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Abstract: We experimentally demonstrate mid-infrared supercontinuum generation (from 3.53 

up to 5.83 μm) in a pure germanium on silicon waveguide. We attribute the long wavelength limit 

of the supercontinuum to free-carrier absorption.  © 2020 The Authors 
 

1. Introduction 

In the last two decades, germanium has played a key role in group-IV photonics. Germanium was at first used in 

integrated photonic devices operating in the near-infrared [1,2]. More recently, however, the wide transparency 

window up to 15 μm [3] and theoretical predictions of attractive nonlinear properties [4] led researchers to explore 

germanium as a promising material for mid-infrared (from 3 to 15 μm) photonics. In terms of fabrication, tremendous 

progress has been made in recent years, with several demonstrations of low-loss germanium on silicon waveguides in 

the mid-infrared [1].  

Mid-infrared devices can for instance be used for the detection and recognition of molecules, in particular organic 

species, with strong fundamental absorption lines in this band [3]. A broadband source, such as a supercontinuum, is 

a fundamental element in integrated sensing platforms. It indeed enables the parallel detection of multiple gas species 

[5]. On-chip mid-infrared supercontinuum generation has been demonstrated in several group-IV platforms [5-8]. Our 

group reported supercontinuum generation up to 8.5 μm in silicon-germanium on silicon waveguides [7]. We have 

also demonstrated the possibility, with this platform, of precisely controlling the supercontinuum coherence properties 

[9-11]. The great potential of germanium-based platforms for on-chip mid-infrared supercontinuum generation was 

recently confirmed, with the demonstration of a supercontinuum extending from 3 up to 13 µm in a germanium-rich 

graded index silicon-germanium on silicon waveguide [12]. To achieve such a broad spectrum, however, the 

waveguide was pumped at 7.5 µm, whereas short wavelength pumps are preferable in fully integrated broadband 

sources.    

Here, we show that a supercontinuum can be generated in a pure germanium waveguide and we investigate the origins 

of the bandwidth limitations when pumping at shorter wavelengths. To those ends, we pumped a germanium on silicon 

air-clad waveguide with ~200 fs pulses at 4.6 μm and generate a supercontinuum extending from 3.53 to 5.83 μm, 

with milliwatt-level on-chip power. With the help of numerical simulations, we attribute the long wavelength 

extension limit of the supercontinuum to absorption from free-carriers, generated by three-photon absorption. Owing 

to the transparency of the atmosphere between 3 and 5 μm and to the strong absorption of hazardous and greenhouse 

gases such as CO (~4.5 μm), CO2 (4.2, 4,3 μm) and CH4 (3.45 μm), our source has potential applications in free-space 

communications and environmental monitoring.   

2.  Mid-infrared Supercontinuum Generation 

We designed a 4.46 μm wide, 2.57 μm thick air-clad germanium on silicon waveguide (Fig. 1a inset) to achieve low 

dispersion beyond 4 μm (Fig. 1a). The waveguide exhibited low propagation losses of ~1.25 dB/cm between 3.5 and 

4.5 μm, thanks to the extremely low threading dislocation density (~ 107 cm-2) and reduced sidewall roughness.    

We pumped the waveguide at 4.6 μm in the normal dispersion regime (Fig. 1a), with ~200 fs TE polarized pulses from 

a mid-infrared MIROPA-fs optical parametric amplifier at a repetition rate of 63 MHz. When pumping with 22 mW 

coupled average pump power (corresponding to a 3.3 kW coupled peak power), we generated a supercontinuum with 

2.3 μm bandwidth (3.53–5.83μm) at -30 dB level (Fig. 1b, top). Thanks to transmission measurements, we 
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Fig. 1. (a) Dispersion parameter of the germanium on silicon waveguide with a 4.46 μm x 2.57 μm cross-section. A Scanning Electron Microscope 

image of the waveguide is shown in the inset. (b) Top: output experimental supercontinuum for 22 mW (3.3 kW) coupled average (peak) power. 
Bottom: simulated supercontinuum considering wavelength dependent (continuous blue line) and constant (dashed green line) free-carrier 

absorption. (c) Free-carrier absorption coefficient as a function of wavelength at 1 cm length along the waveguide). 

showed that the on-chip supercontinuum power was 4.4 mW, exceeding the milliwatt-level required for spectroscopic 

applications. Our supercontinuum covers the 3-5 μm atmospheric transparency window, making it particularly 

interesting for free-space communications and environmental monitoring.  

Our modeling work shows that the long wavelength boundary is mainly limited by the high free-carrier absorption 

beyond 6 μm [13]. Free-carriers are generated in the waveguide as a consequence of three-photon absorption. By 

carefully modeling the wavelength dependence of free-carriers absorption, we numerically reproduced the 

experimental supercontinuum (Fig. 1b bottom, blue continuous line). On the contrary, the simulated supercontinuum 

extends up 7 µm if the free-carrier absorption is supposed to be constant and equal to the value at the pump wavelength 

(Fig. 1b bottom, green dashed line), well beyond the upper boundary observed experimentally. Figure 1c shows the 

free-carrier absorption coefficient at 1 cm length along the waveguide. The sharp increase of free-carrier absorption 

at ~6 µm exactly corresponds to the -30 dB upper limit of the experimental supercontinuum.  

3.  Conclusion 

In conclusion, we have succeeded in generating a supercontinuum in a germanium waveguide, with milliwatt-level 

on-chip power. The supercontinuum covers the 3.53–5.83 μm band, making it interesting for free-space 

communications and environmental monitoring. We attribute the long wavelength boundary to free-carrier absorption.  
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