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Abstract—Remaining Useful Life (RUL) prediction is 

important for the prognosis and the maintenance of expensive 

systems. High reliability is an indispensable requirement for 

advanced systems. Correspondingly, reliability practitioners 

attempt to investigate the system behaviour in order to mitigate 

risk as much as possible. The study of the behaviour is insured 

by collecting the real data of degradation, which is considered 

as a challenged task. Based on the retrieved data, one can 

propose a good stochastic process to model the system 

degradation. In this study, the Variance Gamma process is 

proposed to model the degradation of the water tank pump. The 

estimation of the data parameters and their fitting to the model 

is considered.  In addition, the study of the First hitting time 

(FT) and its distribution is treated. Finally, a good prognostic is 

conducted based on the FT results. 

Keywords— Variance Gamma, Stochastic process, Prognostic, 

Deteriorating system 

 

Résumé—La prédiction de la durée de vie résiduelle (RUL) 

est importante pour le pronostic et l'entretien des systèmes 

coûteux. Une fiabilité élevée est une condition indispensable 

pour les systèmes avancés. De même, les praticiens de la fiabilité 

tentent d'étudier le comportement du système afin d'atténuer le 

plus possible les risques. L'étude du comportement est assurée 

par la collecte des données réelles de dégradation, qui est 

considérée comme une tâche contestée. Sur la base des données 

récupérées, on peut proposer un bon processus stochastique 

pour modéliser la dégradation du système. Le but de cette étude 

est de proposer le processus Variance Gamma comme un 

modèle de dégradation. La pompe d’un réservoir d'eau est 

utilisée comme un cas d’application. L'estimation des 

paramètres de données et leur ajustement au modèle sont 

considérés. De plus, l'étude du premier temps de passage (FT) et 

de sa distribution est traitée. Enfin, en se basant sur les résultats 

du FT un bon pronostic est réalisé. 

Mots clés— Variance Gamma, processus stochastique, 

pronostique, système de dégradation  

I. INTRODUCTION 

Prediction of Remaining Useful Life (RUL) and 
maintenance of the system at the appropriate time based on 
their performance is important in the huge industries and 
laboratories in the past years [1]. This methodology will assist 
in predicting the defect in each part of the system based on 
their degradation by using the historical data retrieved by 
sensors. This will permit low cost system maintenance by 
restricting the failure of the whole system. These 
methodologies are widely used in complex systems such as 
motors, pumps, generators, etc. [2, 3]. 

This study is mainly centred on the degradation of the 
industrial centrifugal water pumps (Fig 1). They are widely 
used in different industrial applications and a small defect in 
this pump or its part may cause a huge economic loss and 
catastrophic damages of the entire system. Damage of pump 
seals is one of the major causes of the defect of the pumps and 
it is crucial to detect this defect or predict it at the appropriate 
time. The degradation can be detected by monitoring the level 
of the leakage in the water tank pump. Due to the development 
of the industries, more and more complex systems are being 

  

Fig 1. Complex system of centrifugal pump and seal surfaces [4] 
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used and it becomes more challenging to collect failure data. 
Tracking of this data and gathering the degradation data is 
becoming more expensive due to the systems complexity. As 
a consequence of this, it is essential to propose a robust 
mathematical model to model the system and to be able to 
predict the failure.  

Different stochastic processes are being widely used to 
predict the RUL in the past years. The selection of the 
stochastic process is mainly identified based on the behaviour 
of the retrieved data of degradation. Gamma, Wiener and 
Black & Scholes are the most popular stochastic models used 
to imitate degradation of systems. Gamma process is a 
stochastic process, which has an independent and non-
negative increment with gamma distribution [5]. Gamma 
process is convenient to model the monotonic gradual 
damage, which increases with respect to time such as 
corrosion, fatigue, crack growth, wear, etc. Additionally, its 
mathematical calculations are relatively tractable, which is 
one of the advantages of this process. Even though, the model 
is restricted to the modelling of only monotonic behaviour, 
which is one of the major drawbacks as all the systems does 
not exhibit this behaviour [6, 7]. In order to overcome these 
limitations, researchers recommended another process called 
Wiener process. This process is able to describe the dynamic 
characteristic of a complex system deterioration due to its non-
monotonic, infinite divisibility properties and its physical 
interpretations. It is used extensively in the modelling of 
degradation in laser generators, bridge beams, light-emitting 
diodes (LEDs), etc. It has simple computational properties and 
mathematical calculations, which are great advantages of this 
model [8, 9]. Nevertheless, as the systems are getting more 
complex and the industries need better precise models, the 
requirement of more complex stochastic processes arises. 

