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Abstract

Conventional pest management mainly relies on the use of pesticides. How-
ever, the negative externalities of pesticides are now well known. More
sustainable practices, such as Integrated Pest Management, are necessary
to limit crop damage from pathogens, pests and weeds in agroecosystems.
Reducing pesticide use requires information to determine whether chemical
treatments are really needed. Pest monitoring networks (PMNs) are key
contributors to this information. However, the effectiveness of a PMN in
delivering relevant information about pests depends on its spatial sampling
resolution and its memory length. The trade-off between the monitoring ef-
forts and the usefulness of the information provided is highly dependent on
pest ecological traits, the damage they can cause (in terms of crop losses),
and economic drivers (production costs, agriculture product prices and incen-
tives). Due to the high complexity of optimising PMNs, we have developed
a theoretical model that belongs to the family of Dynamic Bayesian Net-
works in order to compare several PMNs performances. This model links
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the characteristics of a PMN to treatment decisions and the resulting pest
dynamics. Using simulation and inference tools for graphical models, we de-
rived the proportion of impacted fields, the number of pesticide treatments
and the overall gross margins for three types of pest with contrasting levels
of endocyclism. The term “endocyclic” refers to an organism whose devel-
opment is mostly restricted to a field and highly depends on the inoculum
present in the considered field. The presence of purely endocyclic pests at
a given time increases the probability of reoccurrence. Conversely, slightly
endocyclic pests have a low persistence. The simulation analysis considered
ten scenarios: an expected margin-based strategy with a spatial resolution
of four PMNs and two memory lengths (one year or eight years), as well as
two extreme crop protection strategies (systematic treatments on all fields
and systematic no treatment). For purely and mainly endocyclic pests (e.g.
soil-borne pathogens and most weeds, respectively), we found that increasing
the spatial resolution of PMNs made it possible to significantly decrease the
number of treatments required for pest control. Taking past observations
into account was also effective, but to a lesser extent. PMN information had
virtually no influence on the control of non-endocyclic pests (such as flying
insects or airborne plant pathogens) which may be due to the spatial cover-
age addressed in our study. The next step is to extend the analysis of PMNs
and to integrate the information generated by PMNs into sustainable pest
management strategies, both at the field and the landscape level.

Keywords: Dynamic Bayesian Network, Gibbs sampling, Decision rules,
Pest monitoring network, Theoretical modelling, Endocyclism

1. Introduction

Pests are responsible for major quantitative and qualitative crop losses
worldwide that put food security at risk. This is the reason why the United
Nations General Assembly has declared 2020 as the International Year of
Plant Health (http://www.fao.org/plant-health-2020). Furthermore, climate5

change has been identified as a major cause of emerging and re-emerging dis-
eases and animal pests in crops, as well as being responsible for the observed
geographical shifts of several weed species (Barzman et al., 2015; Lamich-
hane et al., 2015). Currently, conventional pest control relies primarily on
pesticides, which have come under intense scrutiny by society because of10

their negative impacts on biodiversity, livestock, and human health. More
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sustainable strategies for pest management are therefore needed. Accurate
information on pest dynamics is the basis of supervised chemical control.
Useful information is provided by Pest Monitoring Networks (PMNs) that
monitor the main and most harmful pests present in commercial fields. These15

PMNs have been implemented in many countries. PMNs budgets are mainly
funded at the national levels (ENDURE site, 2013) and most of them are
supervised and evaluated by governmental institutions (e.g. in the Czech
Republic, Denmark, the Netherlands, Poland, Sweden and Turkey) with the
cooperation and support of national stakeholders such as boards of agricul-20

ture, national and regional advisory services and research institutions (EN-
DURE site, 2013). In Europe, PMNs are implemented to forecast and moni-
tor pests and diseases, detect damage thresholds and advise farmers on pest
management (Jorgensen et al., 1996; von Kröcher and Rhörig, 2007; Delos
et al., 2008; ENDURE site, 2013). For example, in France, the Biovigilance25

Network (Agricultural government site, 2015) has generated thousands of
warning bulletins on pest risks, generally at the regional level (see the on-
line platform: www.pestobserver.eu). PMNs provide information about the
sanitary status of a subset of fields in a given region or country. Such in-
formation has been used to (i) build pest incidence maps (Wellings, 2011;30

Jiang et al., 2017) and estimators of regional and site-specific pest incidences
(Michel et al., 2016), (ii) highlight the potential distribution of pests using
modelling approaches (Kriticos et al., 2015), and (iii) carry out retrospective
reconstructions of preferential invasion pathways (Botella et al., 2018; Mack
et al., 2000).35

Information on pest dynamics is also useful to make tactical decisions.
Real-time information from PMNs may be helpful for controlling pest out-
breaks (or re-emergence), while limiting both immediate and future pesticide
use requirements. Coupling past information with current monitoring can40

greatly enhance the quality of predictions and pest control efficiency. How-
ever optimising PMNs is a complex task and complexity is exponential in
terms of the number of fields. First, to be useful for a timely and effective
pest control, PMNs should have a meaningful spatial resolution (i.e. the
number of fields selected for monitoring) and temporal sampling duration45

