

Modeling the non-uniform J_c distribution along the *c*-axis of seeded melt growth (RE)BCO bulks

L. Quéval, K. Liu, W.-J. Yang, G.-T. Ma

¹GeePs, CentraleSupélec, University of Paris-Saclay, France ²TPL, Southwest Jiaotong University, China

Overview

- I. Introduction
- II. Measurement of the levitation force
- III. Modeling of a superconducting magnetic bearing
- IV. Modeling the non-uniform J_c distribution
- V. Applications
- VI. Conclusions

I. Introduction

Superconducting magnetic bearings

- (a) "Century", Southwest Jiaotong Univ., China, 2014.
- (b) "SupraTransII", IFW Dresden, Germany.
- (c) "Maglev Cobra", Federal Univ. Rio de Janeiro, Brazil, 2015.

loic.queval@geeps.centralesupelec.fr

^{© (}a) Southwest Jiaotong Univ. (b) S. Nishijima *et al.*, "Superconductivity and the environment: a roadmap," Supercond. Sci. Technol. vol. 26, pp. 113001, 2013 (c) Divulgação/Coppe/UFRJ.

Bulks

GdBCO bulk [2] D = 41 mm

[1] Y. Terao, M. Sekino, H. Ohsaki, H. Teshima, M. Morita, "Magnetic shielding characteristics of multiple bulk superconductors for higher field applications," *IEEE Transaction on Applied Superconductivity*, vol. 21, no. 3, pp. 1584-1587, 2011.

[2] M.D. Ainslie, H. Fujishiro, T. Ujiie, J. Zou, A.R. Dennis, Y.-H. Shi, D.A. Cardwell, "Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetization," *Superconductor Science and Technology*, vol. 27, id. 065008, 2014.

[3] "Bi-2223 tubes for current limiters," [Online]. Available: www.can-superconductors.com/current-limiters.html

Seeded melt growth (RE)BCO bulks

YBCO bulk [1]

Spatial distribution of $J_c(\theta)$ in the *ab*-plane of the bulk [1]

[1] M.D. Ainslie, H. Fujishiro, T. Ujiie, J. Zou, A.R. Dennis, Y.-H. Shi, D.A. Cardwell, "Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetization," *Superconductor Science and Technology*, vol. 27, id. 065008, 2014.

loic.queval@geeps.centralesupelec.fr

II. Measurement of the levitation force

Geometry

z

configuration

Testbench

Results

The maximal levitation force measured in bottom seed configuration is 30 % higher than the one measured in top seed configuration.

III. Modeling of a superconducting magnetic bearing

Superconducting magnetic bearings FE models

		2-D	2-D AXI	3-D
A-V	Homemade	Hofman2001 Dias2009 Ma2013	Sugiura1991 Takeda1994 Chun2001 Ruiz-Alonso2004 Wang2006 Sotelo2009	Ueda2006
	Software	-	Li2008	Hauser1997
Τ-Ω	Homemade	Zhang2008	Zheng2007 Gou2007	Uesaka1993 Tsuchimoto1994 Tsuda1998 Ma2010 Pratap2015
	Software	-	-	-
E	Homemade	-	-	-
	Software	-	-	-
н	Homemade	Lu2015	-	Lu2008 Yu2015
	Software	Sass2015 Quéval2016	Patel2015 Quéval2018	Patel2015 Quéval2016

[Queval2018] L. Quéval, K. Liu, W. Yang, V.M.R. Zermeño, G.T. Ma, "Superconducting magnetic bearings simulation using an H-formulation finite element model," *Superconductor Science and Technology*, vol. 31, no. 8, pp. 084001, March 2018.

loic.queval@geeps.centralesupelec.fr

Guideway

- Permanent magnet
- Exact geometry
- Iron B-H curve
- SC bulk
- 3D
- Movement
- Number of elements

Guideway

- Permanent magnet
- Exact geometry
- Iron B-H curve
- SC bulk
- 3D
- Movement
- Number of elements

中 Guideway

- Permanent magnet
- Exact geometry
- Iron B-H curve
- SC bulk
- 3D
- Movement
- Number of elements

Divide

Guideway

- Permanent magnet
- Exact geometry
- Iron B-H curve

SC bulk

- 3D
- Movement
- Number of elements

Stack-type SMB

- 2-D model
- 1 stack and 3 stacks of 120 tapes
- Systematic validation

[Liu2017] K. Liu, W. Yang, G.T. Ma, L. Quéval, T. Gong, C. Ye, X. Li, Z. Luo, "Experiment and simulation of superconducting magnetic levitation with REBCO coated conductor stacks," *Superconductor Science and Technology*, vol. 31, no. 1, pp. 015013, Dec. 2017.

loic.queval@geeps.centralesupelec.fr

Bulk-type SMB

- 2-D axisymmetric model
- 3-D model
- Systematic validation

➡ PM

HTS

30 mm

Ś

0•

Ø 30 mm

[Queval2018] L. Quéval, K. Liu, W. Yang, V.M.R. Zermeño, G.T. Ma, "Superconducting magnetic bearings simulation using an H-formulation finite element model," *Superconductor Science and Technology*, vol. 31, no. 8, pp. 084001, March 2018.

loic.queval@geeps.centralesupelec.fr

IV. Modeling the non-uniform J_c distribution

Geometry and mesh

Identification <u>Hyp</u>: $J_{c0}(z) = \text{constant}$

Identification <u>Hyp</u>: $J_{c0}(z) = J_{c0,S}(1 - c_0|z - z_S|)$

The model with non-uniform J_{c0} is able to reproduce the force of both the top seed and bottom seed configurations.

V. Applications

VII. Conclusions

Conclusions

- Seeded melt growth (RE)BCO bulks can exhibit a non-uniform J_c distribution along the c-axis.
- For levitation applications, the bottom seed configuration (seed on the bottom surface of the bulk near the PM) is usually selected to maximize the levitation force.
- The non-uniform local critical density should be taken into account when designing systems using seeded melt growth (RE)BCO bulks.
- This can be done by using a linear relationship of the form: $J_{c0}(z) = J_{c0,S}(1 - c_0|z - z_S|)$

Where $J_{c0,S}$ is the local critical current density at the seed location $(0, z_S)$ and c_0 describes the degradation of J_c with the distance from the seed in the *c*-axis direction.

References

- [1] L. Quéval, K. Liu, W. Yang, V.M.R. Zermeño, G.T. Ma, "Superconducting magnetic bearings simulation using an H-formulation finite element model," *Superconductor Science and Technology*, vol. 31, no. 08, pp. 084001, March 2018.
- [2] K. Liu, W. Yang, G.T. Ma, L. Quéval, T. Gong, C. Ye, X. Li, Z. Luo, "Experiment and simulation of superconducting magnetic levitation with REBCO coated conductor stacks," *Superconductor Science and Technology*, vol. 31, no. 1, pp. 015013, Dec. 2017.
- [3] L. Quéval, G.G. Sotelo, Y. Kharmiz, D.H.N. Dias, F. Sass, V.M.R. Zermeño, R. Gottkehaskamp, "Optimization of the superconducting linear magnetic bearing of a maglev vehicle," *IEEE Transactions on Applied Superconductivity*, vol. 26, no. 3, pp. 3601905, Apr. 2016.