A non-linear and a non-monotonic process called Black & 
Scholes (B&S) was considered as deterioration model. The 
analytical properties of the continuous time Brownian motion 
and B&S permit the exact computation of related 
probabilities, which is one of the main advantage of these 
models. As any other process, B&S has some limitations that 
restrict them in modelling of different degradation behaviour. 
Due to this, another stochastic process called Variance 
Gamma that can better replicate the non-monotonic 
degradation path is presented and proposed. The first 
appearance of Variance Gamma process (VG) as an extension 
of the Brownian motion was in finance and its first 
presentation as a simplified symmetric model was introduced 
by Madan and Seneta [12, 13, 14]. The advantage of VG is 
that it contains two more parameters compared to the 
Brownian motion, which help in the control of the kurtosis and 
the skewness. The Variance Gamma process can be obtained 
by evaluating the time in the Brownian motion by a gamma 
process. In addition, VG process can be written as a difference 
of two gamma processes. These two expressions of VG made 
it a flexible process capable of modelling any kind of non-
monotonic degradation phenomenon as far as the increments 
follow the VG distribution. Since this study assesses the 
prediction of degradation behaviour of industrial centrifugal 
water tank pumps, which expresses a non-monotonic 
behaviour and a heavy tailed with high volatility data. The VG 
process can be proposed as a model to replicate the behaviour 
of the industrial centrifugal water pump's degradation and to 
predict the maintenance of the system. 

The aim of this study is to introduce Variance Gamma 
(VG) process as a stochastic model that can model 
degradation. The water tank pump was introduced as an 
application case to study this process in detail. The leakage of 
water in the water tank is considered here as a reference of 
degradation. Firstly, the VG model and its properties will be 
presented. The estimation of the VG parameters will be 
carried out with the real data retrieved from the sensors. The 
data will be fitted to VG process and the First Hitting Time 
Density (FTD) will be identified. Lastly, the prognosis will be 
performed based on the obtained First Hitting Time (FT) 
results.   

II. PROCESS AND PROPERTIES 

A. Variance Gamma process 

The Variance Gamma process is a Lévy process, which 

can be written as a time changed Brownian motion (TCBM). 

It can be presented as an evaluation of the time in a Brownian 

motion by a stochastic gamma process. Dilip B. Madan and 

Eugene Seneta [12] initially introduced this process in Finance 

analysis. It was proposed as an extension of the Brownian 

motion and its simplified symmetric form were presented [13, 

14]. Generally, VG model has two extra parameters, which 

permit to control the skewness and kurtosis. 

B. Properties 

The Variance Gamma process is one of the most flexible 
stochastic processes. It has two more parameters which help 
in controlling the skewness and kurtosis which allows for a 
better fitting the data. VG process can be introduced as an 
extension of a Brownian motion, it can be obtained by 
evaluating the wiener process at random times defined by a 
gamma process. The Variance Gamma process can also be 
written as a difference of two gamma processes which allow 
it to model two competitive phenomena. The first presentation 
of the process as a time changed the Brownian motion start by 
defining a Brownian motion B with positive parameters. The 
drift θ and volatility σ and a standard Brownian motion W(t). 
It is defined as an equation (1): 

 𝐵(𝑡; 𝜃, 𝜎)  =  𝜃 𝑡 +  𝜎 𝑊(𝑡)            (1) 

