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A stack of coated conductors is a perspective configuration for various applications of high temperature superconductors. We solve magnetization problems for a stack of flat films of an arbitrary shape using a fast Fourier transform-based numerical method. A properly rescaled solution for a stack of only several films is employed to obtain an accurate approximation to the solution for stacks containing a large number of densely packed films. For an infinite stack the problem simplifies and becomes similar to that for a single film.

INTRODUCTION

The fast Fourier transform (FFT) based numerical method for 2D thin film magnetization problems was proposed by Vestgården et al. [START_REF] Vestgården | Modeling non-local electrodynamics in superconducting films: the case of a right angle corner[END_REF][START_REF] Vestgården | Nonlocal electrodynamics of normal and superconducting films[END_REF] and used by several authors, mainly to simulate thermal instabilities and flux avalanches in superconducting films. The method was modified and extended to 3D magnetization problems for bulk superconductors in our works [START_REF] Prigozhin | Fast Fourier transform-based solution of 2D and 3D magnetization problems in type-II superconductivity[END_REF][START_REF] Prigozhin | 3D simulation of superconducting magnetic shields and lenses using the fast Fourier transform[END_REF]. Here and in [START_REF] Prigozhin | Solution of 3D magnetization problems for superconducting film stacks[END_REF] we present another extension of the FFT-based method and solve the magnetization problems for stacks of flat superconducting films of the same but arbitrary shape. Previously, such problems were solved only in the 2D case, for stacks of infinitely long strips.

To model magnetization of a large number of densely packed films, the stack can be replaced by a stack of only a few films with a proper rescaling of parameters. We show that employing then the FFT-based method can be at least as efficient as transition to the fully homogenized anisotropic bulk problem and using a finite element method.

Finally, a general and convenient formulation is derived for magnetization of an infinite stack of arbitrary shaped flat films. Such problems are also efficiently solved by the FFTbased method.

II. MAGNETIZATION PROBLEM

We consider a stack of N thin superconducting films, 
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but only in the films, since the electric field remains unknown in the non-conducting domain out . Equation ( 2) is not sufficient yet using (1) as an evolutionary equation for g : in (1) z h should be known in the whole plane.

However, z h in

out should be such that (1) holds with out 0 g .

The condition (3) can be satisfied iteratively (see [START_REF] Prigozhin | Solution of 3D magnetization problems for superconducting film stacks[END_REF]) and determines z h in out . This enables us to regard (1) as an evolutionary equation and integrate it in time.

For a computer implementation of this method, a regular xy NN grid should be defined in a rectangle containing and several times larger than , the continuous Fourier transform and its inverse in (1) should be replaced by their discrete analogues and computed using the FFT algorithm. The derivatives in (2) should be also computed in the Fourier space with an appropriate smoothing. Finally, an ordinary differential equations solver should be employed for integration in time.

III. HOMOGENIZATION

Desirable for applications are usually stacks of hundreds of densely packed coated conductor films. An efficient and accurate solution to magnetization problems can then be obtained by homogenization which leads to the anisotropic bulk model [START_REF] Clem | AC losses in a finite Z stack using anisotropic homogeneous-medium approximation[END_REF]. It is also possible to replace the stack by a stack containing only a few films with a properly scaled parameters [START_REF] Prigozhin | Computing AC losses in stacks of high-temperature superconducting tapes[END_REF], and we used such approach to compare our FFT-based method to the finite element solutions of the anisotropic bulk problem with a power current-voltage relation [START_REF] Kapolka | Three-dimensional modeling of the magnetization of superconducting rectangular-based bulks and tape stacks[END_REF][START_REF] Olm | Simulation of high temperature superconductors and experimental variation[END_REF]. Our solution of this benchmark problem (Fig. 1) is very similar to those in [START_REF] Kapolka | Three-dimensional modeling of the magnetization of superconducting rectangular-based bulks and tape stacks[END_REF][START_REF] Olm | Simulation of high temperature superconductors and experimental variation[END_REF], the calculated AC losses coincide within 1-2%, and our computation on a usual PC was faster.

IV. INFINITELY HIGH STACKS

If a stack of many films has a height greater than the film sizes, the sheet current density distributions are usually similar in all except the several films closest to the stack top and bottom. Because of this the sheet current distribution in the films of an infinite stack be of interest. An analytical solution to the infinite stack problem has been obtained for the stacks of infinitely long strips under the Bean model assumption [START_REF] Mawatari | Critical state of periodically arranged superconducting strip lines in perpendicular magnetic field[END_REF]. A formulation for films of an arbitrary shape and a general current-voltage relation has been obtained in [START_REF] Prigozhin | Solution of 3D magnetization problems for superconducting film stacks[END_REF] as follows. . Numerical solution of the obtained problem by the FFT-based method is similar to that for a single film, see [START_REF] Vestgården | Modeling non-local electrodynamics in superconducting films: the case of a right angle corner[END_REF][START_REF] Vestgården | Nonlocal electrodynamics of normal and superconducting films[END_REF][START_REF] Prigozhin | Fast Fourier transform-based solution of 2D and 3D magnetization problems in type-II superconductivity[END_REF]; the only difference is that now we have () k instead of 2/k . As an example, we studied magnetization of an infinite stack of thin superconducting disks characterized by the power current-voltage relation.

V. CONCLUSION

The FFT-based method has been adapted to stacks of superconducting films, a perspective replacement of bulk superconductors in many practical applications. We showed that, to simulate magnetization of a densely packed stack of a large number of films, employment of the anisotropic bulk model is not the only possible approach: an accurate solution can be obtained using a stack with only a few films with the properly chosen characteristics. The developed approach was compared to the recently proposed finite element methods; this comparison showed that the FFTbased method can be regarded a simpler but, nevertheless, efficient and competitive alternative to the finite element methods.
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 1 Fig.1. Current density at a peak of a sinusoidal applied field: solution of the anisotropic bulk benchmark problem computed using a 6-film stack approximation.

  Since all films in an infinite stack are under the same conditions,
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