(i.e. the depth of the data history used to aggregate information). However,
monitoring in PMNs is generally performed by experts who visit each field
within the PMN. Consequently, the spatial and temporal extents of PMNs
should account for the costs in time and money, which limit the number of
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field observations. Second, PMNs must also account for changes in the pest50

or disease dynamics induced by pest management and for potential discrep-
ancies between current and future requirements in terms of the type of infor-
mation required. Because PMNs have direct effects on the cropping practices
implemented by the farmers who receive this information, as well as indirect
effects on pest dynamics at the landscape level, individual decisions are not55

necessarily optimal with regard to the collective management of a group of
pests (tragedy of the commons, Hardin 1968). Pesticide use has hidden costs
that are difficult to precisely quantify, but that are high nevertheless (Bour-
guet and Guillemaud, 2016). These costs are not currently considered when
defining the economic thresholds of treatments. Finally, the efficiency of60

a PMN depends on the life cycles of the considered pests. There is a wide
range of pests responsible for significant crop losses and whose life cycles vary
considerably. For instance, soil-borne pathogens (e.g. fungi, oomycetes, bac-
teria), spread for short distances but can survive for long periods without a
host plant (Hughes, 1996). Weed species encompass both annual and peren-65

nial plants. They can persist in a given field for decades in the seed bank
and can disperse to various degrees in surrounding habitats (Bourgeois et al.,
2019). Finally, flying animal pests (such as many aphids, that can transmit
the viruses they harbour) and air-borne pathogens, can have long dispersal
abilities, but generally low persistence (e.g. up to 3 years for diapausing70

species, Bardner and Fletcher 1974; from one year up to seven years for Lep-
tosphaeria maculans, Sosnowski et al. 2006, the causal agent of phoma stem
canker on oilseed rape). In this study, we evaluated the efficiency of PMNs as
a function of the pest characteristics (life cycles and the damages they cause)
and economic drivers (production costs, agricultural product prices, incen-75

tives). We developed a stochastic model that accounts for the uncertainty on
(i) pest dynamics, (ii) the way that stakeholders make use of the information
provided, and (iii) the efficacy of treatments. We derived a spatio-temporal
Dynamic Bayesian Network model (DBN, Jensen and Nielsen 2007) to com-
pare PMNs with different spatial resolutions and memory length (temporal80

duration). This DBN model is designed to be generic enough to represent a
wide range of pests. We focused on endocyclic pests (Aubertot and Robin,
2013), i.e. organisms whose development is mostly restricted to a field and
highly dependent on the endo-inoculum present in the considered field. En-
docyclic organisms are thus highly dependent on field history. We explored85

the efficiency of PMNs for three types of pests with contrasting levels of en-
docyclism that are typical of soil-borne pathogens (purely endocyclic pests),
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weeds (mainly endocyclic pests) and flying insects and air-borne pathogens
(slightly endocyclic pests).

The model also integrates a treatment decision rule. To quantify the90

benefit of a PMN, we defined an expected gross margin based decision rule
and use complex inference tools for Bayesian networks that make it possible
to combine PMN information and treatment decisions. Similar decision rules
have already been studied, in order to avoid systematic interventions, but
with the assumption of a continuous information on the pest level in the95

field (e.g. Tang et al. 2005). Using oilseed rape as a case study, we evaluated
injury dynamics, the number of treatments and the expected gross margin
for the three pest types and for PMNs with varying spatial resolution and
memory length. We expected that a PMN with a large spatial extent, high
spatial resolution, and high temporal sampling frequency would be more100

efficient in providing meaningful information about species that have high
spatial dispersal capabilities (slightly endocyclic pests). In contrast, a PMN
with limited spatial coverage, low spatial resolution, but high memory length
should be more accurate for pests with low dispersal capabilities (purely and
mainly endocyclic pests).105

2. Materials and methods

2.1. The PMNimpact model

The challenge is to model the dynamics of a crop in terms of a pest that
is potentially controlled at the field level on the basis of information provided
by a PMN. See Figure 1 for a simplified representation of the PMNimpact110

model.

Dynamic Bayesian Network pest dynamics model

We modelled the spatio-temporal dynamics of a pest in a set of crop fields
within the framework of a DBN. A DBN is a particular case of a Bayesian
Network where variables are indexed by time, and the state of variables at115

time t depends on the state of variables at time t−1 (Markovian assumption).
The state of a field i at time t is a random variable denotedX t

i , and we assume
that the state can take two values: 0 for a non-impacted field, and 1 for a
field where the considered pest generate yield losses above a given threshold.

This is of course a simplification since pest populations ranges consist of120

a continuum of values and may never be fully eradicated. However, given
the actual difficulty to precisely measure these levels, it is more operational
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Figure 1: Simplified representation of the PMNimpact model.

6



to consider only two levels, referred here as ”absent” and ”present”, that
should be interpreted as being below and above the threshold above which
the considered pest may significantly impact the crop.125

We considered two management actions: At
i = 1 if the treatment is ap-

plied in field i at time t and At
i = 0 otherwise. The state of a field i at

time t may depend (through dispersion of pests) on the number of impacted
neighbour fields of i at time t − 1 (similarly to the spatial SIS model Har-
ris 1974), as well as on the management action currently applied to field i,130

At
i. Assuming there are n fields, Ni ⊆ {1, . . . , n} denotes the set of fields

from which infection can spread to field i. Note that this ”neighbourhood”
relation may not be symmetric (j ∈ Ni does not imply that i ∈ Nj). In-
deed, local climatic conditions (dominant wind, soil conditions, etc.) may
break pathogens dispersion symmetry. Then, we denote by Kt

i (X
t) (Kt

i , for135

short, omitting the dependency to X t), the number of neighbour fields of i,
impacted at time t: Kt

i = |{j ∈ Ni, X
t
j = 1}|.