The gamma process of independent gamma distributed 
increments on a time interval (t, t+h), Γ(t;μ,ν) with μ as the 
mean rate and ν as the variance rate was considered. The VG 
process is defined as: 

 𝑋(𝑡;  𝜎, 𝜐, 𝜃) = 𝐵(𝛤 (𝑡; 𝜇, 𝜐), 𝜃, 𝜎 )       (2) 

The other representation of the VG process as a difference 
of two gamma processes [14] is given by the equation as 
follows: 

      𝑋𝑉𝐺(𝑡;  𝜎, 𝜐, 𝜃) =  Γ(𝑡;  𝜇𝑝, 𝜇𝑝
2𝜈) − Γ(𝑡; 𝜇𝑛, 𝜇𝑛

2𝜈)    (3) 

with  𝜇𝑝 =
1

2
√𝜃2 +

2𝜎2

𝜈
+

𝜃

2
  and 𝜇𝑛 =

1

2
√𝜃2 +

2𝜎2

𝜈
−

𝜃

2
 

As presented, the Variance Gamma process has two 

presentations which allow it to be more flexible to model 

different phenomena. In this study, the VG is the mathematical 

model used to present the degradation of the water tank pump 

system by fitting to the system degradation data. 
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III. DATA 

It is always significant to assess a good reliability and to 
predict failure of systems in order to decrease the risk of 
failure as much as possible. In general, a system is considered 
as failed when they are no longer able of performing its 
function. In this part, the retrieved data are going to be 
presented as an example of application of the VG process.  
The historical degradation data (Fig 2) of the water tank pump 
presented in this study are collected at different periods of the 
year using different sensors and it describes the level of water 
leakage with respect to time, i.e. each 4 hours per day. The 
rate of the leakage is controlled and registered since it will 
help in defining the distribution of the failure time that helps 
in defining the prognostic of the systems. The water tank 
pump is considered as failed when its leakage rate at time t is 
denoted by X(t), is greater than a specific threshold (d), 
assuming that the threshold d must be already fixed. As soon 
as the leakage rate of the pump exceeds a threshold limit, 
which is set at around 1400 l / h (litre per hour), the pump is 
stopped and a corrective maintenance action is performed. 
When such incident happens, the pump will be maintained and 
its seals must be changed. In order to avoid the failure of the 
system, reliability engineers and safety practitioners define an 
alarm threshold in order to propose proactive maintenance 
decisions. The alarm threshold is set at a level of 1100 l / h. 
This threshold alerts the operator early enough to a possible 
degradation of the pump and to carry out some maintenance 
operations in order to avoid failure. It is recommended in such 
problems to refer to monitoring, but in this paper the aim is to 
present the VG process as a degradation model applied on a 
mechanical system. 

IV.  RMSE AND R PACKAGES VALIDATION   

In this section, the interest is on the calculation of the RMSE 
in order to compare the two existing R packages used for the 
estimation. The goal is to select the most efficient package that 
can estimate the parameters with less estimation error. The 
estimation of VG parameters is an important step in prognosis, 
for that it has been recently the subject of several research 
papers. According to [15], it is impossible to replicate the 
estimation obtained in [14]. In order to understand this 
problem, an investigation of the computational problems 
related to the maximum likelihood estimator is performed. R, 
MATLAB and a non-standard optimization software such as 
Ezgrad were used in this investigation. The log-likelihood 
function is considered as complex because of the presence of 
many local optima and the presence of the Bessel function of 
the second kind in its expression. The R Variance Gamma 
package use the VgFit function which allows the user to 
employ the Nelder-Mead, the BFGS method (Broyden-
Fletcher-Goldfarb-Shanno) or a Newton-type algorithm. 
While the ghyp R package use the fit.VGuv function which is 

based on the Nelder–Mead algorithm. In their paper [16], they 
developed a new algorithm and the results of the estimation 
were compared with the results obtained from R Variance 
Gamma package [17] and the ghyp package [18]. In this paper, 
the estimation of Variance Gamma parameters was insured 
using the two R packages: Variance Gamma and ghyp 
packages. The focus of this part is to study the efficiency of 
the two already existing R package used to estimate the VG 
parameters.  The RMSE (root mean square error) is calculated 
and used to evaluate the performance of these two packages. 
The evaluation is done using a number of 36 real data samples 
with thousands of observations are used (between 1000 and 
4000 observations). The estimation in the two R packages is 
mainly based on the calculation of the maximum likelihood of 
the VG process. The maximum likelihood function is 
introduced as follows: 

