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Abstract

Advances in science and technology depend on the work of research teams and the publica-

tion of results through peer-reviewed articles representing a growing socio-economic

resource. Current methods to mine the scientific literature regarding a field of interest focus

on content, but the workforce credited by authorship remains largely unexplored. Notably,

appropriate measures of scientific production are debated. Here, a new bibliometric

approach named TeamTree analysis is introduced that visualizes the development and

composition of the workforce driving a field. A new citation-independent measure that scales

with the H index estimates impact based on publication record, genealogical ties and collab-

orative connections. This author-centered approach complements existing tools to mine the

scientific literature and to evaluate research across disciplines.

Introduction

Progress in science and technology depends on research teams working on specific topics of

interest and on the publication of their results in peer-reviewed articles [1]. The rapidly grow-

ing body of scientific information [2] reflects past and current states of the art and represents

an invaluable socio-economic resource guiding future research activities, policies and invest-

ments [3–8]. Its utility relies on the quality and accessibility of bibliographic databases [9, 10]

and on refined methods to search and analyse the content of scientific articles [3, 6, 11–16].

Authorship on these articles credits contributions of individual team members with diverse

expertise and skills [17–21], but choosing the best method to evaluate research, for example to

identify potential experts, recruits and collaborators, remains a challenge [22]. Presently, the

impact of individual contributors [23], journals [24], institutions and nations [25] is predomi-

nantly estimated based on citation counts of scientific articles (for reviews see [5, 26–28]). In a

frequent scenario, a user interested in a specific topic queries a bibliographic database, scruti-

nizes the resulting list of relevant publications and learns readily about scientific advances.

But, it is very difficult for the user to learn about the contributing teams and their impact. To

address this recurring issue, I propose a new bibliometric approach, further referred to as

TeamTree analysis (TTA). Using author names and publication years of scientific articles

related to a field of interest, TTA reveals the development and composition of the workforce
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with new visuals, named TeamTree graphs (TTGs), and estimates the impact of authors with a

new metric named TeamTree product (TTP). TTP takes into account three aspects of scientific

production: publication of articles, the generation of offspring and the establishment of collab-

orations. TTP does not depend on citation counts or journal impact, but scales with the H

index [23] and the sum of citations. Here, the principles of TTA are introduced and its main

features are illustrated using a generic model and publications from selected fields of science

and technology.

Methodology

The principal steps and key features of TTA are introduced in Fig 1 using generic publications.

The TTA-derived parameters are summarized in Table 1. Typically, scientific articles related

to a user-defined topic of interest are retrieved from a bibliographic database (Fig 1A; Table 2).

From each article, TTA extracts the authors, the year of publication and a database-specific

article identifier (Fig 1A). TTA includes author initials to reduce author ambiguity [29]. For

some fields, frequent ambiguous author names were removed. TTA categorizes authors

according to their byline position and sorts publications by year. Then, it assigns a chronologic

author index (AI) and a randomly generated color (Col) to each last author (Fig 1B). TTA

focuses on authors on the last byline position as they are mostly responsible for the research

[19]. In the following, the term "author" refers to "last author" unless indicated otherwise.

TTA explores three aspects of scientific production: the publication record of authors, their

genealogical relations and their collaborations. Several parameters are calculated to assess per-

formance in each category (Table 1). To summarize the publication record of each author,

TTA calculates the total numbers of articles listing the author on the first (PCfirst) and last

byline position (PC), the number of publications (as last author) in each year (PCy; Fig 1B;

Table 1), the publication period in years and the average annual publication count (PCannu;

Table 1). Single author articles are counted as last author publications. Genealogical relations

between authors are derived from offspring—ancestor pairs, where offspring and ancestor are

listed on the first and last byline position of an article (Fig 1B and 1C). Three conditions apply:

First, each offspring is assigned to a single ancestor with the earliest common article defining a

genealogical relation. Second, this common article has to be published before the earliest (last

author) publication of the offspring. Third, the AI value of the ancestor must be smaller than

the one of the offspring. TTA assigns a generation index (AG) to ancestors (AG = i) and off-

spring (AG = i+1; Fig 1C; Table 1) and calculates for each ancestor the number of offspring

(OC; Fig 1C) and the number of articles published with offspring (PCoff; Table 1). Families

are defined as progeny of a first generation ancestor (AG = 1) encompassing all offspring