The probabilities of transition from state X t−1
i to state X t

i , given the
action applied At

i and the number of impacted neighbour fields are parame-
terised by ε, the long-distance dispersal probability of the pest; ρ the proba-140

bility of impact from a neighbouring impacted field; ν the probability of pest
survival between t− 1 and t if no treatment is applied; and γ the probability
of total pest control after treatment (see Figure 2). The time step length be-
tween t−1 and t may vary between crop-pest systems. Indeed it should vary
in particular according to the way treatment decisions are made. If treat-145

ment strategies are chosen every year and not modified within a year (even
though a strategy may consist of several unconditional treatments each year),
the time step length should be one year. If, on the other hand, treatment
decisions are adapted within a year, on the basis of frequent observations
from the PMN, e.g. 3-4 times a year, monthly or even weekly for slightly150

endocyclic pests (flying insects or air-borne pathogens), the time step should
reflect this increased frequency and be shorter than one year.

The probabilities of pest arrival with and without treatment are

P (X t
i = 1 | X t−1

i = 0, Kt−1
i , At

i = 0) = ε+ (1− ε)(1− (1− ρ)K
t−1
i ) = P01(K

t−1
i ),

P (X t
i = 1 | X t−1

i = 0, Kt−1
i , At

i = 1) = (1− γ)P01(K
t−1
i ),

where Kt−1
i is the number of impacted neighbours of site i at time t− 1.
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The probabilities of persistence with and without treatment are:

P (X t
i = 1 | X t−1

i = 1, Kt−1
i , At

i = 0) = ν + (1− ν)P01(K
t−1
i ) = P11(K

t−1
i ),

P (X t
i = 1 | X t−1

i = 1, Kt−1
i , At

i = 1) = (1− γ)P11(K
t−1
i ).

At the landscape level, the global probability of transition is:

P (X t|X t−1, At) =
n∏

i=1

P (X t
i |X t−1

i , Kt−1
i , At

i),

where X t = (X t
1, . . . , X

t
n) and At = (At

1, . . . , A
t
n) are, respectively the vectors

of sanitary states of and actions applied to every field at time t. For a given155

number n of fields and their neighbourhoods, and a given sequence of actions,
the DBN model depends on four input variables that are summarised in
Table 1 (top). Action At

i is the result of a decision rule applied at field i,
and which depends on the information provided by the PMN, the private
information of the sanitary status of field i, and economic input variables.160

We describe these different elements below and in Table 1 (bottom).

PMN information

A PMN is a subset O ⊆ {1, . . . , n} of n fields, which are monitored at
each time step. The state X t−1

o for o ∈ O is therefore public information
available to all farmers at time t. The spatial resolution of a PMN is the165

number of fields in O. The memory length (h) is the number of past years
(or history depth) of the observations provided.
The decision to treat a field i at time t is based on the knowledge of all X t′

o

for the previous h time steps: t′ ∈ {t− h, t− h+ 1, . . . , t− 1} (less if t < h).
The whole set of PMN spatial and temporal observations can be aggregated170

into indicators {pti}i=1,..,n ∈ [0, 1], where pti is the marginal probability of
the impact of site i at time t in the DBN model, conditionally to the PMN
observations (see Figure 3).

Expected margin-based pest management strategy

We considered an expected margin-based pest management strategy im-175

plemented yearly at the field level where the DBN time step was therefore
the year. The decision At

i applied to field i at time t is the result of a decision
rule (referred to as d) that aims at maximising the expected gross margin

8



Input variables Definition
Pest dynamics input variables

ε long-distance dispersal probability
ρ probability of transmission from a neighbouring

impacted field
ν probability of pest survival if not treated
γ probability of treatment full efficacy

Economic input variables
y maximal annual yield, in kg.ha−1

q proportion of remaining yield when the field is
impacted

price selling price, in e.kg−1

c all production costs
(seeds, fertilisers, tillage, pesticide) in e.ha−1

cpest annual cost of treatments for a given pest, in e.ha−1

Output variables Definition
I proportion of impacted fields
T proportion of treated fields
R mean expected gross margin in e.ha−1

Table 1: Input and output variables of the DBN model for pest dynamics and the decision
rule for treatment. For the output variables, proportions and means are taken over the
last four years and all fields.

mt
i of the field at time t. This margin is the difference between income and

costs. The income is the product of yield price (price) and yield. The yield180

itself depends on the maximal annual yield (y), the probability of significant
damage (pti), the proportion of remaining yield when impacted (q), and the
probability of total efficacy of the treatment (γ) (see Table 1). The costs de-
pend on two variables: the global production cost c that includes all pesticide
costs, and the cost of treatment for the pest considered cpest. Since c includes185

all pesticides costs, if the action made consists in applying a pesticide for the
pest considered, then the cost of the action is simply c. If the action is not
to apply the dedicated treatment, then the cost of the action is c− cpest.

If field i is not treated (At
i = 0):

mt
i(0) =

(
(1− pti)y + ptiqy

)
price− (c− cpest).

Indeed, we obtain the maximal yield y if the field is not impacted (which oc-
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Fields at time t

Fields at time t− 1

ν ρε

•

At
i = 1

γ

Figure 2: Pest dynamic input variables of a field i. ε, long-distance dispersal probability;
ρ, short-distance dispersal probability; ν, persistence probability; γ treatment efficacy.
Red squares: impacted fields ; grey squares: neighbours of field i.

curs with probability 1−pti) and only yield qy when it is impacted. The yield190

is multiplied by the price and production costs are subtracted to compute
the margin. When the field is not treated, treatment cost cpest is subtracted
from production costs c.

