
HAL Id: hal-03295582
https://hal.science/hal-03295582

Submitted on 22 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reusable Abstractions and Patterns for Recognising
compositional conversational flows

Sara Bouguelia, Hayet Brabra, Shayan Zamanirad, Boualem Benatallah,
Marcos Baez, Hamamache Kheddouci

To cite this version:
Sara Bouguelia, Hayet Brabra, Shayan Zamanirad, Boualem Benatallah, Marcos Baez, et al.. Reusable
Abstractions and Patterns for Recognising compositional conversational flows. Advanced Information
Systems Engineering - 33rd International Conference, CAiSE 2021, Jun 2021, Melbourne (on line),
Australia. �10.1007/978-3-030-79382-1_10�. �hal-03295582�

https://hal.science/hal-03295582
https://hal.archives-ouvertes.fr


Reusable Abstractions and Patterns for
Recognising compositional conversational flows

Sara Bouguelia1, Hayet Brabra1, Shayan Zamanirad2, Boualem Benatallah2,1,
Marcos Baez1, and Hamamache Kheddouci1

1 LIRIS – University of Claude Bernard Lyon 1, Villeurbanne, France
{sara.bouguelia, hayet.brabra,marcos.baez,

hamamache.kheddouci}@univ-lyon1.fr
2 University of New South Wales (UNSW), Sydney Australia

{shayanz, boualem}@cse.unsw.edu.au

Abstract. Task-oriented conversational bots allow users to access ser-
vices and perform tasks through natural language conversations. How-
ever, integrating these bots and software-enabled services has not kept
pace with our ability to deploy individual devices and services. The main
drawbacks of current bots and services integration techniques stem from
the inherent development and maintenance cost. In addition, existing
Natural Language Processing (NLP) techniques automate various tasks
but the synthesis of API calls to support broad range of potentially com-
plex user intents is still largely a manual and costly process. In this paper,
we propose three types of reusable patterns for recognising compositional
conversational flows and therefore automatically support increased com-
plexity and expressivity during the conversation.

Keywords: Conversational Bots · Compositional Conversational Flows
· Dialogue Patterns · Nested Intent · Slot value inference

1 Introduction

Task-oriented conversational bots (or simply chatbots) emerged as a paradigm to
naturally access services and perform tasks through natural language conversa-
tions with software-enabled services and humans. They enable the understanding
of user utterances, expressed in natural language, and on fulfilling such needs
by invoking the appropriate backend services (e.g., APIs) [22]. However, allow-
ing users to converse naturally with services and perform their tasks effectively
is challenging. The main challenge arises from utterance variations in open-end
human-bot interactions and the large space of services potentially unknown at
development time. Traditional business process and service composition mod-
eling and orchestration techniques are limited to support such conversations
because they usually assume a priory expectations of what information and ap-
plications will be accessed and how users will explore these sources and services.
Limiting conversations to a process model means that we can only support a
small fraction of possible conversations [13]. While existing advances in NLP,



2 S. Bouguelia et al.

rule-based and machine learning (ML) techniques automate various tasks such
as intent and slot recognition [5], the synthesis of API calls to support broad
range of potentially complex user intents is still largely a manual, ad-hoc and
costly process [24]. Our goal is to bridge this gap by dynamically and incremen-
tally synthesizing executable conversation models from natural language con-
versations. In our previous work, we developed a framework and techniques in
this direction [23] including: (i) a word-embedding based API element (e.g. API
methods, method parameter) vector space model to support natural language
calls to individual APIs [22] and (ii) a hierarchical state machine based model
to track and represent human-bot interactions in API-enabled bots [23].

Informed by prior research and literature on conversational systems [5], in this
paper, we identify and characterize 3 types of conversation patterns to automat-
ically translate complex user utterances into operations that create composite
(nested) states in a bot state machine model: slot-value-flow, nested-intent, and
API-calls-ordering patterns. The first pattern allows the bot to resolve a miss-
ing value of an intent parameter by extracting it from values of other parameter
calls in the conversation history (e.g., a value of output parameter of an already
used API call). The second pattern allows the bot to resolve a missing value
of an intent parameter by triggering another intent (e.g., a user who wants to
schedule a meeting forgets to specify the date. The bot asks for the date and
the user responds by a new intent “Show me my availabilities this week”). The
third pattern allows the bot to map a user intent to a sequence of API calls
to satisfy order constraints between two methods of an API (e.g., to fulfil the
intent buy a book the bot needs to first call searchBook method then buyBook
method of a Bookstore API). These patterns mimics how a developer would have
constructed workflows, leveraging conversation knowledge (i.e., slot values and
API element vectors), to realise some complex and decomposable user intents.
Our approach is motivated by the observation that incorrect inference of conver-
sation flows arises from uncertainty about slot values and relationship between
API elements across heterogeneous APIs (e.g., one intent uses city as a parame-
ter while another use location as a parameter) and complex conversations. More
specifically, contributions in this work are summarized as:

– We identify and characterize state machine transformation patterns to sup-
port complex user intents. These patterns endow bot platforms with reusable
functionality to recognise compositional conversational flows, that would oth-
erwise have to be implemented by bot developers.

