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THE ABSOLUTE TRACE OF TOTALLY POSITIVE ALGEBRAIC INTEGERS

V. FLAMMANG

Abstract

Thanks to our recursive algorithm developed in [8], we prove that, if α is a totally positive
algebraic integer of degree d ≥ 2 with minimum conjugate α1 then, with a finite number of
explicit exceptions,

tr(α)

d
≥ α1 + 1.68.

1 Introduction

Let α be a totally positive algebraic integer of degree d ≥ 2 (i.e. its conjugates α1 = α, ..., αd
are all positive real numbers). The trace of α is defined by

tr(α) =

d∑
i=1

αi

and we denote by T the set of all such
tr(α)

d
.

The Schur-Siegel-Smyth trace problem (so called by P. Borwein in his book [6]) is the following:

Fix ρ < 2. Then show that all but finitely many totally positive algebraic integers α satisfy
tr(α)

d
> ρ.

Remark: Solving this problem is equivalent to prove that 2 is the smallest limit point of T .

The problem was solved in 1918 by I. Schur for ρ <
√
e [16] then in 1945 by C. L. Siegel for

ρ < 1.7337 [17]. The results of Schur and of Siegel involved inequalities on the discriminant of
an algebraic integer which is the quantity:

Disc(α) =
∏

1≤i<j≤d
(αi − αj)2.

In 1984, C.J. Smyth solved the problem for ρ < 1.7719 [18] by using for the first time the
principle of auxiliary functions. It lies on the fact that the resultant of two polynomials with
integer coefficients and without common factors is a nonzero integer. His idea was at the origin
of many works on the subject. In 1997, the author, M. Grandcolas and G. Rhin solved the
problem for ρ < 1.7735 [11]. In 2004, J. McKee and C.J. Smyth for ρ < 1.7783786 [15], in
2006, J. Aguirre, M. Bilbao and J. C. Peral for ρ < 1.7800 [1]. In 2007, J. Aguirre and J. C.
Peral solved the problem for ρ < 1.7836 [4] then in 2008 for ρ < 1.784109 [5]. In all these
works, the polynomials involved in the auxiliary functions were found heuristically and have all
positive roots. In 2003, Q. Wu [20] linked the auxiliary functions with the integer transfinite
diameter ( see Section 3 below) and developed an algorithm which allows a systematic search for
relevant polynomials. In 2009, we improved the previous algorithm as described in Section 4 and
the polynomials are now found by induction. Hence, we call this new algorithm the recursive
algorithm. This led us to solve the problem for ρ < 1.78702 [8]. J. McKee [14] solved the problem
in 2011 for ρ < 1.78839 using several of our polynomials with complex roots appearing in the
auxiliary function. In 2011 also, Y. Liang and Q. Wu [13] solved the problem for ρ < 1.79193.
Finally, in 2016 [7], a slight variant in the use of our recursive algorithm allowed us to improve
the known lower bounds and we get : if α is a totally positive algebraic integer of degree d whose
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minimal polynomial is different from x−1, x2−3x+1, x3−5x2+6x−1, x4−7x3+13x2−7x+1
and x4 − 7x3 + 14x2 − 8x+ 1 then

tr(α)

d
≥ 1.792812.

Besides, J.P. Serre (see Appendix B in [3]) showed that this method does not give such an
inequality for any ρ larger than 1.898302... Nevertheless, it is interesting to try to get lower

bounds for
tr(α)

d
. For instance, it was used for the search of Salem numbers of smallest degree

with trace equal to -2 by J.F. McKee and C.J. Smyth [15].

Another kind of inequality was established by the author, G. Rhin and C.J. Smyth in 1997 [12].
We got : if α is a totally positive algebraic integer of degree d ≥ 2 with minimum conjugate α1

then, with a finite number of explicit exceptions,

tr(α)

d
≥ 1.6 + α1.