If field i is treated (At
i = 1):

mt
i(1) =

(
(1− pti)y + pti

(
(1− γ)qy + γy

))
price− c.

If the treatment is fully effective (probability γ), the maximal yield y is
obtained, whereas if the treatment does not work, only a fraction qy of the195

maximal yield is obtained.
The decision rule d consists in applying a treatment (At

i = 1) when
mt

i(1) > mt
i(0). This translates into a decision to treat based on a threshold

of the estimated probability of significant impact (see Figure 3): Treat only
when

pti > p0 =
cpest

priceγ(1− q)y .

We assume that farmers treat a field considering both the information from

10



the concerned PMN and from private information about the history of pest
dynamics in the field. By private information, we mean that the information
is only available to make a decision in the considered field. It is assumed to200

be unavailable to make a decision about other fields, even if they belong to
the same farmer. This assumption is made to facilitate the exploration of the
PMN influence, since taking the fact that a farmer possesses several fields
means making choices about the number of farmers, the number of fields per
farmers and their locations. We also assumed the probability to treat to be205

higher in a field previously impacted. We modelled this by taking the private
information available about a field into account after the evaluation of p0, by
decreasing the treatment threshold when the field was previously impacted.
Specifically, considering the private information history of h (i.e. the h past
years are considered to modulate p0), we considered the following cases.210

• If X t−1
i = 1, then p0 will be decreased (treatment will be privileged).

More specifically, p0 ← p0 − k
2h

, where k is the number of years when
field i was impacted in the past h years.

• If X t−1
i = 0, the p0 will be increased (treatment will be applied less

often). More specifically, p0 ← p0 + h−k
2h

where k is the number of years215

when field i was impacted in the past h years.

As a consequence, with the same (public information-based) probability
of significant impact, a farmer will be more prone to treat a field that has
recently been impacted.

2.2. Study220

Pest types

Three types of crop pests were considered: purely endocyclic (e.g. soil-
borne pathogens), mainly endocyclic (e.g. most weeds) and slightly endo-
cyclic (e.g. flying insects or air-borne pathogens). These types have con-
trasted spatial dispersion and temporal soil persistence: a purely endocyclic225

pest has a low dispersal probability (both at long and short distances) and
a high persistence, a mainly endocyclic pest has an intermediate dispersal
probability and a high persistence, and, finally, a slightly endocyclic pest has
a larger dispersal probability and a lower persistence (Aubertot and Robin,
2013). These different characteristics imply the use of different chemical230

treatment strategies to control them. In order to consider plausible values
to parameterise our model, we considered the case of oilseed rape crops in

11



Fields at time t

Fields at time t− 1

Fields at time t− h

•••

PMN

pti

pti > p0 ⇒ At
i = 1

Figure 3: Treatment decision rule d: based on PMN information, the probability of
field i being impacted (pti) is computed (blue arrow). Based on private information, the
threshold (p0) is set (green arrow). If the probability of impact exceeds the threshold,
then treatment is applied (At

i = 1). Dashed cells are monitored by the PMN; red ones are
impacted.
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France, and input variables values were established on the basis of expertise
and studies made in France (FOP, 2015; Chambre d’agriculture site, 2014;
Cros et al., 2017) (see Table 4 in Appendix A).235

Simulation protocol

We considered n = 144 crop fields organised on a regular grid of 12 x 12
fields, each with an area of 1 ha. The neighbourhood of a field is composed of
the four fields surrounding it. Treatments and observations are only possible
in the 100 fields forming the inner 10 x 10 grid (to avoid border effects, the240

outer fields are not managed and are assumed to form a natural reservoir
for pests). We compared four spatial resolutions for O: 1%, 10%, 25% and
50% of all fields, uniformly spatially distributed and stable over time, which
are referred to as PMN1 to PMN4 (see Figure 5 Appendix C). Then, for
each spatial resolution, we considered two memory lengths: the decision245

to treat field i at time t was based either on the knowledge of X t−1
o only

(memory length h = 1), or on the knowledge of all PMN observations since
the beginning of the simulation (memory length h = 8).

For the purpose of comparison, we simulated two extreme decision rules
that do not use the PMN information: rule dnever where fields are never250

treated, and rule dconv corresponding to a conventional management system
where the standard treatments are always applied. This results in the com-
parison of ten scenarios.

For each scenario, we considered that simulations start with four grouped
impacted fields, and we used three different positions of these first impacted255

fields (corner, border or centre of the grid; see Figure 6 in Appendix C). For
each position of first impacted fields, we generated 20 simulations of eight
time steps (8 years) that account for the ecology of the studied pest. We
considered short trajectories in order to study the short- to mid-term effect
of the PMN. We limited the simulation plan to 60 simulations per scenario260

that was considered sufficient to estimate the desired criteria which are the
means of space and time (see ’Criteria to compare PMNs in paragraph below).