– We develop a conversation management service that is augmented with a
Context Knowledge Service to support the proposed patterns. This knowl-
edge consists of a graph that represents: (i) slots values relationships and (ii)
API methods relationships. It is incrementally derived from conversation ut-
terances and API parameter embeddings.

– Empirical evidence showing the effectiveness of the proposed patterns. The
user study showed that these patterns naturally occur when conversing with
services, and highlighted the benefits of seamlessly supporting complex user
utterances, as perceived by users and confirmed by performance metrics.



Title Suppressed Due to Excessive Length 3

In what follows we describe the proposed abstractions, dialog patterns and
supporting infrastructure, as well as preliminary evaluation.

2 Related work

A number of techniques have been proposed to build chatbots, including rule-
based [2] and probabilistic models [8]. Main platforms 3 such as Chatfuel and
FlowXO provide flow-based solutions to develop chatbots with zero coding us-
ing UI elements. Research in this context includes the work by Lopez et al. [13],
who propose a system that takes a business process model and generates a list
of dialog management rules to deploy the chatbot. Other platforms4 such as Di-
alogFlow, Wit.ai, Amazon Lex and IBM Watson Assistant, on the other hand,
provide machine learning (ML) based solutions. In addition to these solutions,
a variety of ML models have emerged in research following two common archi-
tectures: pipeline and end-to-end. A pipeline-based model is built with a set of
components, each responsible for a specific task such as tracking of intent/slot
during conversations [6,15], learning next action [17], etc. End-to-end models in-
cluding end-to-end memory networks [25] and sequence-to-sequence models [14]
read directly from a user utterance and produces a system action.

We identified a set of main limitations in the works above: First, rules-based
approaches lack flexibility and require considerable development effort. Second,
the use of existing probabilistic approaches and ML models such as memory
networks becomes prohibitive due to the need for collecting huge and high quality
training data. Third, flow-based approaches require the explicit definition of
workflow, which is clearly unrealistic in large scale and evolving environments.
Furthermore, while ML approaches and platforms provide sophisticated support
in term of intent/entities recognition and state tracking, they still far to handle
conversations as either structured or unstructured processes. This is because
they do not yet automatically support complex and decomposable user intents,
where handling of intent requires information that is resulted from other intents
either already processed or need to be. In addition, handling conversations as
processes requires an advanced understanding of conversation context towards
natural and straightforward dialogue experiences.

Similar to our approach, some advanced techniques like DEVY [3] and Lu
et al. [6] focus on more understanding of context especially by tracking required
slots values from conversations history. However, since these graphs are derived
only from conversation utterances they do not consider the knowledge of the het-
erogeneous APIs being used to converse with a wide variety of enabled processes.
This aspect is crucial to perform slot values inference accurately. In addition,
these works do not propose any pattern that automates the identification of
composite conversation flows. While existing co-reference techniques [9] can be
used to support slot-value-flow pattern, again such techniques do not employ

3Chatfuel: https://chatfuel.com/;FlowXO: https://flowxo.com/
4DialogFlow: https://dialogflow.com/, Wit.ai: https://wit.ai/, Amazon Lex:

https://aws.amazon.com/lex/, IBM Watson https://www.ibm.com/watson/

https://chatfuel.com/
https://flowxo.com/
https://dialogflow.com/
https://wit.ai/
https://aws.amazon.com/lex/
https://www.ibm.com/watson/


4 S. Bouguelia et al.

API knowledge. Systems like Ava [12] and PLOW[1] can support slot-value-flow
pattern in conversations, but by hardcoding variables that refer to values from
previous tasks. They also do not provide any automated support for nested-intent
and API-calls-ordering. IRIS [7], on the other hand, can enable atomic identi-
fication of nested-intent and slot-value-flow patterns, but only to accomplish
complex tasks in the data science domain. In addition, such automation is sup-
ported by dedicating an API that dynamically adds variables as the conversation
progresses to save the result of each dialog task for future use. The key contri-
bution of our approach over these works is greater automation, by enabling the
automatic support of conversation patterns through a context knowledge graph
that is incrementally derived from conversation history and API knowledge.

3 Overview

A conversation is mainly a sequence of user utterances and bot responses (refers
to Figure 1). In addition, studies on human-bot dialogue patterns [10] reveal
that conversations are multi-turn (e.g., in Figure 1 there are two turns to ac-
complish BookTaxi intent) and multi-intent meaning that during a conversation
user’s intent continuously changes as shown in Figure 1. In order to support
multi-turn multi-intent conversations, we proposed in our previous work [23] a
conversational model that leverages Hierarchical State Machines (HSMs) [21].
HSMs allow to reduce complexity that may be caused by the number of states
that are needed to specify interactions between users, chatbots and services.

Inspired by existing workflow management systems and linguistic theory, in
this paper, we propose to support greater complexity and expressiveness during
conversations by identifying 3 types of dialogue patterns (i.e., slot-value-flow,
nested-intent, and API-calls ordering) to realise some complex and decomposable
user intents. These transformation patterns along with the conversational state
machine model [23] allows to drive incrementally the workflow that steers the
conversation with users. We also develop a conversation manager service that
aims at initiating and controlling conversations by using a set of services to
communicate with users, manage the hierarchical state machine, and invoke
APIs. This conversation manager service is augmented with a context knowledge
graph to support the proposed transformation patterns. In this section, we give
a brief overview of the conversational state machine then, we explain how the
conversation manager service manages the conversation flow.