We used the method of auxiliary functions with heuristic search of “good ”polynomials. In 2006,
J. Aguirre, M. Bilbao and J C Peral [1] using the same method but adding new polynomials to
ours improved the constant 1.6 to the constant 1.66. Now, thanks to our recursive algorithm,
we prove the following result:

Theorem 1. Let α be a totally positive algebraic integer of degree d ≥ 2 with least conjugate
α1. Then,

tr(α)

d
≥ 1.68 + α1

unless α is a zero of one of the polynomials listed in Table 1.

Table 1: List of all monic irreducible polynomials with positive roots, least root α1 in (0,1) and
Trace/Degree - α1 at most 1.68

Polynomials P tr(P)/deg(P) - α1

x2 − 3x+ 1 1.1180340
x2 − 4x+ 2 1.4142136
x2 − 5x+ 5 1.1180340
x3 − 5x2 + 6x− 1 1.4686044
x3 − 6x2 + 8x− 2 1.6751309
x3 − 6x2 + 9x− 3 1.5320889
x3 − 7x2 + 14x− 7 1.5803129
x3 − 8x2 + 19x− 13 1.4686044
x3 − 9x2 + 24x− 19 1.5320889
x4 − 7x3 + 13x2 − 7x+ 1 1.5222229
x4 − 7x3 + 14x2 − 8x+ 1 1.5770909
x4 − 9x3 + 27x2 − 31x+ 11 1.6056743
x5 − 9x4 + 26x3 − 29x2 + 11x− 1 1.6688217
x6 − 11x5 + 42x4 − 68x3 + 46x2 − 12x+ 1 1.6702846
x6 − 13x5 + 64x4 − 151x3 + 177x2 − 96x+ 19 1.6703513

This result implies that the only totally positive algebraic integers that satisfy tr(α)
d < 1.68 +α1

are those whose minimal polynomial belongs to the list above. The proof of this appears in [12]
for the constant 1.6.

2 Proof of Theorem 1

The proof of the theorem is based on the following result:
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Proposition 1. For every b ∈ [0, 1) there is a polynomial-power Pb =
J∏
j=1

Q
cj
j where the Q′js

are in ZZ[X] and the c′js are positive real numbers such that for x ≥ b,

x− log |Pb(x)| ≥ 1.68 + b.

Let m(b) denote the minimum of the function x− log |Pb(x)| for x ≥ b. We construct a partition
b0 < b1 < . . . < b36 = 1 of [0,1) into 35 subintervals such that m(bj)− bj+1 ≥ 1.68 (j=0,. . .,35).
The bj are found recursively. We start with b0 equals to 0 and P0 is the polynomial-power used

in [9] to prove that tr(α)
d ≥ 1.792812 = m(0) for all totally positive algebraic integers not a

zero of the polynomials making up P0. The polynomials involved in P0 and their coefficients
are available on [10]. Thus, we take b1 = 0.1138. Our recursive algorithm allows us to find a
polynomial-power Pb1 such that m(b1) is as big as possible. Then the process is iterated. We
explain in the following sections how the Pbj and the minima m(bj) are calculated.

The proof of Theorem 1 (originally used in [12]) now follows easily. Let α and α1 be as in
the statement of the theorem. By replacing α by α−bα1c we can assume that α1 ∈ (0, 1). Then
we take b = α1 in Proposition 1 and we obtain

tr(α)

d
≥ 1.68 + α1 + log |

d∏
i=1

Pα1(αi)|1/d

i.e.,

tr(α)

d
≥ 1.68 + α1 +

∑
1≤j≤J

cj log |
d∏
i=1

|Qj(αi)|1/d

where Pα1 =
J∏
j=1

Q
cj
j . The polynomials Qj and the exponents cj are available on [10]

Since the minimal polynomial P of α does not divide any Qj then
d∏
i=1

Qj(αi) is a nonzero integer

because it is the resultant of P and Qj .
Hence, if α is not a root of Qj , we have

tr(α)

d
≥ 1.68 + α1.