Inference of pti
For a given simulation, all the pti must be estimated at each time step. pti

depends on public PMN information (available at time t for all fields) and265

private information about field i (past state-s). New observations arrive at
each time step, and each farmer has a different information (only the farmer
of field i knows X t

i unless i ∈ O). Consequently, all the pti cannot be inferred
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simultaneously by running a single inference algorithm. We need to run one
inference algorithm per field and per time step. For this inference problem,270

efficient computational techniques exist. If the problem is small, exact res-
olution is possible (inference of probabilities in a DBN is exponential in the
number of variables) with the Junction Tree algorithm (Lauritzen, 1996). For
our case, the problem is too big to use it and only an approximate method
is suitable. The Loopy Belief Propagation algorithm is often chosen because275

of its good approximation and execution time. Others approaches exists as
Variational methods (the simplest example is the mean-field approximation)
or Sampling methods (Monte Carlo); a more efficient approach is called the
Monte Carlo Markov Chain (MCMC), and includes Gibbs sampling as a
special case. We developed the model in Matlab and used the free library280

BNT Bayesian Network Toolbox (Murphy, 2007) to obtain a suitable generic
representation of the Bayesian Network problem and a library of inference al-
gorithms. We first used the Loopy Belief Propagation algorithm which is the
fastest one, but found inconsistency in the results probably due to the size of
the problem. We therefore used the version of the Gibbs sampling inference285

algorithm with 200,000 samples. Even if the algorithm is time-consuming,
it computes good approximations when the number of samples is sufficient.
We made sure that the number of samples is a good compromise between the
quality of estimation and execution time. It took about 6 min per simulation
on a server with Intel Xeon ES processors to compute pti. Therefore, for a290

scenario (a PMN, decision rule d, a pest), the execution time is around 45
min.

Criteria to compare PMNs

In order to study the influence of the information provided by PMNs
about different spatial resolution and memory length on the extent of disease295

spread, pesticide use and farmers’ income, we compared the effects of the
ten scenarios on three criteria (see Table 1): proportion of impacted fields
(I), proportion of treated fields (T ) and mean expected gross margin (R).
Means and proportions were taken over the last four simulated years (after
the emergence stage) and over fields in the inner 10 x 10 field grid of fields.300

The quantities I, T and R were computed for each of the 60 simulations of
a given scenario.
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Sensitivity analysis

Our simulation study revealed a higher impact of spatial resolution than
memory length on the number of treatments applied. Since a spatial resolu-305

tion of 50% of the fields is unrealistic in practice (due to costs), we considered
PMN3 with h = 1 as a good PMN candidate and we further studied the model
behaviour in this case. For each pest type, we studied which input variables
among the pest dynamic and the economic ones, had the larger influence
of I, T and R, using Sensitivity Analysis (SA). We focused on the analysis310

of six input variables (called factors of the SA) linked to the type of crop
pest (see Table 2). Since simulations are costly over time, we first built a
statistical metamodel with a negligible computational time to approximate
the relationship between the six factors and the criteria (sometimes referred
to as an emulator, Prowse et al. 2016). The metamodel was estimated from315

samples of the simulator. We chose 60 values for the vector (ε, ρ, ν, cpest, γ, q)
according to a Latin Hypercube Sampling, obtained by combining ten values
for each factor, uniformly sampled in the domain of variation of each factor.
We then fitted a Kriging model with constant trend on these 60 samples (km
function of the R package DiceKriging). We did not consider a more complex320

Kriging model since this one was well adapted for each criterion according
to classical evaluation methods (see Figures 9-11 in Appendix D).

We then used the metamodel to estimate the part of the model vari-
ance explained by the pest dynamic and the economic input variables (using
Sobol indices, Sobol 2001) for each pest type. The domains of variation325

of the factors used to build the metamodel and to compute the Sobol in-
dices are reported in Table 2. To evaluate the Sobol indices, we performed
a Kriging-based global sensitivity analysis taking both the error from using
a metamodel and the error from estimating the Sobol indices by the Monte-
Carlo method into account. The three points corresponding to the three330

pests are very distant in the hypercube of the factor domains. We therefore
considered that factors values too far from these points may not be repre-
sentative of any existing pest dynamics. We estimated distinct indices for
each pest type, by reducing the domains of variation of each factor to do-
mains centered around the expert value for the given pest used to perform335

the PMNs comparison (see Table 2).
The code of the complete study (PMNs comparison and SA) is available

on figshare (https://doi.org/10.6084/m9.figshare.7583258.v2).
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Purely Mainly Slightly
Variable endocyclic endocyclic endocyclic Metamodel

pest pest pest
ε [0.01 0.10] [0.1 0.2] [0.25 0.35] [0.01 0.4]
ρ [0.05 0.15] [0.15 0.25] [0.35 0.45] [0.05 0.5]
ν [0.45 0.55] [0.45 0.55] [0.2 0.3] [0.10 0.6]
cpest (e.ha−1) [20 60] [130 170] [20 60] [20 200]
γ [0.7 0.9] [0.8 0.95] [0.6 0.8] [0.6 0.95]
q [0.6 0.8] [0.6 0.8] [0.7 0.9] [0.5 0.9]

Table 2: Domains of variation of the model input variables considered as factors for the
sensitivity analysis. The last column indicates the domains used to build the metamodel,
whereas columns 2 to 4 indicate the domains used to compute the Sobol indices of each
submodel associated with each pest.

3. Results

The main result is that we observed the same behaviour of the three340

criteria on simulations for the purely and mainly endocyclic pests (such as soil
borne pathogens and weeds, respectively), while the results for the slightly
endocyclic pest (such as insect pests or air-borne pathogens) were different
(see Figure 4).

For the purely and mainly endocyclic pests, the most visible impact was345

observed on treatment applications T which was clearly reduced when the
spatial resolution of the PMN increased (reduction of the median value of T
of at least 46% and at most 66%, depending on the pest and the memory
length). We also observed a decrease in the number of treatments when
increasing the temporal memory length, but to a lesser extend (reduction of350

the median value of T of at least 9% and at most 16%, depending on the
pest and the spatial resolution).