Conversational State Machine. It contains a set of states called “intent-
states” representing user intents (e.g., FindRestaurant), their slots (e.g., city,
food) and actions such as API invocations (e.g., call SearchBusinesses method)
to realise them. Inside each intent-state there are states that represent situations
that a bot may occupy in a given conversation (e.g., a bot-to-user question to
resolve the value of a missing intent slot). Transitions between intent-states
automatically trigger actions to perform desired intent fulfillment operations.

Conversation Manager. Figure 2 presents the architecture of the conversa-
tion manager service where new main services to support the proposed patterns



Title Suppressed Due to Excessive Length 5

User	utterance
My	friend	Sofia	is	coming	today;	can	you	search	a	good	seafood	restaurant	for	us	in	Lyon	please.

Moss	restaurant	serves	good	seafood.	The	address	is	2	Rue	Audran	Lyon.
bot	response

Send	her	a	message:	let’s	meet	at	Moss	restaurant.
What	is	the	phone	number?

GetContact:	(name,	Sofia),	(phoneNbr,	+33783425005)

Sofia	phone	number	is	+33783425005.
I	sent	the	message	“let’s	meet	at	Moss	restaurant”	to	this	phone	number	+33783425005.

FindRestaurant:	(city,	Lyon),	(food,	seafood),	(name,	Moss),	(address,	2	Street	Audran	Lyon)

I	am	also	looking	for	cinema

I	found	Le	Zola	cinema.	The	address	is	17	Cours	Emile	Zola	lyon.

8pm	please

Turn	(user	utt	
+	bot	resp)

Two	turns	to
accomplish

BookTaxi	intent

BookTaxi:	(depAddress,	2	Rue	Audran	Lyon),	(destAddress,	17	Cours	Emile	Zola	Lyon),	(depTime,	?)

SendMsg:	(text,	let’s	meet	at	Moss	restaurant),	(tel,	?)

Check	her	phone	number	in	my	contact	list

SendMsg:	(text,	let’s	meet	at	Moss	restaurant),	(tel,	+33783425005)

FindCinema:	(location,	Lyon),	(name,	Le	Zola),	(address,	117	Cours	Emile	Zola	Lyon)

I	need	a	taxi	to	commute	between	the	restaurant	and	the	cinema

SearchItems:	(q,	My	Happy	Melodies),	(item_type,	playlist),	(item_id,	59ZbFPES4DQwEjBpWHzrtC)
PlayPlaylist:	(playlist_id,	59ZbFPES4DQwEjBpWHzrtC)

Nested	
conversation

Just	one	last	thing,	can	you	play	the	playlist	called	My	Happy	Melodies
Calling	

dependent	
intent/endpoint	

BookTaxi:	(depAddress,	2	Rue	Audran	Lyon),	(destAddress,	17	Cours	Emile	Zola	Lyon),	(depTime,	8pm)

I	booked	a	taxi	from	2	Rue	Audran	Lyon	to	17	Cours	Emile	Zola	Lyon	at	8pm.

Sure,	starting	playlist	...Done.

What	time	would	you	like	the	taxi?

Fig. 1. Example of multi-turn multi-intent conversation. After each turn we illustrate
the intent and its set of (slot, value) pairs. The red slots are required input slots, the
blue slots are output slots, and the green values are inferred values.

have a red border. The tracker represents the core service that coordinates the
information flow in the conversation. When the chatbot receives a new utterance
from the user, the Natural Language Understanding (NLU) service extracts user
intent and (slot, value) pairs from this utterance and sends them to the tracker.

The main objective of the Dialogue Pattern Recogniser (DPR) service is to
identify compositional conversations (i.e., complex user utterances) and auto-
matically transform them into operations that generate states and transitions in
the conversational state machine. In other words, this service checks whether
the current utterance is related to a decomposable user intent that involve
nested-intent (e.g., SendMsg intent involve the fulfillment of GetContact nested-
intent), or API-calls ordering (e.g., PlayPlaylist intent depends on SearchItems
intent), or a slot-value-flow inference (e.g., infer the value of Cinema-location
from Restaurant-city value to fulfill FindCinema intent).

A good understanding of the context is required to correctly infer missing
slots’ values and identify API methods ordering constraints. Therefore, we intro-



6 S. Bouguelia et al.

NLU
Context Knowledge

(CK) Service

Tracker

Dialogue Pattern
Recogniser

(DPR) NLGAPM

(1)

(2)

(3)

(4)

(5)

CKG Co-R

Fig. 2. Conversation Manager Architecture. (1) Extract intent and (slot, value) pairs.
(2) Generate State Machines (SM) operations. (3) Infer slot value/Get call ordering
of API methods. (4) Invoke API method. (5) Generate human-like response.

duce the Context Knowledge (CK) service that leverages co-reference techniques
augmented with a Context Knowledge Graph (CKG) representing slot-value and
API methods relationships. This service allows the chatbot to infer slots’ values
and get call ordering of API methods. Once the tracker collects all required infor-
mation for the current intent-state, it calls the API Manager (APM), which maps
the intent-state and (slot, value) pairs to an API method invocation. Finally, the
NLG service produces a human-like response based on the APM output. In the
next sections, we describe in detail the DPR and the CK services.