(AG> 1). TTA derives collaborations based on co-authorship [30] (Fig 1B and 1D). For out-

and in-degree connections, an author lists other authors as co-authors and an author is listed

as co-author, respectively (Fig 1B). TTA calculates the numbers of these connections (CCin,

CCout; Fig 1C), their sum (CC = CCin + CCout) and the number of corresponding publica-

tions per author (PCcol; Table 1). The TTA-derived metrics—PC, OC and CC—define a

three-dimensional space, in which each author occupies a distinct volume reflecting publica-

tions, offspring and collaborative connections (Fig 1E). The product of these parameters, fur-

ther referred to as TeamTree product (TTP), defines a new metric to estimate author

contributions to a research field (Fig 1E; Table 1).

The workforce contributing to a field of interest is visualized by TTGs. TTGs are scatter-

plots where each author is represented by a symbol displayed by an author-specific color with

the AI value and the earliest year of publication plotted on the x and y axis, respectively (Fig

1F). TTGs provide a framework to illustrate an author’s contributions to each category

PLOS ONE TeamTree analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0253847 July 21, 2021 2 / 19

https://doi.org/10.1371/journal.pone.0253847


Fig 1. Principal steps and key features of TeamTree analysis. (A) Screenshots of the PubMed website and of a

comma-separated values (csv) file illustrating a query in the bibliographic database MEDLINE, the download of

scientific articles and the extraction of data required by TTA. (B) Table showing generic articles with identifiers (ID),

authors separated by byline position (First, Middle, Last), and years of publication. Only authors mentioned at least

once on the last byline position are taken into account and indicated by generic names (AUx). TTA sorts articles by
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analysed by TTA. To show the publication records, symbols connected by lines represent the

years of publication with symbol sizes indicating the number of articles per year. To achieve an

accessible presentation of the publication data, the signs of AI values alternate between odd

(positive) and even (negative) numbers rendering a symmetric tree-like design (Fig 1F). Gene-

alogical relations between authors are indicated by lines connecting ancestors and offspring.

To represent this aspect with TTGs, the sign of the AI representing the first generation ances-

tor determines the AI sign of all family members (Fig 1F). To visualize collaborations in the

field, lines connect last authors and co-authors with AI signs adjusted to negative and positive

values, and symbol sizes indicating CCout and CCin values, respectively (Fig 1F). To represent

the overall contribution of an author to the field, TTGs show authors with alternating AI signs

and symbol areas representing TTP values (Fig 1F).

TTA is implemented with custom-written routines based on the open source software R

[31] and selected R packages for data handling (data.table [32]), statistical and network analy-

ses (igraph [33]; dunn.test [34]) and data visualization (eulerr [35]; ggfortify [36]; ggplot2 [37];

ggrepel [38]; igraph [33]; plot3D [39]). The R script is freely available upon request to the

author and at https://github.com/fw-pfrieger/TeamTree. It can be used to analyse publications

in a user-defined field of interest. Bibliographic records were obtained from MEDLINE using

year of publication in ascending order, assigns to each last author a chronologic author index (AI) and a unique color

(Col) and counts the number of articles per author per year (PCy). Curved arrows indicate genealogical relations

between ancestors and offspring on the last and first byline position, respectively. Straight arrows indicate collaborative

connections between last authors and co-authors (out) and vice-versa (in). (C) Family tree and (D) collaborative

network derived from the generic articles shown in panel B with genealogy- and collaboration-related parameters

indicated for each author. AG, author generation; OC, offspring count; CC = CCout + CCin, number of collaborative

connections. (E) Three-dimensional plot of key metrics (PC, publication count as last author) for a selected author

(AU2) shown in panel B. The volume occupied by the author within the parameter space is indicated by the author-

specific color and represented numerically by the TeamTree product (TTP). The table summarizes the TTA-derived

parameters of generic authors. (F) TeamTree graphs (TTGs) of the generic authors shown in panel B indicating from

top to bottom their publication record, genealogic and collaborative connections and TTP values. For publications and

TTP values, signs of AI alternate between odd and even values. For genealogic relations, signs of family members are

determined by the first generation author. To indicate collaborative connections, AI of last authors and co-authors are

negative and positive, respectively. Symbol sizes represent indicated parameters.

https://doi.org/10.1371/journal.pone.0253847.g001

Table 1. TTA-derived parameters.