Although impact slightly increased with the larger PMNs, because of a
decrease in pesticide use, the purely and mainly endocyclic pests remained
under control. Regardless of the PMN, the median value for I remains be-355

tween 3% (weeds) and 27% (purely endocyclic pests) of the value of I reached
without treatment (dnever) rule. With the conventional treatment (dconv) rule
this same percentage is 3% for the mainly endocyclic pest and 6% for the
purely endocyclic pest.

The mean gross margin increased when spatial resolution and memory360

length increased, with a stronger effect of spatial resolution once again (see
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Figure 5 in Appendix B). The permutation test on the equality of the median
values for the purely endocyclic pests did not reveal any significant differences
in R at h = 1 and h = 8 for a given spatial resolution (at 0.001). Differences
were significant for the mainly endocyclic pests (e.g. weeds) because their365

annual treatment cost is much higher. The increase in the median value of
R was at most of 6% between PMN1 and h = 1 and PMN4 and h = 8.
Regardless of the PMN, the median value for R remains between 104% and
126% of the value of R reached without treatment (dnever rule), and remains
between 99% and 106% of the value of R reached with conventional treatment370

(dconv rule).
We observed a higher number of impacted fields in the absence of treat-

ment for the slightly endocyclic pest (median value of 90% of impacted fields)
compared to the purely endocyclic pest (19%) and the mainly endocyclic pest
(64%) (Figure 4 and Figure 5). This is due to the higher dispersal probability375

at short and long distances. The consequence is that with rule d, treatment
decision was always chosen regardless of the PMN considered. Indeed, the
probability of significant impact of a field estimated from the PMN obser-
vations, pti, was always higher than the decision rule threshold. Information
from the PMN was not sufficient to decrease treatment frequencies because380

treatment cost is low, which implies that the threshold is low. This sys-
tematic treatment made it possible to reduce I to a median value of 16%.
Another consequence is that the mean gross margin is almost the same for
dconv and for rule d regardless of the PMN (see figure 6 in Appendix B),
and its median value (e606/ha) is 13% more than without treatment (dnever385

rule.)
These results were obtained for a decision rule d where only the private

information of the previous year was used. When we increased the memory
length of the private information using the three previous years to determine
the treatment threshold in the decision rule d, we observed the same trends390

(see Figure 5 in Appendix B). However, for the purely and mainly endocyclic
pests, the proportion of treatment applications was always lower than when
using only the private information from the previous year.

Focusing now on PMN4 with h = 1 as a good compromise between moni-395

toring efforts and treatments impact, the sensitivity analysis made it possible
to evaluate the influence of some input variables on the model behaviour.
The analysis performed showed that regardless of the pest type, varying the
long-distance dispersal (ε) and the probability of persistence (ν) had little
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Figure 4: Influence of PMN spatial resolution and memory length on pest management.
In each graph, the scenarios are represented on the horizontal axis: from left to right,
conventional treatment (rule dconv), never treat (rule dnever), then rule d with PMN1 to
PMN4 and for those cases with two history depths, h = 1 (blue), h = 8 (red). Left hand
column: proportion of treatment decision (T ); right hand column: proportion of impacted
fields (I).

influence on I, R and T (Sobol index estimators are reported in Table 3).400

Consequently, for the purely and mainly endocyclic pests, the most in-
fluential input variables on I and T are the annual cost of specific treatment
(cpest), and the yield when impacted (q), whereas the main influential input
variables on R are the probability of transmission from neighbouring fields
(ρ) and q.405
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Figure 5: Considering mean gross margin (R); Influence of PMN spatial resolution and
memory length on pest management. In each graph, the scenarios are represented on the
horizontal axis. From left to right, conventional treatment (rule dconv), never treat (rule
dnever), then rule d with PMN1 to PMN4 and with two history depths h = 1 (blue) and
h = 8 (red). Left hand column: Only the last year is used ; right hand column: the last
three years are used for private information with rule d.

For the slightly endocyclic pests, the factors that have the most influence
on I are q and the probability of treatment efficacy (γ); for T , they are q and
cpest; and for R, it is ρ.
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Prop. of impacted fields, I ε ρ ν cpest γ q

Purely endocyclic pest 0.06 0.27 0.03 0.54 0.02 0.32

Mainly endocyclic pest 0.05 0.28 0.03 0.53 0.02 0.31

Slightly endocycli pest 0.10 0.21 0.02 0.16 0.48 0.69

Prop. on treatment, T ε ρ ν cpest γ q

Purely endocyclic pest 0.04 0.03 0.01 0.41 0.15 0.41

Mainly endocyclic pest 0.03 0.03 0.01 0.40 0.12 0.37

Slightly endocycli pest 0.03 0.02 0.00 0.30 0.13 0.48

Mean net margin, R ε ρ ν cpest γ q

Purely endocyclic pest 0.14 0.45 0.01 0.23 0.29 0.60

Mainly endocyclic pest 0.14 0.45 0.01 0.23 0.30 0.57

Slightly endocycli pest 0.07 0.86 0.08 0.00 0.00 0.00

Table 3: Sobol indices for proportion of impacted fields, proportion of treatment and mean
gross margin in the case of PMN3 and a memory length h = 1. The background colours of
indices (white, yellow, orange, red, purple) represent the increasing importance of Sobol
indices.