4 Dialogue Pattern Recogniser

In this section, for each of the three patterns slot-value-flow, Nested-intent and
API-calls ordering, we give (i) a description and (ii) an example of how the pat-
tern can automatically recognise compositional conversation flows and transform
them into operations in the conversational State Machine (SM).

4.1 Slot-value-flow pattern

Description. The slot-value-flow pattern is a known phenomenon in linguistic
theory called Anaphora [16]. Anaphora is the use of an expression whose interpre-
tation depends upon another expression mentioned in the conversation history
(e.g., in Figure 1, the underlined pronoun “her” refers to the entity “Sofia”).
For chatbots, these expressions are slots’ values of previous fulfilled intents that
can be reused by the missing slots’ values of the current intent.

Example. Figure 3 illustrates an example of how the slot-value-flow pattern can
be supported in a conversational state machine. Considering the user request “I
need a taxi to commute between the restaurant and the cinema” in Figure 1, the
chatbot detects three missing slots’ values (depAddress, destAddress, depTime)
in the intent BookTaxi (1)(2). The DPR service adds a call to a context state
to infer the missing slots’ values (3). Here the chatbot leverages on the CK



Title Suppressed Due to Excessive Length 7

1. New intent BookTaxi

Slot value
depAddress,
destAddress,
depTime

Check
Context

2. Missing
3. infer depAddress

destAddress, depTime values

4. No depTime value

Ask user5. Fulfilled

6. reply

BookTaxi intent-state

Call API
Method

Fig. 3. Slot-value-flow. The SM operations related to BookTaxi intent fulfilment.

service to infer the missing values from previous fulfilled intents (e.g., it infers
the value of Taxi-depAddress from Restaurant-address value). If a missing slot
value cannot be inferred (depTime), the DPR service creates a “Ask User” state
and the bot asks the user ‘‘What time would you like the taxi?” (4). The user
answers “8 pm please”. Once all required slots for BookTaxi intent are fulfilled,
the DPR invokes the corresponding API method (5) and the bot responds to
the user (6).

4.2 Nested-intent pattern

Description. The nested-intent pattern is inspired from linguistic theory. In
daily life, people have the capability of using nesting conversations [7]. When a
friend says “For when should I book the restaurant?”, we might respond “The
day Marcos gets back from Milan”. To automatically translate this linguistic
pattern to workflow pattern the DPR needs to recognise the nested-intent state.
There is a nested-intent state when the user wants to accomplish an intent but
instead of giving the required slot value, she/he gives another utterance related
to another intent that will return the required value to fulfill the parent intent.

Example. Figure 4 illustrates an example of how the nested-intent pattern can
be supported in a conversational state machine. Considering the user request
in Figure 1 “Send her a message: let’s meet at Moss restaurant.”, the chatbot
detects one missing slot value tel in the new intent SendMsg (1)(2). The DPR
service adds a call to a context state to infer tel value (3). If the value can-
not be inferred so the DPR service creates the “Ask User” state and the bot
asks the user “What is the phone number?” (4). The user replies by a new ut-
terance “Check her phone number in my contact list” related to a new intent
GetContact (5). Based on the CK service the DPR can identify that the output
slot of GetContact has a similar type as the missing slot tel (i.e., both repre-
sent phone number) therefore there is a high probability that GetContact is a
nested-intent. the DPR creates the nested-intent state GetContact (6), gets the
required value (tel value) and comes back to the parent intent SendMsg (7) to
call the corresponding API method (8) and respond to the user (9).



8 S. Bouguelia et al.

1. New intent SendMsg

Call API
Method

Slot
value
tel

Check
Context

2. Missing

3. infer tel value

4. No tel value

Ask user

5. new intent GetContact

8. Fulfilled

6. nested-intent GetContact

7. get tel value
9. reply

SendMsg intent-state

GetContact 
nested-intent 

state

Fig. 4. Nested-intent pattern. The SM operations related to sendMsg intent fulfilment.

4.3 API-calls ordering pattern

Description. We identify a completely new pattern called “API-calls ordering”
pattern. This pattern is related to REST API design patterns that ensure the
discoverability of resources and the ability to access data they refer to [18].
From REST API design perspective, there are some methods that require an
API generated string, called “id”, as an input parameter to access the needed
data. This id is an output of another method in the same API.

For example, in Spotify API, SearchItems method returns an item Spotify
Catalog information (e.g., owner, Spotify id, etc.) given the item type (e.g.,
playlist, albums) and a keyword. On the other hand, PlayPlaylist is another Spo-
tify API method that requires the returned Spotify id to play the corresponding
playlist. When the user says “Play the playlist called My Happy Melodies”, two
scenarios are possible from user perspective. Scenario 1. The bot asks the user
“What is the playlist id?”, but it is unlikely for her/him to know the id value
because it is a Spotify API generated string. To get this id the user needs to
know that it can be obtained from SearchItems method otherwise she/he will
not be able to fulfill PlayPlaylist intent. She/He says to the bot “Search for the
playlist named ‘My Happy Melodies’ on Spotify Catalog”. The bot fulfills the
SearchItems intent and returns the id value. The user asks again “Can you start
the playlist with this id 59ZbFPES4DQw...”. In this scenario, the user is forced
to adapt to the technology. Scenario 2. The bot responses directly to the user
saying “Sure, starting playlist... Done.”. To support this scenario a bot devel-
oper needs to implement an intermediately endpoint that combines SearchItems
and PlayPlaylist endpoints. The implementation of new endpoints could grow
exponentially if the bot developer have to account for all endpoints pairs. In
the following, we explain through the same example how this API-calls ordering
pattern can be automatically supported in state machines.