𝐿(𝜇, 𝜃, 𝜎, 𝜈) =
𝑇

2
𝑙𝑜𝑔

2

𝜋
+ ∑

(𝑋(𝑡)−𝜇)𝜃

𝜎2
𝑇
𝑡=1 −

∑ 𝑙𝑜𝑔(𝛤(𝑎)𝜃)𝑇
𝑡=1 + ∑ 𝑙𝑜𝑔 (𝐾𝜈−0.5 (

√2𝜎2+𝜃2|𝑋(𝑡)−𝜇|

𝜎2 )) +𝑇
𝑡=1

∑ (𝜇 −
1

2
)𝑇

𝑡=1 (𝑙𝑜𝑔(|𝑋(𝑡) − 𝜇| −
1

2
𝑙𝑜𝑔(2𝜎2 + 𝜃2)))                               

(4) 

The work consists of the estimation of the data parameters 

using the two R packages results and the comparison between 

them. The focus was to compare the performance of the two 

R packages using the RMSE results. It is important to choose 

the best package which will help in having a good estimation 

in order to achieve a better prognostic. Among the real data, 

the choice was on different samples, which describes different 

behaviour of VG. The job consists on estimating the real 

parameters of the same data 1000 time and the calculate of the 

RMSE is obtained using the following equation: 

                        𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖−�̂�𝑖)2

𝑛

𝑛
𝑖=1                   (5) 

TABLE I.  RMSE ESTIMATION RESULTS 

 
VG( μ=1, σ=2, θ=2, ν=2) 

μ σ   θ ν   

ghyp 2.2448e-06   0.002060 0.0010353 0.0043101 

VGfit 5.3679e-05   0.00369 0.0597441 0.0048243 

 VG( μ=1, σ=1, θ=2, ν=2) 

μ σ   θ ν   

ghyp 7.4190e-08 0.0006329 0.003265 0.0044128 

VGfit 3.3092e-07 0.0126907 0.005723 0.0091818 

 VG( μ=0, σ=2, θ=3, ν=1) 

μ σ   θ ν   

ghyp 5.6606e-07 0.0017782 0.015155 0.0010810 

VGfit 7.2977e-06 0.005696 0.029396 0.004236 

 VG( μ=0, σ=1, θ=0.5, ν=0.5) 

μ σ   θ ν   

ghyp 0.00034591 0.00053964 0.0011269 0.0009555 

VGfit 0.00035332 0.00054489 0.0011668  0.0009612 

 

 The results of the RMSE were presented in TABLE I and 

it is observed that for the different obtained data the ghyp 

package is more efficient in the estimation of the VG 

parameters comparing to the Variance Gamma package. 

 
Fig 2. Histogram of data 
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Based on the results presented in TABLE I, the ghyp package 

showed better performance and gave better results than the 

Variance Gamma package for all the data belonging to 

different parameters and presenting different system 

behaviour. The results were better for the Variance Gamma 

package in the case of a weak VG process where the VG do 

not show a lot of variation. It can be concluded that, ghyp 

pakage provides the best estimation comparetively. The 

estimation of parameters is the first step of the process of 

determining the best mathematical model. The selection of the 

process is ensured by applying a goodness of fit tests. 

