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Abstract

The Lagrangian and Eulerian acceleration properties of fluid particles in homogeneous turbulence

with uniform shear and uniform stable stratification are studied using direct numerical simulations.

The Richardson number is varied from Ri = 0, corresponding to unstratified shear flow, to Ri = 1,

corresponding to strongly stratified shear flow. The probability density functions (pdfs) of both

Lagrangian and Eulerian accelerations have a stretched-exponential shape and they show a strong

and similar influence on the Richardson number. The extreme values of the Eulerian acceleration

are stronger than those observed for the Lagrangian acceleration. Geometrical statistics explain

that the magnitude of the Eulerian acceleration is larger than its Lagrangian counterpart due to the

mutual cancellation of the Eulerian and convective acceleration, as both vectors statistically show

an anti-parallel preference. A wavelet-based scale-dependent decomposition of the Lagrangian and

Eulerian accelerations is performed. The tails of the acceleration pdfs grow heavier for smaller

scales of turbulent motion. Hence the flatness increases with decreasing scale, indicating stronger

intermittency at smaller scales. The joint pdfs of the Lagrangian and Eulerian accelerations indicate

a trend to stronger correlations with increasing Richardson number and at larger scales of the

turbulent motion. A consideration of the terms in the Navier–Stokes equation shows that the

Lagrangian acceleration is mainly determined by the pressure-gradient term, while the Eulerian

acceleration is dominated by the nonlinear convection term. A similar analysis is performed for

the Lagrangian and Eulerian time-rates of change of both fluctuating density and vorticity. The

Eulerian time-rates of change are observed to have substantially larger extreme values than those of

their Lagrangian counterparts due to the the advection terms in the advection-diffusion equation

for fluctuating density and in the vorticity equation, respectively. The Lagrangian time-rate of

change of fluctuating vorticity is mainly determined by the vortex stretching and tilting term in the

vorticity equation. Since the advection-diffusion equation for fluctuating density lacks a quadratic

term, the Lagrangian time-rate of change pdfs of fluctuating density show a more Gaussian shape,

in particular for large Richardson numbers. Hence, the Lagrangian acceleration and time-rates of

change of fluctuating density and vorticity reflect the dominant physics of the underlying governing

equations, while the Eulerian acceleration and time-rates of change are mainly determined by

advection.

PACS numbers: 47.27.Ak, 47.27.E-, 47.27.ek, 47.27.er, 47.27.Gs
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I. INTRODUCTION

An understanding of the Lagrangian acceleration properties of a fluid particle in turbulent

motion is of fundamental importance and numerous applications exist in geophysical, envi-

ronmental, and engineering flows. It aids in the study of transport and mixing, as well as in

the characterization of geometric properties and intermittency at various scales of turbulent

motion. As proposed in Tsinober et al. [1] and Tsinober [2], the Lagrangian description of

turbulent flows may be a more natural approach to the study of turbulence, as it is more

directly related to the dynamics of fluid particles, which are subjected to different forces,

e.g., due to the fluctuating pressure gradient, buoyancy, viscous stresses, or other forcing

terms.

Studying Lagrangian acceleration has some history. After early work by Heisenberg [3]

and Yaglom [4], more recent studies range from theoretical investigations (e.g. Tsinober

et al. [1], Tsinober [2]) to applications such as the modeling of particle dispersion (e.g. Pope

[5]) highly relevant to turbulent combustion. Such studies are carried out using both exper-

imental (e.g. La Porta et al. [6]) as well as computational (e.g. Yeung and Pope [7], Yeung

[8] or Toschi and Bodenschatz [9]) approaches.

The majority of previous investigations focused on Lagrangian properties of isotropic

turbulence. The Lagrangian acceleration was found to be strongly intermittent and heavy

tails were observed in its probability density functions (pdf). For example, extreme values as

high as 1,500 times the acceleration of gravity were observed for the Lagrangian acceleration

of fluid particles by La Porta et al. [6] and numerical simulations by Toschi and Bodenschatz

[9] confirmed these results.