Example. In Figure 5, when the user says “Play the playlist called My Happy
Melodies”, the DPR creates a new intent-state called PlayPlaylist (1). It detects
that the id value is missing (2) and adds a call to a context state (3). Using CK
service, the DPR recongnises that PlayPlaylist intent depends on SearchItems



Title Suppressed Due to Excessive Length 9

1. New intent PlayPlaylist

Call API
Method

Slot value
playlist_id

Check
Context

2. Missing

3. infer pla
ylist

_id v
alue

4. dependent intent

7. Fulfilled

5. depend on

6. get playlist_id value

8. reply

Playplaylist intent-state

SearchItems
intent-state

Fig. 5. API-calls ordering. The SM operations related to PlayPlaylist intent fulfilment.

intent (4). In consequence, it creates the SearchItems intent-state (5) and fulfills
it to get the id value (6). Then, the DPR comes back to PlayPlaylist to call the
corresponding API (7) method and respond to the user (8).

5 Context Knowledge Service

Context can be defined as any information that can be leveraged from previ-
ous turns or external knowledge [11]. Maintaining the context is necessary in
chatbots as it allows to keep continuity in the dialogue and avoid repetition,
making interactions more natural [11]. However inferring information from the
conversation context is challenging due to multi-turn multi-intent conversations
and heterogeneous APIs. There are several parameters among multiple APIs
methods that can share all or some of their values during the conversation [19].

To tackle this challenge, we propose the Context Knowledge (CK) Service
that aims at accumulating a part of the conversation context. The CK service
uses a co-reference system to resolve a potentially referenced slot value (e.g.,
Contact-name value is referenced by the pronoun “her” in the utterance “Check
her phone number”). This system links together mentions that relates to entities
given the previous turns. In our approach, we choose to use Neuralcoref [9], a
state-of-the-art coreference resolution system based on neural networks.

In some cases, the co-reference system is not able to infer the correct slot
value. For example in Figure 1, when user says “I need a taxi to commute be-
tween the restaurant and the cinema”, the co-reference will replace the mention
“the restaurant” by the entity “Moss restaurant” which is a wrong value for
the Taxi-depAddress slot because it should be an address. To have more accu-
rate slot value inference, we augment the co-reference system with a Context
Knowledge Graph (CKG) that represents: (i) slots values relationships and (ii)
API methods relationships including call-ordering constraints. Figure 6 shows
the CKG instance related to the conversation in Figure 1.

Context Knowledge Graph We denote the graph as G = (N,E), where
N and E are the set of nodes and the set of edges respectively. In this graph
there are 4 node types: entity (e.g., Cinema), attribute/slot (e.g., city), entity



10 S. Bouguelia et al.

location
city

nameaddress

address

name

depAddress

destAddress

depTime

food

tel

phoneNbr

name

id
id

type

Taxi

has

has

has

Restaurant
has

has
has has

Cinema

has has has

Message

has has

Contact

has

has

ItemPlaylist has
has
has

X is the same as Yhas / is a / depends on relationships

Attribute/SlotEntity

PlayPlaylist
SearchItemsdepends on

is a

Method Entity
instance

is a

Le	Zola	restaurant
location Lyon
name Le	Zola
adress 17	Cours	Emile	Zola	Lyon

is a
item	1

type playlist
q My	Happy	Melodies
id 59ZbFPES4DQwEjB...is a 

playlist	1
id 59ZbFPES4DQwEjB...

is a

Message	1
text let's	meet	at	Moss	restaurant
tel +33783425005

is a

Taxi	1
depAddress 2	Rue	Audran	Lyon
depTime 8pm
destAddress 17	Cours	Emile	Zola	Lyon

is a

Moss	restaurant
city Lyon
food seafood
name Moss
adress 2	Rue	Audran	Lyon

Sofia	Contact
name Sofia
phoneNbr +33783425005

Fig. 6. Example of a context knowledge graph related to the conversation in Figure 1.

instance (e.g. Le Zola cinema), and methods (e.g., PlayPlaylist). There are 4
edges types: “has”, “is a”, “depends on”, and “same as”. The relationship “has”
is generated between an entity and an attribute based on a predefined ontology.
The relationship “is a” is generated between an instance and its entity (i.e., node
is an instance of). Both entity instances and is a edges are incrementally derived
from the conversation. The relationship “depends on” denotes that a method
depends on another method to get the required id value. The computation of
this “depends on” edge can be done from API reference documentation using
the open information extraction methods proposed by [20]. The “same as” edge
is generated between two similar slots (e.g., in Figure 6 there is an edge between
Cinema-address and Taxi-depAddress, because the taxi departure may be the
cinema’s address). The computation of the “same as” edge is based on the
semantic similarity between the slots vectors embedding. A slot vector is the
average of the vectors values embedding. These values represent the possible
values that each slot can take. We acquire such possible values by querying API-
KG Web Service5 that returns a list of values for a given API method parameter.
Then, we compute the cosine similarity between each slot pair and compare this
similarity with a threshold predefined by the bot developer. If the similarity is
greater than the threshold, an edge is created between the two slots.