4. Discussion and Conclusion

In this study, we aimed at investigating the structure of Pest Monitor-410

ing Networks (PMNs) that provide information meaningful enough to reduce
pesticide use while maintaining gross margins for farmers. Using a stochastic
model, we explored eight spatio-temporal structures for a PMN and exam-
ined their efficiency to control varying pest families regarding their level of
endocyclism (function of their ability to disperse and their level of persistence415

in a field). PMN performances were evaluated using three criteria: final pro-
portion of impacted fields, proportion of fields that have been treated, and
the economic benefit to the farmer as a compromise between the cost of crop
protection, pest monitoring and the benefits of avoiding crop losses.

We proposed a Dynamic Bayesian Network model of development and420

control of several types of pests at the landscape level. The model allows
us to take a decision rule for treatment into account and we designed an
expected margin-based decision rule that takes account of both PMN infor-
mation and private information about the decision-maker’s field in order to
choose whether to apply treatment actions.425

Extensive simulations of the model allowed us to highlight the relative
impact of the spatial resolution of a PMN and the length of considered histo-
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ries on the efficacy of the control of purely and mainly endocyclic pests (like
soil-borne diseases and weeds, respectively), and on the number of treatments
required. The study showed that densifying a PMN spatially is more useful430

than increasing the history depth of information in order to obtain more ef-
fective overall control of the pests with less pesticides. For purely and mainly
endocyclic pests, increasing the spatial resolution of a PMN made it possible
to significantly decrease the number of treatments (up to a median value of
67%, among simulations between the smaller and the larger resolution), with435

a clear control of the proportion of impacted fields. Increasing the history
depth only had a second-order effect (a reduction of up to a median value
of 16%). This may appear to be in contradiction with some recent studies
(Holden et al., 2016), where a long-term surveillance effort was recommended
(possibly with a varying effort). However, our results do not indicate that440

surveillance should only be restricted to short periods but, instead, that a
good decision about whether to treat or not only requires that the decision-
maker be informed by the past short-term surveillance data.

PMNs had almost no impact on treatment reduction in the case of a
slightly endocyclic pest (such as a flying insect, or an air-borne pathogen).445

This may be due to the spatial scale of our simulation study, whose scope
appears to be rather small compared to the dispersion capacity of slightly
endocyclic pests. For purely and mainly endocyclic pests, dispersal is low and
local information at the field scale provides sufficient information to control
them. Conversely, slightly endocyclic pests disperse too well and are likely450

to very rapidly impact distant fields and even the whole area considered if
not controlled early on. Thus, in our model, it is likely that for slightly
endocyclic pests, treatment decisions should be decided at a larger scale
(several thousands hectares) on the basis of poorly distributed information
about fields in the region, rather then decided at as small a scale like for the455

two other types of pests. However, a study at a larger scale would be limited
by the cost of inference, since it is exponential in terms of the number of
fields.

Even though the interest of a PMN has been highlighted for purely and
mainly endocyclic pests, the results also showed the importance of consider-460

ing the past private information of a field for making a treatment decision. In
practice, this private information is more widely shared than in our model:
farmers manage more than one field and they often exchange information
about their fields with other farmers. Therefore the impact of private infor-
mation is probably even larger than predicted by our model. In addition,465
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digital applications may further help to share this information.
Finally, for a given PMN, Sensitivity Analysis (SA) was a way to as-

sess the relative importance of population development and economic input
variables on the simulation model outputs. It allowed us to identify some
important input variables of the model that would influence the treatment470

intensity induced by a given decision rule. We identified leverage effects via
the factors that have a strong influence on the proportion of impacted fields,
the proportion of treatments and the mean net margin. They depend on the
level of endocyclism. For example, modifying the cost of pesticides may have
an impact on the number of treatments and of impacted fields for purely475

and mainly endocyclic pests. On the contrary, for slightly endocyclic pests,
these two outputs are more highly influenced by the remaining yield when
the considered pest caused yield losses, which is not a factor that humans
can easily modify. SA was also a way to evaluate the model’s robustness:
the proportion of impacted fields, the proportion of fields treated and the480

mean gross margin have a low sensitivity to the variations of some of the
model input variables. This is true, in particular, for the strength of long
distance dispersal and the probability of survival in the case of the three pest
types. This is consistent with the fact that primary inoculum is generally
considered as non-limiting in epidemiological models (Madden et al., 2007).485

These results are obtained for a PMN covering 25% of the fields and with
a history of length 1 (only observations from the previous year). They may
differ for another PMN structure and for another decision rule.

The next step for concretely designing efficient PMNs would be to actively
look for a PMN that minimises three objectives: pesticide use, crop losses490

caused by pests, and costs. It would also be interesting to identify PMNs
that reach an ”optimal” joint control of several pest types. Since we use a
stochastic simulation model for assessing PMN, it would be natural to ap-
ply Reinforcement Learning approaches (Sutton and Barto, 2018) to tackle
PMN optimisation problems. Reinforcement Learning approaches have al-495

ready been used for crop production optimisation (Trépos et al., 2014). The
incorporation of data with Reinforcement Learning in the domain of agri-
culture management has been recently proposed, through the use of deep
Q-learning (Bu and Wang, 2019). However, given the complexity of the
PMN optimisation problem and the lack of available accurate data concern-500

ing the transition model and the actual damage (impact) on crops, such
on-line optimisation approaches may be harder to put into action than the
PMN comparison approach we propose. Still, these approaches are certainly
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worth exploring.
Beyond PMNs analysis or design, our model can also serve as a sup-505

port for discussions between farmers, advisers, and policy-makers to better
understand the spatial and temporal connections underlying pest dynamics
and to help design management strategies at the landscape level (Debaeke
et al., ress) and to identify the most promising ones. To do so, the model
should be extended in two directions to increase its representativity. The510