Parameter Description

AC Number of authors listed on the byline of each scientific article

AG Generation of an author, where AG ancestor = i and AG offspring = i+1

AI Chronologic index attributed to last authors

CC Count of collaborative connections calculated as sum of CCout, number of co-authors, and of CCin,

number of authors that listed the author as co-author

FS Family size: number of all progeny of a first generation ancestor

OC Offspring count of an author: number of first authors on an author’s articles that subsequently publish

as last author

PC Number of articles as last author including single-author articles

PCannu Mean annual count of last author articles

PCcol Number of articles with collaborators: "out", number of articles where the author is last author and a

collaborator is listed as co-author; "in", number of papers where the author listed as co-author. Only

articles with three authors or more are taken into account.

PCfirst Number of articles as first author

PCoff Number of last author articles with offspring

PCy Number of last author articles per year

TTP TeamTree product calculated as PC × OC × CC

https://doi.org/10.1371/journal.pone.0253847.t001
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PubMed (https://pubmed.ncbi.nlm.nih.gov/) and from Web of Science (WoS) (https://apps.

webofknowledge.com/; accessed via institutional subscription). To compare citation-indepen-

dent TTP values with citation-based metrics, the Hirsch indices and the total number of cita-

tions were calculated from bibliographic records (WoS).

Results

To expose the utility of TTA, the new approach was applied to scientific articles from selected

fields of research in science and technology (Table 2).

Visualizing the workforce driving research fields

A new type of visual named TTG reveals the ensemble of authors contributing to a topic of

interest (Fig 1). To exemplify this, TTA was applied to three fields of biomedical research each

of which showing distinct history, size and dynamics (Fig 2). Corresponding publications were

obtained from PubMed/MEDLINE (Table 2). Research on Aplysia, a genus of sea slugs, started

at the end of the 19th century. Since then, the field expanded slowly but steadily reaching less

than 2000 authors total [40] (Fig 2A). The discovery of "clustered regularly interspaced short

palindromic repeats" (CRISPR) and the subsequent development of CRISPR-derived genetic

tools established a new field, whose workforce is expanding exponentially reaching more than

10,000 authors within a decade [41] (Fig 2B). The field related to "organoids" shows a peculiar

development. The workforce expanded transiently during the 1970ies and much of the 80ies

(Fig 2C), but this phase was probably due to changing definitions of the term and its assign-

ment to publication records [42]. It is absent when only publications bearing the term in the

title or abstract are taken into account (Fig 2C; Table 2). The exponential growth of the work-

force within the last decade (Fig 2C) was driven by important breakthroughs suggesting orga-

noids as models of human organs [43, 44].

Table 2. Selected research fields subjected to TTA.

Query term / Discipline Database Pubs / Authors /

Year

Aplysia PubMed 4738 / 1613 / 1898

Aplysia WoS 8238 / 3321 / 1885

"Chirped laser pulses" / Physics WoS 7770 / 3741 / 1968

"Circadian clock" / Biomedicine PubMed 17162 / 6708 / 1960

"Circadian clock" / Biomedicine WoS 25680 / 10620 / 1960

"Clustered regularly interspaced short palindromic repeats OR CRISPR�" /

Biomedicine

PubMed 20015 / 12220 / 2002

"Clustered regularly interspaced short palindromic repeats OR CRISPR�" /

Biomedicine

WoS 30606 / 16283 / 2002

"Cosmic inflation OR inflationary universe" / Astronomy WoS 3048 / 1653 / 1981

"Ice core climate" / Geoscience WoS 9013 / 5481 / 1956

Organoid� PubMed 15333 / 10465 / 1946

Organoid�[TIAB] Query limited to title and abstract PubMed 7427 / 4649 / 1946

Organoid� WoS 13716 / 9489 / 1936

"Quantum computer" OR "quantum computing" / Computer Science WoS 24914 / 9097 / 1985

"Supramolecular chemistry" / Chemistry WoS 28857 / 11863 / 1967

Summary of selected fields and query terms, the bibliographic source, the number of publications and authors, and

the first year of publication.

https://doi.org/10.1371/journal.pone.0253847.t002
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Display and quantitative analysis of publication record, genealogy and

collaborations

TTA evaluates the publication record of authors, the generation of offspring and the establish-

ment of collaborations. To illustrate this point, TTA was applied to publications related to "cir-

cadian clock" (Clock) [45], a well-established field of biomedical research (source: PubMed/

