

7th International Workshop on Numerical Modelling of High Temperature Superconductors, 22nd-23rd June 2021, Virtual (Nancy, France).

Modeling of high-temperature superconducting pancake coils using the axisymmetric partial element equivalent circuit method

<u>Rafael Coelho-Medeiros</u>_{1,2,3}, Loic Queval_{1,2}, Jing Dai_{1,2}, Jean-Claude Vannier_{1,2} and Philippe Egrot₃.

¹Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 91192, Gif-sur-Yvette, France.

²Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 75252, Paris, France.
³EDF R&D - Electrical Equipment Laboratory EDF Lab Les Renardières, 77250, Moret-sur-Loing, France.

INTRODUCTION

- High-temperature superconducting (HTS) devices are expected to operate in power grids where they may interact with power transformers, transmission lines, circuit breakers, power electronic converters, and electric machines.
- We are currently studying the integration of HTS coils into a modular multilevel converter (MCC) for medium and high-voltage directcurrent (M/HVDC) applications.
- For such applications, there is a need to model HTS devices into circuit-based simulations.
- The partial element equivalent circuit (PEEC) method has great potential to solve electromagnetic problems coupled with electric circuits.

The Cryo-MMC, an integration between superconducting coils and a power electronic converter.

THE AXYSIMMETRIC PEEC

The idea behind the PEEC method is to discretize the coil into current cells and charge cells for which the current and charge densities are space-independent, respectively.

We use an EJ power law for the superconducting regions. The PEEC model is a non-linear system of equations of the form,

HT5 2020

SIMULATION OF A 10-TURNS HTS PANCAKES COIL

• <u>Hyp.</u>: current excitation

Cedr Geeps RISEGrid

- **Case 1:** $I_s(t) = 120sin(2\pi 50t)$
- The current density is plotted at t = 0.025 s (2-nd AC peak).

SIMULATION OF A 10-TURNS HTS PANCAKES COIL

- <u>Hyp.</u>: voltage excitation
 - Case 2: DC $V_s(t) = 0.142$
 - **Case 3:** AC $V_s(t) = 0.71 cos(2\pi 50t)$
 - The two voltages will generate a current with a peak at 120 A.
 - ▶ The current density is plotted at t =0.1843 s (9-th AC peak).

CONCLUSION

- > The PEEC model is an alternative to FE model to simulate HTS coils' behavior in circuit-based simulations.
- The PEEC can treat both voltage and current source excitation problems.
- The average relative error in the current density distribution is smaller than 7.3 % while the relative error in AC losses is smaller than 4.7 %.
- The computation time per AC period ($T_0 = 20 \text{ ms}$) of the presented simulations are:

Case	Computation time per AC period
1 - H-form. AC current source	154 s
1 - PEEC AC current source	8 s
2 - PEEC DC voltage source	2 s
3 - PEEC AC voltage source	10 s

Intel Core i5-9400H CPU @ 2.50 GHz 32.00 Go RAM, Windows 10 Professional operating system.

Coming soon: PEEC model of HTS coil integrated into a modular multilevel converter.

Thank you

REFERENCES

- [1] A. Hobl, S. Krämer, S. Elschner, C. Jänke, J. Bock and J. Schramm, "Superconducting fault current limiters A new tool for the "Grid of the future"," CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid, 2012, pp. 1-4, doi: 10.1049/cp.2012.0852
- [2] M. Moyzykh et al., "First Russian 220 kV superconducting fault current limiter for application in city grid," in IEEE Transactions on Applied Superconductivity, doi: 10.1109/TASC.2021.3066324
- [3] L. Queval, O. Despouys, F. Trillaud and B. Douine, "Feasibility Study of a Superconducting Power Filter for HVDC grids," 2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe), 2020, pp. P.1-P.7, doi: 10.23919/EPE20ECCEEurope43536.2020.9215939
- [4] F. Trillaud, B. Douine and L. Queval, "Superconducting Power Filter for Aircraft Electric DC Grids," in IEEE Transactions on Applied Superconductivity, vol. 31, no. 5, pp. 1-5, Aug. 2021, Art no. 3700405, doi: 10.1109/TASC.2021.3060682
- [5] H. Schmitt, "Fault current limiters report on the activities of CIGRE WG A3.16," 2006 IEEE Power Engineering Society General Meeting, 2006, pp. 5 pp.-, doi: 10.1109/PES.2006.1709205.
- [6] A. Ruehli, G. Antonini and L. Jiang, "Circuit Oriented Electromagnetic Modeling Using the PEEC Techniques", IEEE, 2017, pp.9-46, doi: 10.1002/9781119078388.ch2
- [7] Y. B. Kim, C. F. Hempstead and A. R. Strnad, "Critical persistent currents in hard superconductors," Phys. Rev. Lett., vol. 9, no. 7, p. 306, 1962.
- [8] S. Otten and F. Grilli, "Simple and Fast Method for Computing Induced Currents in Superconductors Using Freely Available Solvers f or Ordinary Differential Equations," in IEEE Transactions on Applied Superconductivity, vol. 29, no. 8, pp. 1-8, Dec. 2019, Art no. 8202008, doi: 10.1109/TASC.2019.2949240.
- [9] P. Scholz, "Analysis and Numerical Modeling of Inductively Coupled Antenna Systems". 2010.
- [10] R. Brambilla, F. Grilli, L. Martini, "Development of an edge-element model for AC loss computation of high-temperature superconductors," Supercond. Sci. Technol., vol. 20, pp. 16–24, 2007.