Slot Value Inference Figure 7 shows an example of the main steps to infer a
missing slots’ values {depAddress, destAddress, depTime} from a given utterance

5https://apikg.ap.ngrok.io/api/docs/

https://apikg.ap.ngrok.io/api/docs/


Title Suppressed Due to Excessive Length 11

Utt = I need a taxi to commute between the restaurant and the cinema

S = {Taxi-depAddress, Taxi-destAddress, Taxi-depTime}

Inputs Step 1: Collect similar slots of missing slots

Step 3: Get the set of (mention, value) pairs
Get entity attributes
Moss Restaurant = [Restaurant-address, Restaurant-name, 
Restaurant-city, Restaurant-food]
Le Zola cinema = [Cinema-address, Cinema-name, Cinema-location]
 
Get common attribute between similar slots and attributes
& get the attribute's value
Moss restaurant => Restaurant-address => 2 Rue Audran Lyon
Le Zola cinema => Cinema-address => 117 Cours Emile Zola Lyon

Get the set of (mention, value) pairs
set_mention_value = {	(the	restaurant,	2 Rue Audran Lyon),	(the	
cinema,	117 Cours Emile Zola Lyon) }

Step 4: Get missing slots' values

I need a taxi to commute between 2 Rue Audran
Lyon and 117 Cours Emile Zola Lyon

Replace mention by value

 (Taxi-depAddress, 2 Rue Audran   Lyon),
(Taxi-destAddress,117 Cours Emile Zola Lyon)

call NLU

Step 2: Extract the set of (mention, entity) pairs

similar_slots = {		(Taxi-depAddress, [Cinema-
address, Restaurant-address]) , (Taxi-destAddress
, [Cinema-address, Restaurant-address])  }

 set_mention_entity = {	(the	restaurant,	Moss
restaurant),	(the	cinema,	Le	Zola	cinema) }

1

2

3

4

Fig. 7. Example of inferring slots’ values.

“I need a taxi to commute between the restaurant and the cinema” based on the
CKG.

Step 1. We collect the set of similar slots based on the “same as” edges. If
a missing slot value has only one similar slot (e.g., Cinema-location has only
Restaurant-city), we reuse directly the similar slot’s value. Taxi-depTime is not
considered in next steps because it doesn’t have any similar slot.

Step 2. The co-reference system extracts (mention, entity) pairs from Utt.

Step 3. For each entity returned by the co-reference system, we get its list of
attributes. Next, we get the common attribute using intersection between the
list of similar slots and the list of entity attributes. Finally, we get the value of
each common attribute and link it to the corresponding mention.

Step 4. Lastly, each mention in Utt is replaced by its corresponding value. The
utterance Utt is sent to the NLU service to extract the missing slots’ values.

6 Evaluation

In this section we describe a study aiming at understanding the need, benefits,
and effectiveness of supporting the proposed patterns. We investigate whether
the proposed patterns naturally occur when conversing with services, perform
a comparative analysis with alternative approaches focusing on the user experi-
ence, to then analyse the support provided based on performance metrics.

6.1 Methods

Experimental design. Participants were recruited from the extended network
of contacts of the authors. Invitations were sent via email, asking for volunteers,



12 S. Bouguelia et al.

resulting in a total of 12 participants. We followed a within-subjects design6 to
evaluate the proposed dialog patterns and supporting services. Participants were
tasked with interacting with three different chatbots, which were developed to
capture the following experimental conditions:

− DF-Baseline : The baseline implements the standard conversational man-
agement support of traditional chatbot development platforms. It is devel-
oped using the underlying techniques of DialogFlow, including the DF NLU
model, conversational model, and the Input-Output context mechanism.

− SM-NeuralCoref : it relies on the State Machine conversational model but
supporting only the NeuralCoref model [9]. The aim of this setup is to em-
phasize the need for the Context Knowledge Graph.

− SM-Patterns : it includes all of our services to support the new proposed
conversation patterns and relies on the State Machine conversational model.

Besides the differences highlighted above, all three chatbots were built on the
same foundation. They supported 15 intents collected from the DSTC8 dataset
[15]. For all three chatbots, we use DialogFlow NLU service as NLU model
because it is one of the most complete NLU models [4] to train chatbots.

We devised three main tasks, each comprising representative scenarios that
catered to the proposed dialog patterns. Task 1, on the slot-value-flow pattern
(T1), required participants to plan a day program by interacting with services
that would benefit from leveraging the ongoing context of the conversation (e.g.,
reusing same locations or date). Task 2, on the nested-intent pattern (T2), asked
participants to schedule a doctor’s appointment on the first available spot. The
dependency between the involved services favored the use of a nested pattern.
Task 3, on the API-calls ordering pattern (T3), invited users to look for a restau-
rant with good ratings, requiring them to interact with services (search, reviews)
linked by an ID. It is important to note that each scenario suggested the need
for relevant services without imposing any specific conversation style or order.