MEDLINE; Table 2). Fig 3 shows the publication records of authors in the Clock field using

TTGs as framework. Individual authors published as many as 120 articles (PC), but 70% of the

workforce contributed single articles (Fig 3B; data in S1 File). This percentage was similarly

high (68%), when authors entering during the last two years were excluded. The Clock field

expanded rapidly within the last decades as indicated by linearly growing annual counts of

Fig 2. TeamTree graphs showing the development of selected fields of biomedicine. TTGs reveal the distinct duration, growth and size of the workforce

publishing scientific articles related to Aplysia (A), CRISPR (B) and organoids (C). Circles represent authors contributing to each field with the year of their

first publication as last author plotted against their AI values. Signs of AI values alternate for better accessibility. Note the distinct development of the

"organoid" field in panel C when publications were analysed, where the term "organoid�" is mentioned in the title or abstract as indicated by the PubMed

field tag [TIAB].

https://doi.org/10.1371/journal.pone.0253847.g002
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Fig 3. Publication records in the Clock field. (A) TTG showing the publication records of authors working in the

Clock field. Circles connected by vertical grey lines represent for each author, the years of publications as last author

plotted against the AI. Circle area indicates number of publications per author per year (PCy). (B) Left, publication

count (PC) per author with numbers of last and first author articles indicated by positive and negative values,

respectively. Circle area indicates the average number of publications per year (PCannu). Right, relative frequency

distributions of PC values shown on the left. (C) Number of authors entering the field per year (orange) and of articles

(black) published per year. (D) TTG showing authors with top ten PC values indicated by circle area.

https://doi.org/10.1371/journal.pone.0253847.g003
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newly entering authors and of published articles per year, respectively (Fig 3C). Ranking

authors by PC values identified the top contributors of articles to the field (Fig 3D).

Fig 4 depicts genealogical relations in the Clock field based on last author—first author

pairs of articles, and presents a quantitative assessment (Table 1). A quarter of authors pub-

lished previously as first authors thus qualifying as offspring (Fig 3B) and 10% of the authors

qualified as ancestors (Fig 4B). Ancestors generated up to 24 offspring and published up to 75

articles with their offspring (Fig 4B). Overall, the Clock field comprised 506 families with up to

40 members spanning maximally 6 generations (Fig 4B; data in S1 File). For the last two

decades offspring authors and publications with offspring represented a small, but constant

fraction of the workforce entering the field each year and of the annual scientific production

(Fig 4C). Ranking by OC values revealed the most prolific authors and their families in the

Clock field (Fig 4D).

Fig 5 shows collaborative connections in the Clock field based on co-authorship and the

quantitative description using collaboration-specific parameters (Table 1). In total, two thirds

of the authors in the Clock field established a variable number of out- and in-degree collabora-

tions with up to 90 authors and published up to 104 collaborative papers in total (Fig 5B; data

in S1 File). During the last two decades, collaborators represented more than half of the new

authors entering per year with a fairly constant contribution (Fig 5C). The number of authors

per article increased steadily (Fig 5A). Ranking authors based on collaboration counts revealed

strongly connected teams in the field and their networks (Fig 5D).

Workforce dynamics and field development

TTA was used to explore how the workforce of the Clock field developed over time. Plotting

the number of authors entering and exiting the field based on the first and last year of their

publications, respectively, indicated strong growth of the workforce. The accuracy of exit

counts decreases for the last years (Fig 6). The publication periods or life-spans of authors

reached nearly five decades, but the large majority published only during one year and in most

cases a single article (Fig 3C; Fig 6A–6C). Separating "Newcomers" entering the field per year

from "Established" authors revealed that the established workforce consisted mostly of authors

with genealogical and collaborative ties, whereas most newcomers had collaborative connec-

tions or no ties and contributed single articles (Fig 6D).