Acceleration fluctuations and the different contributions have been studied in Tsinober

et al. [1], Pinsky et al. [10] in isotropic turbulence. Their work is motivated by the random

Taylor hypothesis or sweeping decorrelation hypothesis stating that ‘small eddies in turbu-

lent flow being swept past a stationary Eulerian observer’ [1]. It is based on the prediction

of Tennekes [11] that states that the Lagrangian acceleration must be small, justified by

considering Eulerian and Lagrangian time scales. He predicted that the rms value of the

Lagrangian acceleration is a factor Re
−1/2
λ smaller than the Eulerian value. Lin [12] showed

that there is no general justification to extend Taylor’s hypothesis to turbulent shear flow.

He gives some perspectives that this may still hold for large wavenumbers (small scales),
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which will be the topic of future work.

In Tsinober et al. [1] direct numerical simulation data of isotropic turbulence were an-

alyzed for different Reynolds numbers and the Lagrangian acceleration, called total ac-

celeration in Tsinober’s work, was decomposed into the Eulerian acceleration (called local

acceleration in [1]) and the convective contribution. Possible cancellation properties between

the Eulerian and convective contributions may yield reduced values of the Lagrangian ac-

celeration. The authors found that the variance of Lagrangian acceleration is much smaller

than the Eulerian (local) acceleration and the advection term due to their strong negative

alignment (or correlation) for sufficiently high Rλ, here 140. They also observed that the

Lagrangian acceleration is strongly correlated with the pressure gradient. Their results are

thus in support with the random Taylor hypothesis.

Note that the convective contribution of the acceleration becomes large when the flow

is non-uniform, i.e., if the velocity changes along a streamline. The convective acceleration

term is nonlinear, which causes mathematical difficulties in flow analysis; also, even in steady

flow (which is perfect for Taylor’s hypothesis), the convective acceleration can be large if

spatial gradients of velocity are large. In case it is anti-aligned with the local acceleration,

it can be balanced and the total acceleration can still be small. This implies that the rate of

Eulerian decorrelation is higher than that of Lagrangian decorrelation, which is crucial for

two-point closures, see also the review on space-time correlations in turbulence by He et al.

[13].

Many applications of Lagrangian dynamics target the transport and mixing of natural

and anthropogenic substances in the geophysical environment. Such flows are often charac-

terized by the presence of shear and stratification. Homogeneous turbulent stratified shear

flows with constant vertical stratification rate Sρ = ∂̺/∂y and constant vertical shear rate

S = ∂U/∂y represents the simplest flow configuration in order to study the competing effects

of shear and stratification. This flow has been investigated extensively in the past. Experi-

mental studies include work by Komori et al. [14], Rohr et al. [15], Piccirillo and Van Atta

[16], and Keller and Van Atta [17]. Numerical simulations were performed by Gerz et al.

[18], Holt et al. [19], Jacobitz et al. [20], Jacobitz [21], and Portwood [22]. Hanazaki and

Hunt [23] analyzed this flow using linear theory. More recently, the mixing properties of

turbulent stratified shear flow have been considered by, for example, Salehipour et al. [24]

and Venayagamoorthy and Koseff [25]. For a review, we refer to Gregg et al. [26].
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More recently, Jacobitz et al. [27] considered Lagrangian and Eulerian accelerations in

rotating and sheared homogeneous turbulence. It was found that the Lagrangian accelera-

tion was mainly determined by the pressure-gradient term in the Navier–Stokes equation,

while the Eulerian acceleration shows stronger tails due to the advection term. In the case

of strong rotation, linear effects are dominant and the Lagrangian acceleration pdf takes

an approximately Gaussian shape. A comparison of linear theory with direct numerical

simulation of rotating and sheared homogeneous turbulence was performed by Salhi et al.

[28].

The goal of this work is to investigate the acceleration statistics and to analyze the

different contributions to the acceleration in turbulent stratified shear flows using direct

numerical simulations. A key question is the understanding of the properties of Lagrangian

acceleration fluctuations and their Eulerian counterpart and the influence of the Richardson

number.