Table 2: The values of b used in the proof of Proposition 1 and required functions of m(b)
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Run j bj m(bj)
0 0.0000 1.792812
1 0.112812 1.801901
2 0.121901 1.805919
3 0.125919 1.809730
4 0.12973 1.812613
5 0.132613 1.812854
6 0.132854 1.812870
7 0.13287 1.815242
8 0.135242 1.817070
9 0.13707 1.821673
10 0.141673 1.827923
11 0.147923 1.833573
12 0.153573 1.842692
13 0.162692 1.853991
14 0.173991 1.875294
15 0.195294 1.900870
16 0.22087 1.925140
17 0.24514 1.943162
18 0.263162 1.957081
19 0.277081 1.992052
20 0.312052 2.033790
21 0.35379 2.088989
22 0.408989 2.105574
23 0.425574 2.146377
24 0.466377 2.162143
25 0.482143 2.190407
26 0.510407 2.223393
27 0.543393 2.246183
28 0.566183 2.297433
29 0.617433 2.345141
30 0.665141 2.367420
31 0.68742 2.432224
32 0.752224 2.485535
33 0.805535 2.552683
34 0.872683 2.604163
35 0.924163 2.708093

Remark: The following sections reproduce the corresponding sections of [7].

3 Auxiliary function and generalized integer transfinite diame-
ter

3.1 Generalized integer transfinite diameter

Let K be a compact subset of C. The transfinite diameter of K is defined by

t(K) = lim inf inf |P |
1
n
∞,K

n ≥ 1 P ∈ C[X]
n→∞ P monic

deg(P ) = n

where |P |∞,K = sup
z∈K
|P (z)| for P ∈ C[X].

We define the integer transfinite diameter of K by

tZZ(K) = lim inf inf |P |
1
n
∞,K

n ≥ 1 P ∈ ZZ[X]
n→∞ deg(P ) = n

Finally, if ϕ is a positive function defined on K, the ϕ-generalized integer transfinite diameter
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of K is defined by

tZ,ϕ(K) = lim inf inf sup
(
|P (z)|

1
n ϕ(z)

)
.

n ≥ 1 P ∈ Z[X] z ∈ K
n→∞ deg(P ) = n

This version of weighted integer transfinite diameter was introduced by F. Amoroso [2] and is
an important tool in the study of rational approximations of logarithms of rational numbers.

3.2 Link with the auxiliary functions

Let b be in [0,1). The auxiliary function involved here is of the following type:

for x > b, f(x) = x−
∑

1≤j≤J
cj log |Qj(x)| (1)

where the cj are positive real numbers and the polynomials Qj are nonzero polynomials in ZZ[x].
In (1), we replace the coefficients cj by rational numbers aj/q where q is a positive integer such
that q.cj is an integer for all 1 ≤ j ≤ J . Then we can write:

for x > b, f(x) = x− t

r
log |Q(x)| ≥ m (2)

where Q =
J∏
j=1

Q
aj
j ∈ ZZ[X] is of degree r =

J∑
j=1

aj degQj and t =
J∑
j=1

cj degQj (this formulation

was introduced by J. P. Serre). Note that we have
t

r
=

1

q
. We seek a polynomial Q ∈ ZZ[X]

such that
sup
x>b
|Q(x)|t/re−x ≤ e−m.

If we suppose that t is fixed, it is equivalent to find an effective upper bound for the weighted
integer transfinite diameter over the interval [b,∞) with the weight ϕ(x) = e−x:

tZZ,ϕ([b,∞)) = lim inf inf sup
(
|P (x)|

t
r ϕ(x)

)
r ≥ 1 P ∈ ZZ[X] x > b
r →∞ deg(P ) = r

Remark: Even if we have replaced the compact K by the infinite interval [b,∞), the weight ϕ
ensures that the quantity tZZ,ϕ([b,∞)) is finite.