Evaluation of scientific production based on publications, offspring and

collaborations

A key goal of bibliometric analyses is to gauge the impact of individual authors on a field of

research. The new metric TTP calculated as product of PC × OC × CC takes into account an

author’s publication record (PC), offspring generation (OC) and collaborations (CC)

(Table 1). The concept was introduced with generic publications (Fig 1). Its validity was tested

first using publications related to the Clock field (Fig 7; data in S1 File). Intersection of the top

100 authors ranked by three key parameters showed that a core of 43 authors figured among

the top in all three categories (Fig 7A). Three-dimensional scatterplots of the parameters

revealed that authors occupy distinct volumes (Fig 7B) indicating that TTP allows for a more

differentiated author ranking than each parameter alone. Fig 7C shows authors with top ten

TTP values in the Clock field. To test its utility, TTP was compared with frequently used cita-

tion-based benchmarks of author performance. Scatterplots and statistical analyses revealed

that TTP values of individual authors working in the Clock field correlated with the total num-

bers of citing articles (ρ = 0.828; p< 0.001) and with their H indices (ρ = 0.924; p< 0.001;

n = 731; Spearman’s rank correlation; Fig 7D).
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Fig 4. Genealogical relations in the Clock field. (A) TTG showing genealogic relations with circles and grey lines

indicating ancestor—offspring connections derived from last author—first author pairs of publications. Connections

of authors with the ten largest offspring count (OC) values are shown in color (names indicated in panel D). Circle

area indicates OC. AI signs of offspring and of ancestors were adjusted to the first generation ancestor. (B) Left, from

top to bottom, OC values, number of articles with offspring (PCoff), author generation (AG) and family size (FS).

Circle area indicates PCannu. Right, relative frequency distributions of parameters shown on the left. (C) Fraction of

offspring authors (orange) entering the field and of publications with offspring (black) compared to total numbers per

year. (D) Names and family connections of authors with top ten OC values indicated by circle area.

https://doi.org/10.1371/journal.pone.0253847.g004
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Fig 5. Collaborative connections in the Clock field. (A) TTG showing collaborations between last authors (out;

negative AI) and co-authors (in; positive AI) derived from co-authorship on scientific articles. Connections of authors

with ten highest connection count (CC) values (in+out) are shown in color. Circle areas indicate CCout and CCin

values of these authors. Inset shows the mean author count (AC) per article published each year. (B) Left, counts of

collaborators and of collaborative articles per author. Circle area indicates PCannu. Right, relative frequency

distributions of parameters shown on the left. (C) Fractions of new collaborating authors (orange) and of collaborative

publications (black) compared to total numbers per year. (D) Names of authors with top ten CC values and their

networks. Circle area indicates CC values normalized to the maximum.

https://doi.org/10.1371/journal.pone.0253847.g005
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Fig 6. Workforce dynamics in the Clock field. (A) Annual counts of authors entering (green bars) and leaving the

field (red bars). Lines indicate cumulative sums. (B) Publication periods of individual authors in years. (C) Bars and

lines showing the relative frequencies of all publication periods and the cumulative relative frequencies of publication

periods of authors from indicated categories, respectively. Col, authors with collaborative but no genealogical

connections; Off, genealogical but no collaborative connections; Off+Col, both types of connections; Rest,

without connections. Statistically significant differences among groups are indicated (Kruskal-Wallis tests

chi-squared = 265.12, df = 3, p< 0.0001. Asterisks indicate level of significance: ���, p< 0.001; post-hoc Dunn test,

PLOS ONE TeamTree analysis
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Benjamini-Hochberg adjusted; sample size = 256; adjusted to smallest sample size by random selection). (D)

Horizontal bars indicate number of authors (filled) and of publications (white) per year of newcomers (left) and

established teams (right) from the indicated categories. Grey bars indicate authors with single publications. Scale bar

indicates number of authors and publications.

https://doi.org/10.1371/journal.pone.0253847.g006

Fig 7. Introduction of TeamTree product as new measure of scientific production. (A) Numbers of intersecting authors in the Clock

field ranking among top 100 for each parameter (PC, OC, CC). (B) Scatterplot of indicated parameters for authors with top ten

TeamTree product (TTP) values calculated as the volume occupied by each author (PC × OC × CC). (C) Top, graph showing the TTP

of authors in the Clock field with colored circles and names indicating authors with ten highest values. Grey circles with colored border

indicate authors with TTP values above zero. Circle size indicates log10(TTP) normalized to maximum. Bottom, log10(TTP) values and

their relative frequency distribution. (D) Scatterplots, where circles represent individual authors (indicated by color) with their total

number of citing articles (top; log10 values) and their H indices (bottom) plotted against their TTP (log10 values).

https://doi.org/10.1371/journal.pone.0253847.g007
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To further validate TTP as citation-independent measure of productivity, TTA was applied

to publications from the fields of biomedical research shown in Fig 2 and to selected fields of

science and technology (Table 2). As shown in Fig 8, the TTP values of authors correlated sig-

nificantly with their H indices and citation counts across fields and disciplines (Fig 8A), and

ranking authors by TTP values identified key players in each field (Fig 8B).

