Modeling HTS dynamo-type flux pumps:
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Problem Configuration

Problem assumptions

Tape and magnet are defined infinitely long in z direction
J. and temperature are assumed to be constant y
Lumped parameter elements

Ideal HTS coil

Magnet width (W) =6 mm

Starting

Magnet height () = 12 mm
Effective depth () =12.7 m
Remanent flux density (B,) =1.25T

.. Position

Tape width (b) = 12 mm
Tape thickness (a) =1 um
Critical current | =283 A
n-value = 20

Coil inductance (L) = 0.24 mH

Joint Resistance (R ) = 0.88 pQ * -°
Rotor = 35 mm a 'y
Airgap=1, 2,3,7 mm <«
Rotation frequency (f) = 4.25, 25, 50 Hz b

open-circuit mode and charge of an HTS colil

Calculation methods

General definitions
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Calculated at IEE Slovak Academy of Sciences

For solving the problem, the functional F needs to be minimized
Solves current density J, which only exists inside the HTS tape

Fast method: mesh is only needed inside the HTS tape

Due to current
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MEMEP (Minimum Electromagnetic Entropy Production) method
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Assumption of HTS tape, coil and series resistance far away from each other:

Due to magnet Dissipation factor Coil inductance

Joint

|deal coil Series resistance

Segregated H-formulation method

Calculated at University of Cambridge
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H-formulation: Independent variables are the

components of the magnetic field strength H

Magnetostatic magnet model +
Time-dependent H-formulation HTS tape model

Unidirectional coupling
between magnet and

HTS models using
electromagnetic

boundary conditions and
a rotation operator

Analytical method

Flux pump can be modeled as a DC voltage
source in series with an effective resistance

The coil can be treated as an independent ch
LR circuit charged by the voltage source
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I-V curve of the flux pump
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Dynamic Charging of HTS Dynamo

Instantaneous voltage
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Instantaneous current

Ripples resemble the ripples of the
cumulative total output voltage V
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Extracted data points
| at the end of each cycle
for plotting the coil
charging current curves
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Average AC loss cycle no. 1-5 = 135.6 mW
Average AC loss cycle no. 5001 = 135.8 mW

Calculated ripple AC loss is almost constant
for a given frequency

Agrees with measurements presented in
Hamilton et al. IEEE Trans. Appl. Supercond. 2020

Current density and electric field distributions
across the tape width
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Current density and electric field
distributions are mostly similar

AC loss remains mostly the same!

Summary

" Two novel numerical methods for modeling the
charging process of a coil by an HTS dynamo were
presented

" Nine different cases including various airgaps and
frequencies over thousands of cycles were compared

= Current charging curve contains ripples within each
cycle, which cannot be captured via the analytical
method

= Current ripples cause ripple AC loss in the HTS
dynamo

" The ripple AC loss is almost constant during the
whole charging process

" The two numerical methods and the analytical
method showed excellent quantitative and
gualitative agreement

" The numerical modeling frameworks presented here
have the potential to be coupled with other
multiphysics analyses as well as with a model of an
HTS coil
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