4 Construction of an auxiliary function

The main point is to find a set of “good ”polynomials Qj , i.e., which gives the best possible value
for m. Until 2003, the polynomials were found heuristically. For example, in [19] and[4], the
authors have searched a collection of polynomials with small absolute trace all of whose roots are
positive real numbers. In 2003, Q. Wu [20] has developed an algorithm that allows a systematic
search of “good ”polynomials. His method was the following. We consider an auxiliary function
as defined by (1). We fix a set E0 of control points, uniformly distributed on the real interval
I = [b, A] where A is “sufficiently large ”. Thanks to the LLL algorithm, we find a polynomial Q
small on E0 within the meaning of the quadratic norm. We test this polynomial in the auxiliary
function and we keep only the factors of Q which have a nonzero exponent. The convergence
of this new function gives local minima that we add to the set of points E0 to get a new set
of control points E1. We use again the LLL algorithm with the set E1 and the process is repeated.
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In 2009 [8], we made two improvements to this previous algorithm in the use of the LLL algo-
rithm. The first one is, at each step, to take into account not only the new control points but
also the new polynomials of the best auxiliary function. The second one is the introduction of
a corrective coefficient t. The idea is to get good polynomials Qj by induction. Thus, we call
this algorithm the recursive algorithm. We detail it, always for the trace. The first step consists
in the optimization of the auxiliary function f1 = x − t log x. We have t = c1 where c1 is the
value that gives the best function f1, i.e, whose minimum is as large as possible . We suppose
that we have some polynomials Q1, Q2, . . . , QJ and a function f as good as possible for this set
of polynomials in the form (2). We seek a polynomial R ∈ ZZ[x] of degree k (here, k is varying
from 15 up to 22) such that

sup
x∈I
|Q(x)R(x)|

t
r+k e−x ≤ e−m

where Q =

J∏
j=1

Qj . We want the quantity

sup
x∈I
|Q(x)R(x)| exp

(
−x(r + k)

t

)
to be as small as possible. We apply the LLL algorithm to the linear forms

Q(xi)R(xi) exp

(
−xi(r + k)

t

)
.

The xi are control points which are points uniformly distributed on the interval I to which we
have added points where f has local minima. Thus we find a polynomial R whose irreducible
factors Rj are good candidates to enlarge the set {Q1, . . . , QJ}. We only keep the factors Rj
that have a nonzero coefficient in the newly optimized auxiliary function f . After optimization,
some previous polynomials Qj may have a zero exponent and so are removed.

5 Optimization of the cj

We have to solve a problem of the following form: find

max
C

min
x∈X

f(x,C)

where f(x,C) is a linear form with respect to C = (c0, c1, . . . , ck) (c0 is the coefficient of x and is
equal to 1) and X is a compact domain of C, the maximum is taken over cj ≥ 0 for j = 0, . . . , k.
A classical solution consists in taking very many control points (xi)1≤i≤N and in solving the
standard problem of linear programming:

max
C

min
1≤j≤N

f(xi, C).

The result depends then on the choice of the control points.

The idea of the semi infinite linear programming (introduced into Number Theory by C. J.
Smyth [18]) consists in repeating the previous process adding at each step new control points
and verifying that this process converges to m, the value of the linear form for an optimum
choice of C . The algorithm is the following:

(1) We choose an initial value for C i.e., C0 and we calculate

m′0 = min
x∈X

f(x,C0).

(2) We choose a finite set X0 of control points belonging to X and we have

m′0 ≤ m ≤ m0 = min
x∈X0

f(x,C0).
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(3) We add to X0 the points where f(x,C0) has local minima to get
a new set X1 of control points.

(4) We solve the usual linear programming problem:

max
C

min
x∈X1

f(x,C)

We get a new value for C denoted by C1 and a result of the linear programming equal to
m′1 = min

x∈X
f(x,C1). Then we have

m′0 ≤ m′1 ≤ m ≤ m1 = min
x∈X1

f(x,C1) ≤ m0,

(5) We repeat the steps from (2) to (4) and thus we get two sequences (mi) and (m′i) which
satisfy

m′0 ≤ m′1 ≤ . . . ≤ m′i ≤ m ≤ mi ≤ . . . ≤ m1 ≤ m0,

We stop when there is a good enough convergence, when mi −m′i ≤ 10−4.
Suppose that p iterations are sufficient then we take m = m′p.
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