V. GOODNESS OF FIT AND DATA CALIBRATION 

     The aim of this section is to choose the best stochastic 
process between the three processes and this based on the 
results of the goodness of fit tests. Once the best process is 
calibrated to the real data, it will be used later to propose a 
good prognostic of the system. Goodness of fit tests are used 
to summarize the dissimilarity between observed values and 
the expected values under the model in question. The observed 
values are presented by the real retrieved data of the system. 
The data are presented as vectors (Vi) and for each vector its 
real parameters will be estimated and used to generate new 
samples (expected) in order to calibrate the good process. 

The four goodness of fit tests used in this study are: 
Kolmogorov-test (KS), Chis-square test (chisq), Anderson-
test (AD), Cramer-test (Cramer). The four goodness of fit tests 
were chosen arbitrary only to confirm the results obtained. 

These goodness of fit tests are used to calibrate three 
stochastic processes: Wiener, B&S and VG process. The 
initial step is to estimate the parameters of the real data of the 
controlled system. The estimation of the parameters of each 
(Vi) will be done for the three processes: VG, Wiener and 
B&S. Once the parameters of (Vi) are estimated for the Wiener 

process, they will be used to generate a new sample of data 
with the same length of (Vi) and then the goodness of fit tests 
will be applied. The same work will be respectively 
reproduced for the VG and B&S processes. 

The calibration is held with a Pvalue = 0.05 which means 
that the error is about 5%. The choice of such Pvalue provide us 
the best reliable results that can be accepted in the industrial 
world. The results of some chosen data are classified in the 
TABLE II, which summarize the results of the calibration of 
the processes. 

TABLE II.  GOODNESS OF FIT AND CALIBRATION RESULTS 

 Process KS Chisq AD Cramer 

 

 
V1 

VG 0.2439 0.3876 0.3165 0.14236 

Wiener 0.0001854 0.026457 0.001045 0.01002 

B&S 9.158e-10 6.643e-16 0.003193 4.97e-08 

 
 

V2 

VG 0.2472 0.2207 0.1847 0.4246 

Wiener 0.00769 0.001063 0.00907 0.00327 

B&S 0.10382 5.073e-4 0.00513 0.00105  

 

 

V3 

VG 0.2452 0.4309 0.7362 0.11582 

Wiener 8.375e-04 1.282e-10 0.001058 5.51e-04 

B&S 0.081053 1.763e-02 0.00763 0. 6354  

 

 

V4 

VG 0.6041 0.3827 0.837 0.2207 

Wiener 4.387e-04 8.361e-08 4.703e-10 0.001063 

B&S 0.001805 0.000951 8.350e-09 0.006301 

 

 
V5 

VG 0.3097 0.5139 0.2106 0.4309 

Wiener 0.00902 0.001753 0.00854 1.76e-08 

B&S 8.045e-09 0.000751 0.005103 0.005395  

 
 

V6 

VG 0.2551 0.7014 0.8104 0.3785  

Wiener 0.04768 0.041981 1.047e-06 0.02451  

B&S 0.01836 4.072e-04 0.03532 0.01849  

 
 

V7 

VG 0.2408 0.063717 0.8105 0.5139 

Wiener 0.046628 0.039015 0.028319 0.02627 

B&S 0.006019 0.0002668 0.000438 0.02451 

 

 

V8 
 

VG 0.2255 0.2419 0.2412 0.1094  

Wiener 0.033491 0.16179 0.00975 0.007495 

B&S 0.1267 0.030258 0.048609 0.1394  

 

 

V9 

VG 0.2575 0.12123 0.09654 0.2207 

Wiener 3.438e-05 0.010651 0.0085832 2.85e-04 

B&S 0.010341 0.0006654 0.0089969 0.00934  
 

 