In the following, the numerical approach taken in this study is introduced first. Then

the Richardson number dependence of the Lagrangian and Eulerian acceleration pdfs are

presented and geometrical statistics of the alignment angles of the different contributions.

Using a wavelet-based scale-dependent decomposition, the Lagrangian and Eulerian accel-

erations are studied at various scales of the turbulent motion and their spatial fluctuations

are analyzed. The corresponding Lagrangian and Eulerian time-rates of change pdfs for the

fluctuating density are discussed. Finally, a summary and conclusion of the present work is

provided. Results for the Lagrangian and Eulerian time-rates of change for the fluctuating

vorticity as well as the Lagrangian and Eulerian acceleration component are discussed in

the appendix.

II. APPROACH

In this section, the equations of motion and their direct numerical solution are described,

variance estimates for the Lagrangian and Eulerian accelerations are given, the wavelet-based

scale-dependent decomposition of the accelerations is introduced, and geometrical statistics

to study the alignment of the different acceleration contributions are motivated.
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A. Equations of Motion

The mean flow with velocity (U, V,W ) and density ̺ considered in this study has a

constant vertical shear rate S = ∂U/∂y and a constant vertical stratification rate Sρ =

∂̺/∂y, respectively:

U = Sy, V =W = 0, ̺ = ρ0 + Sρy, (1)

where ρ0 is the ambient density.

This study is based on the incompressible Navier–Stokes equations for the fluctuating

velocity and an advection-diffusion equation for the fluctuating density:

∇ · u = 0 (2)

∂u

∂t
+ u · ∇u+ Sy

∂u

∂x
+ Svex

= −
1

ρ0
∇p−

g

ρ0
ρey + ν∇2

u (3)

∂ρ

∂t
+ u · ∇ρ+ Sρv = α∇2ρ (4)

Here, u = (u, v, w) is the fluctuating velocity, p the fluctuating pressure, ρ the fluctuating

density, ν the kinematic viscosity, and α the scalar diffusivity. Taking the curl of the

momentum equation (3) leads to the vorticity equation:

∂ω

∂t
+ u · ∇ω +∇×

(
Sy

∂u

∂x
+ Svex

)

= ω · ∇u−∇×

(
g

ρ0
ρey

)
+ ν∇2

ω (5)

B. Numerical Approach

For their numerical solution, the equations of motion (2-4) are transformed into a frame

of reference moving with the mean velocity (see Rogallo [29]). This transformation enables

the application of periodic boundary conditions for the fluctuating components of velocity

and density. A spectral collocation method is used for the spatial discretization and the

solution is advanced in time with a fourth-order Runge–Kutta scheme.

Table I provides an overview of the simulations performed for this study. The Richardson

number Ri = N2/S2 is varied from Ri = 0, corresponding to unstratified shear flow, to
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Ri = 1, corresponding to strongly stratified shear flow. While both the mean shear rate

S = ∂U/∂y and the mean stratification rate Sρ = ∂̺/∂y are constant for a given simulation,

the Richardson number variation is obtained by a change of the Brunt–Väisälä frequency N

with N2 = −g/ρ0Sρ, while keeping the mean shear rate S constant.

The initial conditions are taken from a separate simulation of isotropic turbulence without

density fluctuations, which was allowed to develop for approximately one eddy turnover time.

The initial values of the Taylor-microscale Reynolds number Reλqλ/ν = 89 and the shear

number SK/ǫ = 2 are fixed. Here q is the rms of the fluctuating velocity with q2 = uiui, λ the

Taylor-microscale with λ2 = 5q2ν/ǫ, K = q2/2 the kinetic energy, and ǫ = ν∂uj/∂xk∂uj/∂xk

the dissipation rate.

