AC loss modeling of the stator of a 1 MW REBCO superconducting motor for aviation

E Pardo, A Ghabeli

F Grilli

E Berberich, S Wolftaedler, T Reis

The European Union wants to reduce emissions

Drastic reductions need drastic improvements

Hybrid electric airplane can reduce emissions

Superconducting motor

Full superconducting motor

AC loss modeling of the stator of a 1 MW REBCO superconducting motor for aviation

E Pardo, A Ghabeli

F Grilli

E Berberich, S Wolftaedler, T Reis

Advanced Superconductor Motor Demonstrator (ASuMED)

Our work continues with national funding

We acknowledge the grants:

Stator

Flux pump

Distributed winding

Stator

Combined method

Conceptual study

Final stator results

Single method for the full motor

Flux pump

Stator

Combined method

Conceptual study

Final stator results

Single method for the full motor

Flux pump

Conventional static Finite Element Method

Current density assumed uniform in coils

$$\nabla \times (\nabla \times \mathbf{A}) = \mu \mathbf{J}$$

$$\mathbf{B} = \nabla \times \mathbf{A}$$

We need another method to calulate AC loss in superconductor

Superconductor resistivity is highly non-linear

Flux-creep relation

$$\mathbf{E}(\mathbf{J}) = E_c \left(\frac{|\mathbf{J}|}{J_c}\right)^n \frac{\mathbf{J}}{|\mathbf{J}|}$$

Minimum Electro Magnetic Entropy Production (MEMEP)

Solving the equations

$$\mathbf{E}(\mathbf{J}) = -\frac{\Delta \mathbf{A}}{\Delta t} - \nabla \phi$$

$$\nabla \cdot \mathbf{J} = 0$$

is the same as minimizing the functional

J change between two time instants

$$L = \int_{V} dV \left[\frac{1}{2} \Delta \mathbf{J} \right] \frac{\Delta \mathbf{A}_{J}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) + \nabla \phi \cdot \mathbf{J} \right]$$
Non-linear E(J) relation
E Pardo, M Kapolka 2017 J Comp. Phys.
$$U(\mathbf{J}) = \int_{\mathbf{J}}^{\mathbf{J}} d\mathbf{J}' \cdot \mathbf{E}(\mathbf{J})'$$

Combined method

FEM calculates background vector potential

Assumed uniform **J** in superconductor

MEMEP calculates non-uniform **J** and AC loss

Fast method Ideal to optimize the superconductor windings

MEMEP calculates non-linear eddy currents and **AC** loss

E. Pardo et al. 2019 IEEE TAS

Modelling

Combined method

Conceptual study

Final stator results

Single method for the full motor

Measurement

Base cross-section: 3-tape conductor

Coupling configurations

ľ'n

Coupling configuration changes superconductor currents

Self-transposition effect

The magnetic flux between tapes cancels thanks to symmetry

No need of transposition to reduce AC loss

Coupled at ends is the same as uncoupled

Self-transposition effect reduces AC loss

AC loss is not sensitive to stator coil imperfections

We change the bore size of one coil

Up to 1 mm error in bore size does not have impact

Case of 3-tape conductor with no load

Increasing number of tapes in conductor reduces AC loss

Cause:

main AC loss due to perpendicular flux to tape

Measured Jc(B,T) dependence

 $J_c(B)$ measured at several temperatures at KIT We interpolate $J_c(B)$ for intermediate temperatures.

4 mm wide SuperOx tape

Current penetration increases with temperature

Current density at a particular time step

Narrower tapes decrease AC loss

Narrower tapes with the same J_c are very interesting!

Stator

Combined method

Conceptual study

Final stator results

Single method for the full motor

Flux pump

Distributed winding

Superconductor

Permanent magnet

Results for the final stator

1.6

1.4

1.2

Magnetic flux density

0.8

0.6

0.4

0.2

Results for the final stator

3-phase motor12 coils

Calculations at the peak current

SuperOx tape

Very low AC loss!

Between 0.03 and 0.06 % of total power

Could be optimistic estimation

No J_c reduction at the edges taken into account

Could be pessimistic estimation

New SuperOx material with almost double J_c

Stator

Combined method

Conceptual study

Final stator results

Single method for the full motor

Flux pump

MEMEP also takes ferromagnetic materials into account

We solve

J in the superconductor

M vector in the magnetic material

No need to solve quantities in the air Easy to make rotation

All interactions taken into account

Details in HTS modelling workshop 2018 10.5281/zenodo.1477840

Non-linear materials

Superconductor

Magnetic material

Non-linear eddy currents in superconductor

Magnetization in iron and magnets

Radial component: m₀M_r [T]

Angular component: $m_0 M_{\phi}$ [T]

Flux pump

Flux pump

3D modelling of screening currents Votage signal

Flux pump

3D modelling of screening currents Votage signal

Full superconducting motor

Full superconducting motor

Possible to use coils in the rotor

Possible to use coils in the rotor

Flux pumps magnetize coils

Confirmed by experiments

Bumby, et al., Appl. Phys. Lett., 2016

Flux pumps can magnetize coils in rotor

Brushless injection of DC current into rotor

Avoids current leads and its thermal load

Simplifies cryogenics and maintenance

Flux pump

3D modelling of screening currents

Votage signal

Configuration of 3D model

First 3D modelling of flux pump

A Ghabeli, E Pardo, M Kapolka, Scientific Reports 2021

Voltage and impact of tape length

$$\Delta V = V_{77K} - V_{300K}$$

Voltage and impact of tape length

Above 20 mm length voltage remains the same

Conclusion

AC loss of a REBCO stator made of distributied windings

The symmetry of the magnetic flux causes self-transposition

The calculated AC loss is very low for temperatures below 40 K

REBCO stators are feasible!

First 3D modelling of flux pump

Visualization of 3D screening currents

Minimum voltage taps distance depends on:

Magnet diameter

Distance between magnet and tape surface

See you soon!

Thank you for your attention!

Would you like to know more?

enric.pardo@savba.sk

Variational principle for the magnetic material

Equation

is the Euler equation of

$$L_{M} = \int_{V} dV \left[\mathbf{U}(\mathbf{M}) - \frac{1}{2} \mathbf{B}_{M} \cdot \mathbf{M} - \mathbf{B}_{a} \cdot \mathbf{M} - \mathbf{B}_{J} \cdot \mathbf{M} \right]$$
$$U(\mathbf{M}) = \int_{0}^{\mathbf{M}} d\mathbf{M}' \cdot \mathbf{B}(\mathbf{M}')$$

Variational principle for the magnetic material

$$L_{M} = \int_{V} dV \left[\mathbf{U}(\mathbf{M}) - \frac{1}{2} \mathbf{B}_{M} \cdot \mathbf{M} - \mathbf{B}_{a} \cdot \mathbf{M} - \mathbf{B}_{J} \cdot \mathbf{M} \right]$$
$$U(\mathbf{M}) = \int_{0}^{\mathbf{M}} d\mathbf{M}' \cdot \mathbf{B}(\mathbf{M}')$$

Problem restricted to the magnetic material volume

Functionals for magnetic material and superconductor solved iteratively

Impact of Airgap on Voltage Taps distance

Voltage taps distance depends also on airgap value other than diameter of magnet