The table resume the results of calibration of the real data 

(Vi) to the three processes. For each (Vi), the parameters are 

estimated from the different processes and then used to 

generate a new sample. The real data (Vi) and the generated 

data will be tested under the different goodness of fit tests. The 

result of the calibration is compared to the Pvalue = 0.05. For 

the four tests, the Weiner process cannot model the data of the 

degradation of the water tank pump. Compared to the Pvalue, 

the results of the calibration of wiener process do not satisfy 

  
Fig 2. Histogram and distribution of hitting time 
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the hypothesis of similarity which can lead to conclude that 

the real data cannot be generated from a Wiener process. The 

results of the calibration of the B&S for the different (Vi) are 

presented and compared to the Pvalue = 0.05 affirms that for 

some (Vi), the process is able to model the real data where the 

results of calibration are greater than the Pvalue. But this 

conclusion is not valid for the all retrieved data. The results of 

the calibration of the VG process for the data are also 

presented. The four tests accepted with a Pvalue = 0.05, that VG 

process is the best process to model the water tank pump 

degradation. For all the data (Vi), the results of the calibration 

obtained using the goodness of fit tests shows that VG process 

is a good candidate for to model the degradation of the system 

with similar behaviour. It can be explained because VG 

process is a stochastic process with four parameters, which 

gives it more flexibility, but also a good control of the data. 

Additionally, the representation of VG as a time changed 

Brownian motion, i.e. the change of the time in the Brownian 

motion by a gamma process implies more flexibility in fitting 

the fluctuations and a better reflection of the random speedups 

and slowdowns in real time. It can be explained because VG 

process is a stochastic process with four parameters, which 

gives it more flexibility, but also a good control of the data. 

Additionally, the representation of VG as a time changed 

Brownian motion, i.e. the change of the time in the Brownian 

motion by a gamma process implies more flexibility in fitting 

the fluctuations and a better reflection of the random speedups 

and slowdowns in real time. 

VI. ESTIMATION OF FIRST HITTING TIME 

According to the presentation of the data and based on the 

results of the calibration, the threshold of alarm is defined and 

the aim is to define and estimate the first hitting time (FT). To 

control the industrial quality, the first hitting time must be 

defined firstly by defining the quality degradation measures. 

Accordingly, when the degradation measure reaches a control 

limit, the first hitting time is established and this information 

is considered in proposing an efficient maintenance policy. 

Considering a VG process (𝑋𝑡)𝑡≥0  with initial value X0=x0, 

the initial time of maintenance is defined to be the first 

crossing time of the alarm threshold denoted by (d) and it is 

defined to be the first hitting time which can be written as 

follows: 

 𝑡𝑑
∗ = 𝑖𝑛𝑓{𝑡 ≥ 0; 𝑋𝑡 ≥ 𝑑}  (5) 

In this study, the real sample are structured as vectors 
denoted by (Vi) and their real parameters are estimated. Using 
the estimated parameters for each (Vi) a simulation of 10000 
samples is carried out and they are structured as vectors 
denoted by (Ci) {i from 1 to 10000} (Fig 4).  

The alarm threshold (d) is set at a level of 1100 l/h. The 
density of the FT is defined by defining the density of the time 
when the samples (Ci) crosses for the first time the threshold 
(d). The first time of crossing of (Ci) to the alarm threshold is 
captured and the density is approached and presented. Fig 2 
resumes the different densities and histograms for some 
chosen (Ci). The obtained histograms (Fig 2) give a rough 
sense of the density of the FT. The patterns in the different 
histograms of the data are right skewed and they have a single-
mode. It is always valuable to identify the density of the FT, 
since it allows to integrate the evolution of the degradation of 

the system at the inspection time. Using the four goodness of 
fit tests, the density of the FT is compared to some empirical 
distributions known to allow modelling the density of FT. The 
aim is to fit the distribution of FT to a parametric model such 
as the exponential distribution, the lognormal distribution, the 
Weibull and the inverse Gaussian distribution. The 
exponential and the lognormal distributions are both a right 
skewed distribution. The Weibull distribution can be right or 
left skewed or also symmetric. The inverse Gaussian 
distribution, the Gamma and Beta distribution are also tested. 
To identify the density of the FT, the goodness of fit tests is 
used with a Pvalue= 0.5 and the results are classified in the 
TABLE III. 