first one would be to include more heterogeneity in the model’s components.
The second one would be to enrich management options. Regarding the first
direction, heterogeneity could be introduced in the spatial distances between
the fields. They are dispatched on a regular grid in the study, but the fields
could be connected by an arbitrary dispersal network. We can expect than515

monitoring the field from which infection can spread to the larger number of
fields will be more efficient. Furthermore, only a single crop was considered
throughout the landscape for the simplicity of interpretation. This may be
true only in some specific agricultural areas. We could first include landscape
heterogeneity by incorporating several crops (e.g. wheat, barley) with dif-520

ferent sensitivities to and hosting capacities for pests, as well as several crop
sequences. In order to adapt to each region’s specificity, the simulator could
also easily be extended to include information about climate variations (suc-
cessions of dry and humid years, warm and cold years) into account and/or
the evolution of economic input variables over time. In the same way, our525

model could include spatial heterogeneity, not only in terms of crop diversi-
fication, but also in terms of interstitial spaces (e.g. field edges, hedgerows)
and semi-natural habitats (e.g. deciduous woodlands). It is well-known that
diversified crop sequences (and intercrops) disrupt the cycles of soil-borne
diseases. Similarly, alternating sowing periods makes it possible to limit530

weed specialisation in a given field. As for animal pests, it is considered that
the planned biodiversity will increase the associated biodiversity, including
natural enemies, that can limit pest development. A substantial improve-
ment in the approach presented in this paper could be to take landscape
heterogeneity into account as an important driver of pest development.535

In the second direction, we could enrich the PMN-based pest-management
decision rule. A decision rule is composed of a set of available actions among
which the decision-maker must choose, and a criterion (the expected margin
in this case) that will be maximised by the action choice. We could consider
a criterion other than the expected margin to take account of the fact that540

the decision-maker could possibly be risk-averse. Indeed, it has been exper-
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imentally verified for a long time now that even though risk-aversion has
an impact on pesticide use by farmers (Pannell, 1991), this impact depends
on the variables considered and especially on expected yields, and may not
always result in an increase in pesticide use (Aka et al., 2018). Our model545

should therefore be of use to test the plausibility of different risk-averse treat-
ment decision rules.

Moreover, the current computation of the expected gross margin relies
on the assumption that the costs to build and manage the PMN are paid
for by a third party such as a human health care entity or a drinking water550

company. However, if the PMN information can be of benefit to farmers, the
possibility could be considered that the PMN costs could be shared between
them. It would be interesting to see how the results of the study are modified
in this case. In the same way, the decision to treat could be deeply affected
by accounting for the hidden costs attached to pesticides, notably, decon-555

tamination costs (Bourguet and Guillemaud, 2016). In addition, pesticide
reduction would contribute to the limitation of biodiversity loss, cattle and
human health hazards.

More complex actions, beyond treatment/no treatment, could also be con-
sidered, by combining several types of actions. This would better represent560

the situation that farmers are faced with. PMN information and treatment
choice could be combined with other actions including agricultural practices
that reduce biotic risks or that increase treatment efficacy. For example, in
Cros et al. (2017), pest-control through crop sequence and cultivar choices
was optimised at the landscape scale. A stochastic model of pest dynamics565

was used, which was very similar to the one we used in this study. For exam-
ple, Lo-Pelzer et al. (2010) developed a spatially explicit model to manage
phoma stem canker at the landscape level. This model represents the effects
of many cropping practices in interaction with weather scenarios: crop se-
quence, tillage, nitrogen management at the cropping system level, cultivar570

choice, sowing date and rate, and fungicide treatments. The choice of a com-
bined action could then be taken yearly or for a sequence of years (multi-year
pest-management strategies, such as crop rotations). This could be done in-
dependently for each field, or as the result of a coordinated decision between
decision-makers. Finally, the decision rule could target several pests at the575

same time since some treatments are multi-purpose.
As long as the PMN influence is explored through simulations, all these

enhancements should not lead to major technical difficulties being integrated
into the model. The PMN impact model can thus be seen as the first step
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in building richer simulators of pest dynamics under the influence of control580

strategies based on PMN observations.
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Appendix A. Input variable values
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Appendix B. Complementary simulation results710
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Figure 6: Considering the last three years for private information in rule d; Influence
of PMN spatial resolution and history depth on pest management. In each graph, the
scenarios are represented on the horizontal axis. From left to right, conventional treatment
(rule dconv), never treat (rule dnever), then rule d with PMN1 to PMN4 and with two
history depths h = 1 (blue) and h = 8 (red). Left hand column: proportion of treatment
decision (T ); right hand column: proportion of impacted fields (I).
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Appendix C. Considered PMNs

PMN1 PMN2

PMN3 PMN4

Figure 7: The four spatial resolutions considered for the PMN. Grey squares represent
monitored fields. Dashed squares represent side fields where no treatment (and conse-
quently, no decision) was applied.
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Three initial positions of impacted fields for simulation

Figure 8: Position of impacted fields at the beginning of simulations. Simulations start
with four grouped impacted fields (red squares). Three different positions were used
corresponding to the three red 2 x 2 squares.
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Appendix D. Complementary results on the sensitivity analysis
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Figure 9: Evaluation of Kriging model with constant trend for criterion T.
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Figure 10: Evaluation of Kriging model with constant trend for criterion I.
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Figure 11: Evaluation of Kriging model with constant trend for criterion R.
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