Procedure. The study was conducted online with the support of an online
form aggregating all the instructions. Before starting, participants provided their
consent to participate and for their interactions with the chatbots to be recorded.
After providing background information, participants then proceeded to perform
the tasks with the three chatbots, in a randomised order to avoid positional
bias. For each task, participants were asked to describe the pros and cons of
their experience with each chatbot, and to specify which one provided the better
experience and why. The duration of the experiment was between 45-90 minutes.

Data processing and analysis. We performed a qualitative and quantitative
analysis of the experience with each chatbot. We performed a thematic analysis
of the open-ended participant feedback so as to identify emerging themes in their
experience with the chatbots, and better characterise the reasons behind their
preferred design. The conversation logs were also analysed to i) understand if
participants naturally engage in conversations that leverage the proposed dialog

6Study materials and in-depth results available at https://tinyurl.com/25ad8jv6



Title Suppressed Due to Excessive Length 13

Table 1. Evaluation of chatbots according to performance metrics. Arrows indicate
lower values better (�) and higher better (�), and bold face best performance. Percent-
ages denote the relative performance with respect to the reference (optimal) scenario.

Metric Reference DF-Baseline SM-Patterns SM-NeuralCoref

M1 � (TURNS) 8,42 9,92 (18 %) 8,67 (3 %) 10,83 (29%)

M2 � (PROMPTS) 4,25 5,58 (31 %) 4,42 (4 %) 6,33 (49 %)

M3 � (SLOTS) 3,33 1,33 (-60 %) 3,17 (-5 %) 0,08 (-98 %)

patterns, and ii) assess the performance of the chatbots. We analyse the per-
formance in relation to the optimal reference scenario (e.g., the most efficient
scenario for the conversation style adopted by the participant) by considering
the following metrics: number of (M1) conversation turns, (M2) prompts asking
for missing slot values, and (M3) missing slot values correctly inferred.

6.2 Results

T1. Slot-value-flow pattern. The large majority of participants (9/12) re-
ported having a superior experience when interacting with the SM-Patterns
chatbot as compared to the alternatives. The qualitative analysis of partici-
pant feedback revealed two main reasons behind this preference. The dominant
theme was the efficiency of interactions (9 participants), with participants
expressing the SM-Patterns chatbot being “quicker in getting an answer” (P12)
and being able to correctly infer missing values (e.g., “I liked that it correctly un-
derstood my destination and I didn’t have to input the address [from a previous
turn]”, P10). Another salient theme was the ability to enable more natural con-
versations (6 participants), with participants explicitly stating the “experience
of the conversation [being] more natural and human-like” (P14). Participants
also suggested improvements, notably in terms of being transparent (2 partici-
pants) about what information the chatbot was inferring from the context.

The analysis of the conversation logs showed that the majority of partici-
pants (9 participants) engaged in conversations styles that took full advantage
of this pattern, successfully referencing the context at least twice. Interestingly,
the participants who showed preference towards the other chatbots engaged in
conversation styles that to a lesser degree benefited of the slot-value-flow pat-
tern, and instead formulated utterances that provided actual slot values in the
requests (e.g., U: “I want a taxi to [address]”) instead of leveraging the context.

The quantitative analysis of chatbot performance (Table 1) confirms the
qualitative observations, putting the support by SM-Patterns as the closest to
the optimal performance (reference scenario) for the three metrics under evalu-
ation. In contrast, the simple support by DF-Baseline resulted in longer conver-
sations and required more input from the users. Interestingly, SM-NeuralCoref
performed the poorest even when supporting co-reference techniques, but this
can be attributed to its inability to accurately infer missing slot values (M3).

T2. Nested-intent pattern As in the previous task, the majority of par-
ticipants expressed their preference for SM-Patterns (9/12 participants). The



14 S. Bouguelia et al.

qualitative analysis of the feedback identified four main themes behind this pref-
erence. Participants referred to the chatbot’s ability to keep track of the user
goal (6 participants), stating that when engaging in a nested intent “[the chat-
bot] remembered that I wanted to book appointment with a dentist (user goal)”
(P4) while the baseline would “forget totally [what] I wanted” (P3). Providing
a natural flow was another emerging quality attribute (4 participants), with
participants expressing that the experienced “flow felt natural” (P6) while the
baseline would force them to plan ahead. The chatbot was also perceived as ef-
ficient (5 participants), requiring “less input for a correct answer” (P14), while
for a few it simply came down to being effective (2 participants), i.e., able to
complete their task with the conversation styles they engaged in.

An analysis of the conversation logs revealed that most participants (7/12)
had naturally described a nesting-intent pattern in their interactions. Looking
into the conversation logs of those who expressed preference for the baseline
(3 participants) provided further insights. Interestingly 2 of these participants
had not actually engaged in a nested-intent pattern, while the one who did had
experienced problems in the formulation of the nested intent (i.e., the framing
of the nested intent was not recognised by the NLU). This highlights the need
for integrating conversation repair strategies into this pattern.

T3. API-calls ordering pattern. All participants (12/12) reported having a
better experience with the SM-Patterns chatbot. Not surprisingly, the majority
of participants (8 participants) commented on the ability to hide technical
details as one of the main reasons for their preference, one participant citing
that in the proposed scenario “it successfully understood that I wanted a review
from the selected restaurant without asking for the business ID” (P7), whereas
the technical details of the service as exposed by the baseline chatbot made it
“difficult to understand for someone who doesn’t know what that means” (P3).
Providing a smooth conversation flow was another theme that emerged from
the feedback on SM-Patterns , with participants mentioning that in comparison,
interacting with the baseline chatbot felt like being “caught in a loop” (P8).
Some participants summarised the positive experience by simply stating that
the chatbot was effective, working correctly or as expected.