TABLE III.  FT DISTRIBUTION RESULTS 

FT distribution for V1 

 KS AD Chisq Cramer 

Exponential 0.04207 0.0158 0.00571 0.02607 

Lognormal 0.005867 0.003628 0.000491 0.006827 

Weibull 0.033617 0.002151 0.00382 0.00184 

Gamma 0.00396 0.00902 0.001753 0.005395 

Beta 4.38e-04 0.00047 0.00343 0.01037 

Inverse Gaussian 0.00115 0.03835 0.00207 0.000751 

FT distribution for V2 

 KS AD Chisq Cramer 

Exponential 0.007031 0.004109 0.041981 0.001790 

Lognormal 0.01087 0.03668 0.00854 0.000429 

Weibull 0.002851 0.001438 0.01095 0.00173 

Gamma 0.004762 4.07e-04 0.04259 0.01058 

Beta 0.00745 1.05e-07 0.00503 8.32e-05 

Inverse Gaussian 0.00694 0.00493 0.02087 0.00047 

FT distribution for V3 

 KS AD Chisq Cramer 

Exponential 0.1094 0.035009 0.04219 0.00247 

Lognormal 0.002601 0.00531 0.000806 0.01553 

Weibull 0.00759 0.00458 0.00215 0.000672 

Gamma 0.02563 0.00581 2.12e-06 0.001408 

Beta 0.01907 2.15e-08 0.001048 0.005024 

Inverse Gaussian 0.009262 0.00164 0.071518 2.738e-04 

FT distribution for V4 

 KS AD Chisq Cramer 

Exponential 0.00507 0.001628 0.00754 0.02593 

Lognormal 0.02402 0.01513 0.01307 0.000681 

Weibull 0.00287 0.00521 0.00384 0.00156 

Gamma 0.00591 0.04529 0.00103 0.0218 

Beta 5.01e-05 0.000184 0.00751 1.250e-07 

Inverse Gaussian 1.25e-07 0.00162 4.65e-06 0.00372 
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Using the goodness of fit tests, a comparison between the 

captured vector of the first hitting time and each parametric 

model is held. The results of the fitting based on the goodness 

of fit tests shows that all the parametric models were rejected. 

For the different (Vi), the result of the calibration is compared 

to the Pvalue= 0.5 and as shown in TABLE III all the parametric 

models were rejected.  

The six Cumulative Distributions Function (CDF) were 

fitted to the retrieved samples, which describes the real first 

hitting time of the alarm threshold. In this Fig 3, all the 

proposed distributions were not able to model the FT 

distribution. The Gamma, Weibull, exponential, lognormal, 

beta and inverse Gaussian distributions cannot present a 

distribution that can model the FT distribution of a Variance 

Gamma process. This implies that the density of the FT of VG 

process have a specific distribution that cannot be modelled 

using these candidates. Since there is not a specific parametric 

model which characterise the FT of the VG process, the 

simulation method will be used also in proposing prognostic. 

VII. PROGNOSTIC  

 Based on the results of estimations and fit tests, a good 
prognostic for the system will be proposed. The prognostic is 
an important key which provides valuable information for a 
better maintenance, especially if it is based on predicting the 
time when the remaining life of a system reaches the 
predefined maintenance threshold. The degradation of the 
systems starts before failure occurs by assessing the 
performance and monitoring the machine degradation will 
help in avoiding the failure and this by applying earlier 
corrective actions. Therefore, prognostic focus on monitoring 
the degradation so that the failure can be predicted. To assure 
a better prognostic, different type of metrics must be 

considered such as the RUL (Remaining Useful Life) or the 
residual time before failure like TTF (Time To Failure). The 
accuracy in the prediction of the RUL of the defected 
components is significant to the prognostic of the system and 
it will assist the operators to replace the components at the 
appropriate time (Fig 4). 