Table I provides an overview of the eventual values of Reλ, q, and ǫ at time St = 10. The

table also lists values of a variety of length scales, including the overturning scale Loverturn =

q3/ǫ, the Ellison scale LEllison = ρ/Sρ, the Ozmidov scale LOzmidov with L
2
Ozmidov = ǫ/N3, the

Taylor-microscale λ, and the Kolmogorov scale η with η4 = ν3/ǫ, indicating an appropriate

resolution of the simulations at St = 10 at both the large and small scales of the turbulent

motion.

The simulations are performed on a parallel computer using 512× 512× 512 grid points.

To increase the resolution, instead of the classical dealiasing with a cut-off at 2/3 of the

maximum wavenumber, a cosine-filter dealiasing is applied. The cosine-filter is only applied

to wavenumbers larger than 2/3 of the maximum wavenumber. Its transfer function starts

with one at 2/3 of the maximum wavenumber, goes to zero at the maximum wavenumber,

and it follows the shape of the first quarter of the cosine function period. The maximum

wavenumber kmax can be defined when the cosine is equal to the value 1/2. For the current

resolution with N = 512 we thus have kmax = 227 (instead of the value 170 obtained for

classical dealiasing). All simulations are well resolved and we have kmaxη > 1.2 in the

eventual evolution for the unstratified case. A discussion on the influence of dealising in

pseudo-spectral codes can be found in Hou and Li [30]. The authors show that the classical

2/3 rule does not necessarily yield the best results and other filtering techniques, different

from the cosine-dealiasing used here, are more efficient, supporting our choice.
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C. Variance Estimates for the Lagrangian and Eulerian Accelerations in Stratified

Shear Flow

The Lagrangian and Eulerian accelerations are defined as

aL =
∂u

∂t
+ u · ∇u and aE =

∂u

∂t
, (6)

respectively. Both accelerations are computed as a volume average at a fixed time, which

is an appropriate choice for homogeneous flows. The effects of shear and buoyancy are

considered as external forces.

In [27] we provided estimates of the variances of the Lagrangian and Eulerian accelerations

writing the Navier–Stokes equations in the form

∂u

∂t
= −N −Π−Λ, (7)

where the terms on the right hand side are given by

N = aC = u · ∇u

Π = aP = ∇(p/ρ0)

Λ = ΛS +ΛB +ΛV = Svex +
g

ρ0
ρey − ν∇2

u. (8)

Here, N is the nonlinear or advection term, Π the pressure-gradient term, and Λ the linear

term with contributions from shear, buoyancy, and viscous effects. The notation aC for the

nonlinear term and aP for the pressure gradient match the notation in Tsinober et al. [1] to

denote the convective and pressure contributions, respectively, to the accelerations.

According to [27] we have also in the case of stratified shear flow the identity

〈
‖N +Π+Λ‖2

〉
=

〈
‖N +Λ‖2

〉
−

〈
‖Π‖2

〉
. (9)

Here, ‖ · ‖ denotes the magnitude of a vector and 〈·〉 the volume average for a homogeneous

field.

This directly implies the following exact identities for the variances of the Eulerian ac-

celeration aE (called local acceleration in Tsinober et al. [1]),

a2E ≡

〈
‖
∂u

∂t
‖2
〉

=
〈
‖N +Π+Λ‖2

〉
=

〈
‖N +Λ‖2

〉
−

〈
‖Π‖2

〉
(10)
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and of the Lagrangian acceleration aL (called total acceleration in Tsinober et al. [1]),

a2L ≡

〈
‖
∂u

∂t
+ u · ∇u‖2

〉
=

〈
‖Π+Λ‖2

〉
. (11)

The variance estimates provided in [27] for rotating shear flows are now extended to

stratified shear flows, again with the underlying assumption and crucial simplification of

isotropy of the flow. The main difference arises in the linear term Λ, which now includes a

buoyancy force, instead of a Coriolis force. Neglecting the friction force, the variance of the

linear term can be written as

Λ2 =
1

3
S2[1 + 3(

g

ρ0
)2

1

S2

ρ2

u2
]u2. (12)

Using the ratio of potential to kinetic energy

Kρ

K
=

−1

2

g
ρ0

ρ2

Sρ

1

2
u2

= −
g

ρ0

1

Sρ

ρ2

u2
(13)

the variance for the linear term can be written as

Λ2 =
1

3
S2[1 + 3Ri

Kρ

K
]u2. (14)

Hence, the variance estimate of the linear term retains the ratio of potential to kinetic energy.

