed on the real interval I = [b, A] where A is "sufficiently large ". Thanks to the LLL algorithm, we find a polynomial Q small on E 0 within the meaning of the quadratic norm. We test this polynomial in the auxiliary function and we keep only the factors of Q which have a nonzero exponent. The convergence of this new function gives local minima that we add to the set of points E 0 to get a new set of control points E 1 . We use again the LLL algorithm with the set E 1 and the process is repeated.

In 2009 [START_REF] Flammang | Trace of totally positive algebraic integers and integer transfinite diameter[END_REF], we made two improvements to this previous algorithm in the use of the LLL algorithm. The first one is, at each step, to take into account not only the new control points but also the new polynomials of the best auxiliary function. The second one is the introduction of a corrective coefficient t. The idea is to get good polynomials Q j by induction. Thus, we call this algorithm the recursive algorithm. We detail it, always for the trace. The first step consists in the optimization of the auxiliary function f 1 = x -t log x. We have t = c 1 where c 1 is the value that gives the best function f 1 , i.e, whose minimum is as large as possible . We suppose that we have some polynomials Q 1 , Q 2 , . . . , Q J and a function f as good as possible for this set of polynomials in the form [START_REF] Amoroso | f-transfinite diameter and number theoretic applications[END_REF]. We seek a polynomial R ∈ Z Z[x] of degree k (here, k is varying from 15 up to 22) such that sup

x∈I |Q(x)R(x)| t r+k e -x ≤ e -m
where Q = J j=1 Q j . We want the quantity

sup x∈I |Q(x)R(x)| exp -x(r + k) t
to be as small as possible. We apply the LLL algorithm to the linear forms

Q(x i )R(x i ) exp -x i (r + k) t .
The x i are control points which are points uniformly distributed on the interval I to which we have added points where f has local minima. Thus we find a polynomial R whose irreducible factors R j are good candidates to enlarge the set {Q 1 , . . . , Q J }. We only keep the factors R j that have a nonzero coefficient in the newly optimized auxiliary function f . After optimization, some previous polynomials Q j may have a zero exponent and so are removed.

Optimization of the c j

We have to solve a problem of the following form: find max

C min x∈X f (x, C)
where f (x, C) is a linear form with respect to C = (c 0 , c 1 , . . . , c k ) (c 0 is the coefficient of x and is equal to 1) and X is a compact domain of C, the maximum is taken over c j ≥ 0 for j = 0, . . . , k.

A classical solution consists in taking very many control points (x i ) 1≤i≤N and in solving the standard problem of linear programming:

max C min 1≤j≤N f (x i , C).
The result depends then on the choice of the control points.

The idea of the semi infinite linear programming (introduced into Number Theory by C. J. Smyth [START_REF] Smyth | Totally positive algebraic integers of small trace[END_REF]) consists in repeating the previous process adding at each step new control points and verifying that this process converges to m, the value of the linear form for an optimum choice of C . The algorithm is the following: We stop when there is a good enough convergence, when m i -m i ≤ 10 -4 . Suppose that p iterations are sufficient then we take m = m p .

  by T the set of all such tr(α) d .

Proposition 1 .

 1 For every b ∈ [0, 1) there is a polynomial-power P b = J j=1 Q c j j where the Q j s are in Z Z[X] and the c j s are positive real numbers such that for x ≥ b, x -log |P b (x)| ≥ 1.68 + b. Let m(b) denote the minimum of the function x -log |P b (x)| for x ≥ b. We construct a partition b 0 < b 1 < . . . < b 36 = 1 of [0,1) into 35 subintervals such that m(b j ) -b j+1 ≥ 1.68 (j=0,. . .,35).

( 1 )

 1 We choose an initial value for C i.e., C 0 and we calculatem 0 = min x∈X f (x, C 0 ).(2) We choose a finite set X 0 of control points belonging to X and we havem 0 ≤ m ≤ m 0 = min x∈X 0 f (x, C 0 ).

( 3 )min x∈X 1 f 1 f( 5 )

 3115 We add to X 0 the points where f (x, C 0 ) has local minima to get a new set X 1 of control points. (4) We solve the usual linear programming problem: max C (x, C) We get a new value for C denoted by C 1 and a result of the linear programming equal to m 1 = min x∈X f (x, C 1 ). Then we have m 0 ≤ m 1 ≤ m ≤ m 1 = min x∈X (x, C 1 ) ≤ m 0 , We repeat the steps from (2) to (4) and thus we get two sequences (m i ) and (m i ) which satisfy m 0 ≤ m 1 ≤ . . . ≤ m i ≤ m ≤ m i ≤ . . . ≤ m 1 ≤ m 0 ,

Table 2 :

 2 The values of b used in the proof of Proposition 1 and required functions of m(b)

	Run j	b j	m(b j )
	0	0.0000	1.792812
	1	0.112812 1.801901
	2	0.121901 1.805919
	3	0.125919 1.809730
	4	0.12973	1.812613
	5	0.132613 1.812854
	6	0.132854 1.812870
	7	0.13287	1.815242
	8	0.135242 1.817070
	9	0.13707	1.821673
	10	0.141673 1.827923
	11	0.147923 1.833573
	12	0.153573 1.842692
	13	0.162692 1.853991
	14	0.173991 1.875294
	15	0.195294 1.900870
	16	0.22087	1.925140
	17	0.24514	1.943162
	18	0.263162 1.957081
	19	0.277081 1.992052
	20	0.312052 2.033790
	21	0.35379	2.088989
	22	0.408989 2.105574
	23	0.425574 2.146377
	24	0.466377 2.162143
	25	0.482143 2.190407
	26	0.510407 2.223393
	27	0.543393 2.246183
	28	0.566183 2.297433
	29	0.617433 2.345141
	30	0.665141 2.367420
	31	0.68742	2.432224
	32	0.752224 2.485535
	33	0.805535 2.552683
	34	0.872683 2.604163
	35	0.924163 2.708093