In this study, the calculation of the failure time is 
performed conditionally in the state of the system at the 
present time (time of the last inspection ti), which can 
introduce the RUL as the first exceeding time of indicator X(t) 
to the threshold d follows:  

     𝑡𝑡𝑖
∗ ≔ 𝑖𝑛𝑓{ℎ ≥ 0; 𝑋(𝑡𝑖 + ℎ) ≥ 𝑑 | 𝑋(𝑡𝑖) < 𝑑}         (6) 

In this part, for each real data (Vi) the parameters are 
estimated and they are used to generate a 10000 samples 
representing different degradation paths (Ci). An alarm 
threshold is settled at a level of 1100 l/h and the time of 
crossing of that level of the degradation paths by the samples 
is captured. The work focuses on following the evolution of 
the FT density of some selected data. Some degradation paths 
are chosen (Vi), at t=0 a 10000 samples (Ci) are generated and 
the distribution of the FT is established. To assess the 
evolution of the degradation at t= tinsp, the same procedure is 
repeated and the FT is again well established. The objective is 
to locate the real crossing time of the designed degradation 
path Vi (represented as “Time”) compared to the two FT 
densities obtained at the two designed times. The two densities 
are obtained using the results of first crossing time of (Ci) to 
the alarm threshold (d=1100 l/h) at the two inspection times 
t=0 and t= tinsp. The results of the simulation and relative error 
are presented in the TABLE IV and TABLE V respectively. 

TABLE IV.  POSITIONING OF THRESHOLD TIME COMPARED TO THE FT 

10% Median 90% Mean Time 

1072.5 1132.5 1472.5 1267.5 1184 

1092.5 1173.5 1494.8 1283.5 1371 

1074.5   1279.5 1534.5 1348.5 1126 

1685 1769 1881 1750 1793 

1745 1829     1927 1857.5 1885 

1800 1895      1978 1874 1882 

1739 1827 1931 1848.5 1869 

TABLE V.  RELATIVE ERROR (%) WITH RESPECT TO TIME 

10% Median 90% Mean 

9.42 4.35 24.37 7.05 

20.31 14.41 9.03 6.38 

4.57 13.63 36.28 19.76 

6.02 1.34 4.91 2.4 

7.43 2.97 2.23 1.46 

4.36 0.69 5.1 0.43 

6.96 2.25 3.32 1.1 

 

To evaluate the results of the simulation, the location of 
the real crossing time of (Vi) designed by “Time” is compared 
to the mean, median, the 10% quantile and the 90% quantile 

 
Fig 4. RUL estimation curve 

 

 
Fig 3. Cumulative distribution function fit of different distributions to 

FT distribution 

 



 

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22                                       Le Havre 12-15 octobre 2020 

of the histogram presenting the series of time of exceeding the 
alarm threshold. The histogram is based on the captured 
crossing time of the different paths (Ci) to the alarm threshold. 
For that the mean, the median, the 10% quantile and the 90% 
quantile of the captured vector of time is defined and the 
position of Time is compared their positions. The results 
presented in the TABLE IV and TABLE V shows that the real 
crossing time (Time) is located in the confidence interval of 
the estimation and is positioned near to the mean and median 
of the histogram. Based on the results, the real FT is always 
located in the confidence interval and this can lead us to affirm 
that VG offers a good prognostic. 

VIII. CONCLUSION 

In this study, the VG process is proposed to model the 
degradation of the centrifugal water tank pump. First, the 
definition and the properties of the process are presented. 
After, the parameters of the VG process were estimated using 
two R packages and a comparison based on the calculation of 
the RMSE between the two packages is held. Furthermore, an 
explanation of the water tank pump system degradation is 
presented and the data retrieved and used in this paper is 
explained. In order to find the best model for the system, three 
stochastic processes are evaluated and the calibration is held 
using goodness of fit tests. These goodness of fit tests was 
applied and it was concluded that VG process is the best model 
to fit the data. Moreover, the failure time distribution of the 
system was also investigated and presented. The prognostic is 
also suggested and the results demonstrate that VG model 
provides a good prognostic. It was concluded that VG model 
is a good stochastic process proposed for modelling the 
degradation of water tank pump system and proposing a good 
prognostic. In the further study, the  impact of the error of the 
estimation on the density of the FT and the prognostic of the 
system will be considered. 
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