D. Scale-dependent decomposition of Lagrangian and Eulerian accelerations

To gain insight into the scale dependence of the Lagrangian and Eulerian accelerations, we

decompose both accelerations into an orthogonal wavelet series. Wavelets are well localized

functions in space and in scale (or wave number), see e.g. [31], and different wavelet-based

diagnostics, including the scale-dependent energy distribution and its spatial fluctuations,

intermittency measures such as the scale dependent flatness and anisotropy measures, have

been proposed. For a review we refer the reader to [32].

We consider a generic vector field a = (a1, a2, a3) at a fixed time instant and decompose

each component aα(x) into an orthogonal wavelet series,

aα(x) =
∑

λ

ãαλ ψλ(x), (15)

where the wavelet coefficients are given by the scalar product ãα = 〈aα, ψλ〉. The wavelets

ψλ with the multi-index λ = (j, i, d) are well localized in scale L02
−j (where L0 corresponds
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to the size of the computational domain), around position L0i/2
j, and orientated in one

of the seven directions d = 1, ..., 7, respectively. The scale is directly related to the wave

number kj = k02
j, where k0 is the centroid wave number of the chosen wavelet family. For

Coiflets 12 wavelets used in the present work we have k0 = 0.77. Large scales correspond

to small values of the scale index j and to a well localized wavelet in Fourier space around

wavenumber kj . In contrast for small scales, which correspond to large values of j, the

wavelet becomes less localized in Fourier space around the mean wavenumber kj.

Reconstructing the three components aα at scale 2−j by summing only over the position

i and direction d indices in eq. 15 yields the acceleration a
j at scale intex j. In terms

of filtering the acceleration at a given scale corresponds to a bandpass filtered field, with a

bandpass filter having constant relative bandwidth. This means that the filterwidth becomes

larger at larger wavenumber, corresponding to decreasing scale. By construction we have

a =
∑

j a
j, where the a

j are mutually orthogonal.

The scale-dependent moments, including scale-dependent flatness, and scale-dependent

pdfs, can thus be computed from a
j using classical statistical estimators.

For instance the q-th order moment of aj(x) can be defined by,

Mq[a
j ] = 〈(aj)q〉, (16)

and by construction the mean value vanishes, 〈aj〉 = 0. The moments are thus central

moments. These scale-dependent moments are directly related to the q-th order structure

functions [33] where the increment size is ∝ 2−j.

The scale-dependent flatness, which measures the intermittency of aj at scale 2−j , is

defined by

F l[aj ] =
M4[a

j]

(M2[aj ])2
. (17)

For a Gaussian distribution the flatness equals three at all scales.

E. Geometrical statistics

To understand the magnitude of Eulerian and Lagrangian accelerations, we statistically

assess, following Tsinober et al. [1], the alignment properties of aE, aC = N and its sum

corresponding to the Lagrangian acceleration aL = aE+aC . For convenience, we partly use

the notation introduced in [1] in this section. When the vectors of the Eulerian acceleration
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aE and the convective terms aC are anti-parallel, then the magnitude of the Lagrangian

acceleration aL, is small compared to those of the Eulerian and convective contribution,

since

〈aLaL〉 = 〈aE + aC ,aE + aC〉 = 〈aE,aE〉+ 〈aC ,aC〉+ 2 cos(aE ,aC) ||aE|| ||aC||. (18)

If aE and aC are anti-aligned the cosine is negative and the norm of aE +aC is minimal.

To verify the random Taylor-hypothesis Tsinober et al. [1] computed the cosine of the angle

of the Eulerian acceleration and the convective term, motivated by the prediction of Tennekes

[11] that the Lagrangian acceleration must be small so that the hypothesis holds. We expect

this result to hold with modification due to shear and stratification.

