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ABSTRACT 

We report octave spanning mid-infrared supercontinuum generation in a highly nonlinear silicon germanium-

on-silicon ridge waveguide. We show that, by adding a chalcogenide cladding, it is possible to trim a posteriori 

the waveguide’s dispersion profile which, in turn, governs the properties of the generated supercontinuum. In 

particular, we experimentally show that a shift from anomalous to normal dispersion takes place when a 1.26 μm 

thick cladding layer of Ge11.5As24Se64.5 is added. Finally, we show that the group velocity dispersion of the 

waveguide can be precisely controlled by changing the thickness of the cladding layer. This demonstrates that the 

heterogeneous integration of materials can be used as a post-processing technique to precisely control the 

supercontinuum properties.   
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1. INTRODUCTION 

 On-chip mid-infrared (mid-IR, between 3 μm and 20 μm) supercontinuum (SC) generation is a technological 

challenge that is promising to have a strong impact in many different fields such as bio imaging, environmental 

sensors and security [1-5]. The prediction of great nonlinear properties, wide transparency window from 3 to 15 

μm and CMOS compatibility of germanium have attracted a growing interest toward germanium-based platforms 

[6,7]. An octave spanning supercontinuum generation up to 8.5 μm has been already demonstrated by our group 

in a SiGe on Si waveguide [8-10]. The bandwidth and the coherence properties of the generated SC are mainly 

determined by the waveguide’s dispersion profile. In general, the dispersive properties are set at the design stage 

and cannot be adjusted once the device has been fabricated. However, fabrication inaccuracies, surface roughness, 

surface contamination and the presence of defects may lead to a deviation from the targeted dispersion profile. 

Therefore, post-process mechanisms to post-trim the waveguide dispersion depending on the actual structure 

produced by fabrication are of great interest.  

Here we demonstrate mid-IR supercontinuum generation in a SiGe and in a hybrid chalcogenide/SiGe 

waveguide with shifted dispersion. We show that it is possible to fine tune the dispersion profile a posteriori by 

changing the chalcogenide cladding thickness, introducing a simple post-processing tool to control the 

supercontinuum dynamics and its properties. 

2. SUPERCONTINUUM GENERATION AND DISPERSION TRIMMING 

2.1 Supercontinuum generation 

A 7 cm long 3.75 x 2.7 μm2 cross-section Si0.6Ge0.4/Si waveguide (Fig. 1a) was coated with a 1.26 μm thick layer 

of chalcogenide Ge11.5As24Se64.5 (Fig. 1b). Numerical simulations show that the group velocity dispersion shifts from 

anomalous (air clad, Fig. 2a top) to normal (chalcogenide clad, Fig. 2b top) when the coating layer is added. The 

waveguide, operating in TE single mode, was pumped before and after the deposition of the chalcogenide layer 

with ~200 fs pulses at 4 μm (air clad) and 4.15 μm (chalcogenide clad) delivered from a MIROPA-fs optical 

parametric amplifier with 63 MHz repetition rate. Fig. 2a (bottom) and 2b (bottom) shows the experimental (and 

theoretical) SC generated out of the air clad and chalcogenide clad waveguide respectively. In the former case the 

resulting SC, spanning from 2.63 up to 6.18 μm, shows asymmetric profile and uneven amplitude across the 

spectrum, both typical of SC generation in the anomalous dispersion regime. In the latter case a narrower and 

smoother spectrum (with a -30 dB bandwidth extending from 3.1 to 5.5 μm), typical of SC generation in normal  



 
Figure 1. Schematic (top) and Scanning Electron Microscope image (bottom) of the air clad (a) and the chalcogenide clad (b) waveguide. 

 

  
Figure 2. Calculated group velocity dispersion for air clad (a top) and chalcogenide clad (b top) waveguide with the same 3.75 x 2.7 μm2 
core cross-section. Experimental (blue) and simulated (red) spectra out of the air cladded (a bottom) and chalcogenide cladded (b bottom) 

waveguide. The waveguides were pumped by 200 fs pulses at 4 and 4.15 μm respectively with 2.35 kW coupled peak power. 

 

dispersion regime, was obtained. The SC generation process was simulated by numerically solving the nonlinear 

Schrödinger equation, obtaining a good agreement with experiments. 

2.2 Dispersion trimming 

We have experimentally demonstrated that the addition of a chalcogenide layer on top of a SiGe/Si waveguide 

leads to a change in the dispersion, shifting, in our particular example, from an anomalous to normal dispersion. 

In order to clarify the impact of the chalcogenide thickness on the dispersion GVD profile, we have numerically 

calculated the dispersion curve for four different thicknesses, from 0.25 to 1.26 μm (Fig. 3). As the chalcogenide 

thickness increases, the overall dispersion gradually decreases, eventually reaching normal values for thicknesses 

higher than 500 nm. Moreover, the dispersion profiles converge as the thickness approaches 1 μm, in agreement 

with the confinement of the mode in the waveguide core. Along with the dispersion shift, a variation of the zero 

dispersion wavelengths and a flattening of the profile take place. As a flat profile of the dispersion is generally 

targeted for SC generation, both in the anomalous and in the normal dispersion regime, the possibility of 

controlling the dispersion profile and the position of the zero-dispersion wavelengths by simply changing the 

thickness of the chalcogenide layer (with a reasonable resolution of around 100 nm) is a convenient post-process 

dispersion engineering tool.  



 
Figure 3. Calculated group velocity dispersion for different thicknesses of the chalcogenide layer. The dashed black line indicates the zero 

dispersion. The inset show a schematic of the waveguide (adapted from [11]). 

 

3. CONCLUSIONS 

In summary, we report the addition of a top chalcogenide layer as a simple post-processing technique to fine 

tune the dispersion profile of a nonlinear SiGe on Si waveguide for integrated SC generation. We experimentally 

show that, by adding a chalcogenide top layer to a ridge waveguide, anomalous-to-normal dispersion shift takes 

place and we numerically study the impact of the chalcogenide layer thickness on the group velocity dispersion.  
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