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We used the classical Monte Carlo method to construct phase diagrams of a model cuprate within the framework of a S = 1 pseudo-spin formalism

I. INTRODUCTION

One of the topical problems of the high-T c cuprate physics is the coexistence and competition of antiferromagnetic, superconducting, and charge orderings [START_REF] Fradkin | Ineluctable complexity[END_REF], the study of which is complicated by the presence of heterogeneity due to dopants or non-isovalent substitution, as well as to the internal electronic tendency to heterogeneity [START_REF] Moskvin | Topological Structures in Unconventional Scenario for 2D Cuprates[END_REF]. The use of the pseudo-spin formalism and Monte Carlo (MC) method is very fruitful for constructing phase diagrams and studying the features of the thermodynamic properties for such systems.

II. MODEL

A minimal model to describe the charge degree of freedom in cuprates [START_REF] Moskvin | True charge-transfer gap in parent insulating cuprates[END_REF], [START_REF] Moskvin | Perspectives of disproportionation driven superconductivity in strongly correlated 3d compounds[END_REF] implies that for the CuO 4 centers in CuO 2 plane the on-site Hilbert space reduced to a charge triplet formed by the three many-electron valence states [CuO] 7-,6-,5- 4 (nominally Cu 1+,2+,3+ ). These states can be considered to be the components of the S = 1 pseudo-spin triplet with projections M S = -1, 0, +1. Effective pseudospin Hamiltonian of the model cuprate with the addition of the Heisenberg spin-spin exchange coupling of the s = 1/2 [CuO] 6- 4 (Cu 2+ ) centers can be written as follows:

H = H ch + H exc + H (1) 
tr + H

(2)

tr -µ i S zi . (1) 
Here, the first term

H ch = ∆ i S 2 zi + V ij S zi S zj (2) 
describes the on-site and inter-site nearest-neighbour densitydensity correlations, respectively, so that ∆ = U/2, U being the correlation parameter, and V > 0. The sums run over the sites of a 2D square lattice, ij means the nearest neighbors.

The second term

H ex = Js 2 ij σ i σ j (3) 
is the antiferromagnetic (J > 0) Heisenberg exchange coupling for the CuO 6- 4 centers, where σ = P 0 s/s operators take into account the on-site spin density P 0 = 1 -S 2 z , and s is the spin s = 1/2 operator. The third term

H (1) tr = -t p ij P + i P j + P + j P i -t n ij N + i N j + N + j N i - t pn 2 ij P + i N j + P + j N i + N + i P j + N + j P i (4) 
where the transfer integrals t p , t n , t pn describe the three types of the correlated "one-particle" transport. P and N operators are the combinations of the pseudospin S=1 operators [START_REF] Moskvin | True charge-transfer gap in parent insulating cuprates[END_REF]:

P + ∝ (S + + T + ), N + ∝ (S + -T + ), T + = S z S + + S + S z . The next term H (2) tr = -t b ij S 2 +i S 2 -j + S 2 +j S 2 -i (5) 
where the transfer integral t b describes the two-particle ("composite boson") transport [START_REF] Moskvin | True charge-transfer gap in parent insulating cuprates[END_REF]. The last term with chemical potential µ is needed to account for the charge density constraint, nN = i S zi = const.

III. STATE SELECTION ALGORITHM

We write the on-site wave function of the charge triplet in the form as follows

|Ψ = c +1 |+1 + c 0 |0 + c -1 |-1 , (6) 
c ±1 = sin θ 2 cos φ 2 e ∓i α 2 , c 0 = cos θ 2 e i β 2 , (7) 
where

0 ≤ θ ≤ π, 0 ≤ φ ≤ π, 0 ≤ α ≤ 2π, 0 ≤ β ≤ 2π.
This state corresponds to a point in the octant of the unit sphere. We use the Metropolis algorithm for a system with conservation of the total charge. The charge at the site, n i , is related to the parameters of the wave function by the expression

2n i = (1 -cos θ i ) cos φ i . (8) 
We require when the states of sites 1 and 2 change simultaneously, the total charge of the pair is preserved,

n 1 + n 2 = n ′ 1 + n ′ 2 = 2n
, and the points representing states uniformly fill the allowed area in the octant. The state selection algorithm consists of the following steps:

1) caclulation of n 1 , -1 + n + |n| ≤ n 1 ≤ 1 + n -|n|, from equation G 1 (n 1 ; n) = γ, ( 9 
)
where γ is a random uniformly distributed quantity, 0 ≤ γ ≤ 1,

G 1 (n 1 ; n) = Φ(n 1 ) -Θ(n) Φ(-1 + 2|n|) Φ(1 -2|n|) , (10) 
Φ(x) = sgn x 2 1 + |x| π 2 Π -1, π 2 m(x) 1 + |x| -m(x) K (m(x)) - 1 2 + 1 2 , (11) 
m(x) = 1-|x| 1+|x| , Θ(x) is the Heaviside step function, Π -1, π 2 m = Π 1 (1, √ m) is the complete elliptic integral of the third kind, K(m) is the complete elliptic integral of the first kind; 2) calculation of the value n 2 = 2n -n 1 ; 3) calculation of cos θi 2 from equation cos θ i 2 = 1 -|n i | sn (γ i K (m(n i )) , m(n i )) , (12) 
where γ i , i = 1, 2, are the random uniformly distributed quantities, 0 ≤ γ i ≤ 1, sn (x, m) is the Jacobi function.

If n i = 0, we take cos θi 2 = γ i . 4) calculation of cos φ i from equation

cos φ i = n i 1 -cos 2 θi 2 . ( 13 
)
If n i = 0 and cos θi 2 = 1, φ i is a random uniformly distributed quantity, 0 ≤ φ i ≤ π. 

IV. RESULTS

In MC simulation, we calculated the structure factors

F q (A, B) = 1 N 2 lm e iq (r l -rm) A l B m , (14) 
where A l and B m are the on-site operators and the summation is performed over all sites of the square lattice. To determine the type of ordering, we monitored the following structure factors: F (π,π) (σ, σ) for antiferromagnetic (AFM) order, F (π,π) (S z , S z ) the charge order (CO), F (0,0) (S 2 + , S 2 -) for the superconducting order (SC), F (0,0) (P + , P ) for the "metal" phase (M ).

To illustrate the results of the MC simulation in Fig. 1 we presented the doping dependence of the main structure factors for the ground state of the model cuprate. Fig. 2 shows the MC simulation of the Tx phase diagram for model cuprate with the Hamiltonian (1) can reproduce some most important features of the real phase diagrams typical for the hole doped cuprates [START_REF] Fradkin | Ineluctable complexity[END_REF]. The critical temperatures for the AFM, CO, and SC phases were determined from the jump in the structure factor from zero to a certain finite value. Despite the preliminary nature of the results, the obtained phase diagrams show promising possibilities to describe the coexistence and competition of various phase orders in cuprates.

Fig. 1 .

 1 Fig. 1. (Color online) The dependencies on the charge doping of the structure factors in the ground state calculated with parameters ∆ = 0.8, V = 0.625, J = 1, tp = 0.35, tn = 0, tpn = -0.24, (all in units of the t b ).

Fig. 2 .

 2 Fig. 2. (Color online) The MC Tx (x the charge doping) phase diagram for the model cuprate calculated with the same parameters as in Fig. 1.
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