Discussion

TTA fills a gap between global investigations of the scientific endeavour and the recurrent

need to identify and evaluate the teams working on a user-defined topic of interest in science

and technology.

A prime feature is the new measure to estimate scientific production named TTP. Several

properties distinguish this metric from existing author-level indicators. TTP takes into account

three important aspects of research activity: the publication of peer-reviewed scientific articles,

the training and mentoring of junior scientists, who continue their career within the field, and

the establishment of collaborative connections that signify recognition due to specific expertise

and capacities. The respective parameters are derived solely from the authors of scientific arti-

cles and the year of publication. Thus, TTP estimates scientific production independently

from citation counts or journal impact and augments the group of indicators that do not rely

on these factors [46–49]. Notably, the significant correlation of TTP values of authors with

their numbers of citations and their H indices in all fields tested indicates the usefulness of the

new measure. A second feature introduced here are new visuals named TTGs that provide

users with ad-hoc views on the workforce driving a field of interest. They reveal its origin,

development and size, and expose the publication records of authors as well as their genealogi-

cal and collaborative connections. These graphs complement present approaches to display

bibliometric information and to visualize different aspects of scientific production [50–58].

TTA exposes factors that impact the workforce development of a field. For example, the

analysis of publication periods revealed that few authors contributed for more than one year to

the Clock field. This finding supports previous reports that in many research areas only a small

fraction of the workforce publishes during long periods of time [59]. The delineation of fami-

lies and collaborator networks in the Clock field revealed that genealogical and collaborative

connections prolong the life-span of authors. These observations are in line with studies show-

ing the relevance of training and mentorship [60–64] and the importance of collaborations

[65–72]. The automatic delineation of family connections from first author-last author pairs

provides an alternative to efforts requiring user input [73–75] (https://www.genealogy.math.

ndsu.nodak.edu/, https://academictree.org/). However, TTA underestimates offspring counts

in the case of co-first or co-last authorship, of alphabetical author lists or of field-specific

author ranking [76, 77]. Other caveats should be mentioned: TTP values are field-specific,

scale with the size of research groups and depend on the publication period of authors. There-

fore, TTP-based ranking is context-dependent and unsuited to evaluate junior scientists [78].

Moreover, TTP is highly selective as only a fraction of authors has non-zero values, and it can-

not value innovative, ground-breaking contributions from small teams or from teams that

contribute only briefly to a field. TTA like all other name-dependent approaches faces the chal-

lenge of author disambiguation, which can be mitigated by assignment of unique author iden-

tifiers (https://orcid.org/) and computational algorithms [5, 29, 79–83]. Honorary and ghost

authorship will confound results of TTA depending on their prevalence in the field [84, 85].

Peer-reviewed articles were used to introduce the features of TTA as this form of publica-

tion represents the core of scientific production [1], but the approach may also be applied to

other types of publications such as preprints [86] and patents [87]. Future versions of TTA
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Fig 8. TTP-based evaluation across fields and disciplines. (A) Scatterplots where circles represent individual authors

publishing in the selected fields of science and technology (Table 2) with their H indices (black-blue triangles; normalized to

maximum) and sum of citations (orange-green circles; log10 values normalized to maximum) plotted against their TTP values

(log10 values normalized to maximum). Numbers indicate rho values and sample sizes (Spearman’s correlation test;

p< 0.0001 for all comparisons). (B) Graphs showing TTP values of authors in selected fields with colored circles and names

indicating authors with ten highest TTP values. Grey circles with colored border indicate authors with TTP values above zero.

Circle size indicates log10(TTP) normalized to maximum.

https://doi.org/10.1371/journal.pone.0253847.g008
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should provide web-based access to TTA allowing for direct retrieval and immediate process-

ing of bibliographic information and the interactive display of results.

Supporting information

S1 File. TTA-derived results for the Clock field. Csv file summarizing TTA data for the

Clock field using PubMed articles related to "circadian clock".
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