The analysis of conversation logs showed that all but one participant (who
deviated from the proposed scenario) described interactions that benefited from
the API-calls ordering pattern. What this tells us is this pattern greatly aligns
with the conversation styles and expectations of users.

7 Conclusions and Future Work

In this paper, we identified and characterized 3 types of dialog patterns that
endow bot platforms with reusable functionality to recognise compositional con-
versational flows and reduce the development complexity. Our work also comes
with its own limitations and space for possible improvements. While we provide
empirical support for the proposed dialog patterns, the evaluation is still limited
in the number of participants, and so we plan to run larger scale evaluations. In



Title Suppressed Due to Excessive Length 15

addition, in this work we only focused on Intent-SingleAPI interaction pattern,
and we plan to investigate other patterns such as Intent-CompositeAPI, where
user utterance may involve more than one intent.

References

1. Allen, J., et al.: Plow: A collaborative task learning agent. AAAI (2007)
2. Banchs, R.E., Jiang, R., Kim, S., Niswar, A., Yeo, K.H.: AIDA: Artificial intelligent

dialogue agent. In: Proc. SIGDIAL 2013. pp. 145–147 (2013)
3. Bradley, N., Fritz, T., Holmes, R.: Context-aware conversational developer assis-

tants. In: 40th International Conference on Software Engineering (ICSE) (2018)
4. Canonico, M., De Russis, L.: A comparison and critique of natural language un-

derstanding tools. Cloud Computing 2018, 120 (2018)
5. Chen, H., Liu, X., Yin, D., Tang, J.: A Survey on Dialogue Systems: Recent Ad-

vances and New Frontiers (1)
6. Chen, L., al.: Schema-guided multi-domain dialogue state tracking with graph at-

tention neural networks. Proc. AAAI 2020 34, 7521–7528 (2020)
7. Fast, E., et al.: Iris: A conversational agent for complex tasks. CHI ’18 (2018)
8. Henderson, M.S.: Discriminative methods for statistical spoken dialogue systems.

Ph.D. thesis, University of Cambridge (2015)
9. Hugging-Face: Fast coreference resolution in spacy with neural networks, https:

//spacy.io/universe/project/neuralcoref, Last accessed on 2020-11-15
10. Hutchby, I., Wooffitt, R.: Conversation analysis. Polity (2008)
11. Jain, M., Kota, R., Kumar, P., Patel, S.N.: Convey: Exploring the use of a context

view for chatbots. In: Proc. CHI 2018. pp. 1–6 (2018)
12. John, R.J.L., Potti, N., Patel, J.M.: Ava: From data to insights through conversa-

tions. In: 8th Biennial Conference on Innovative Data Systems Research (2017)
13. López, A., Sànchez-Ferreres, J., Carmona, J., Padró, L.: From process models to

chatbots. In: Giorgini, P., Weber, B. (eds.) CAiSE ’19 (2019)
14. Manning, C.D., Eric, M.: A copy-augmented sequence-to-sequence architecture

gives good performance on task-oriented dialogue. In: EACL (2017)
15. Rastogi, A., et al.: Towards Scalable Multi-domain Conversational Agents: The

Schema-Guided Dialogue Dataset. arXiv e-prints arXiv:1909.05855 (Sep 2019)
16. Reinhart, T.M.: The syntactic domain of anaphora. Ph.D. thesis, MIT (1976)
17. Su, P., el.: Continuously learning neural dialogue management. CoRR (2016)
18. Thomas, E., et al.: Soa with rest-principles, patterns and constraints for building

enterprise solutions with rest. The Prentice Hall service technology series (2013)
19. Wu, C.S., et al.: Transferable multi-domain state generator for task-oriented dia-

logue systems. arXiv preprint arXiv:1905.08743 (2019)
20. Xiaoxue, R., et al.: Api-misuse detection driven by fine-grained api-constraint

knowledge graph (2020)
21. Yannakakis, M.: Hierarchical state machines. In: TCS. pp. 315–330. Springer (2000)
22. Zamanirad, S.: Superimposition of natural language conversations over software

enabled services. Ph.D. thesis, University of New South Wales, Australia (2019)
23. Zamanirad, S., et al.: Hierarchical state machine based conversation model and

services. Proc. CAiSE 2020
24. Zamanirad, S., et al.: Programming bots by synthesizing natural language expres-

sions into api invocations. In: Proc. ASE 2017. pp. 832–837. IEEE (2017)
25. Zhang, Z., et al.: Memory-augmented dialogue management for task-oriented dia-

logue systems. ACM Transactions on Information Systems 37(3), 1–30 (2019)

https://spacy.io/universe/project/neuralcoref
https://spacy.io/universe/project/neuralcoref

	Reusable Abstractions and Patterns for Recognising compositional conversational flows
	Introduction
	Related work
	Overview
	Dialogue Pattern Recogniser
	Slot-value-flow pattern
	Nested-intent pattern
	API-calls ordering pattern

	Context Knowledge Service
	Evaluation
	Methods
	Results

	Conclusions and Future Work