For the pressure gradient term aP = Π, the alignment with the Eulerian and Lagrangian

acceleration can be likewise assessed. For sufficiently high Reynolds numbers we anticipate a

strong anti-alignment of aP with aL showing that the flow is driven by the pressure gradients

and that linear effects are negligible. However, buoyancy may change this result for strong

stratification and its impact will be assessed using the simulation results.

For Gaussian divergence free random fields Tsinober et al. [1] found similar alignment

properties and they concluded that the cancellation of aE and aC is mostly a kinematic

effect and not due to Navier–Stokes dynamics. A justification for these findings is given

by Millionshchikow’s zero-fourth cumulant hypothesis [34] which decomposes fourth order

moments into a series of second order moments.

III. RESULTS

In this section, the flow evolution is briefly described first. Then, results for the prob-

ability density functions (pdfs) of the Lagrangian and Eulerian accelerations are provided,

related to the remaining terms in the Navier–Stokes equations, and their scale-dependent

properties are presented. A similar analysis is performed for the Lagrangian and Eulerian

time-rates of change of fluctuating density and in appendix A also for fluctuating vortic-

ity. In the following, the accelerations and time-rates of change are analyzed at the instant

St = 10. Table I provides an overview of the series of five simulations performed.
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A. Turbulence Evolution

In order to provide a context for the present study, the energetics of the flow is briefly

discussed. More details on turbulent stratified shear flows can be found in [20] and [21].

Figure 1 (left) shows the evolution of the turbulent kinetic energy normalized by its initial

value K/K0. All cases result in an initial decay phase due to the isotropic initial conditions.

Then, as the Richardson number Ri is increased, the eventual evolution of the turbulent

kinetic energy changes from growth to decay with a critical value of Ricr ≈ 0.15.

The normalized transport equation for the turbulent kinetic energy evolution can be

written as:

γ =
1

SK

dK

dt
=

P

SK
−

B

SK
−

ǫ

SK
(19)

Here, γ is the growth rate of the turbulent kinetic energy, P/(SK) is the normalized produc-

tion term with P = −Su1u2, B/(SK) is the normalized buoyancy flux with B = g/ρ0u2ρ,

and ǫ/(SK) is the normalized dissipation rate.

Figure 1 (right) shows the dependence of P/(SK), B/(SK), ǫ/(SK), and γ on the

Richardson number Ri at nondimensional time St = 10. The normalized production rate

P/(SK) decreases with increasing Richardson number Ri and it assumes a slightly negative

value for large Ri cases, indicating a positive Reynolds shear stress (or counter-gradient flux).

The normalized buoyancy flux B/(SK) remains relatively small and it converts kinetic

to potential energy for most of the Ri range. The normalized dissipation rate ǫ/(SK)

remains relatively unaffected by the Ri variation. The growth rate γ follows the trend of the

normalized production rate P/(SK), offset by the contributions of B/(SK) and ǫ/(SK).

Note that positive values of γ correspond to a growth of K, while a negative value of γ

indicates decay of the turbulent kinetic energy.

The evolution of the ratio of potential to kinetic energy is given in figure 2 (left). The

simulations are initialized without potential energy and a strong initial growth is observed.

The ratio of potential to kinetic energy eventually reaches an approximately constant value,

which still depends on the Richardson number Ri. This dependence of the ratio Kρ/K on

Ri at nondimensional time St = 10 is presented in figure 2 (right). The ratio of Kρ/K first

increases strongly and then reaches a maximum of Kρ/K ≈ 0.3 for Ri = 1.
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B. Lagrangian and Eulerian Accelerations

Figure 3 (top) shows the probability distribution functions (pdfs) of the Lagrangian accel-

eration aL (left) and of the Eulerian acceleration aE (right). The pdfs of both accelerations

have stretched-exponential shapes and they exhibit a strong and similar influence on the

Richardson number Ri. For small Ri, the extreme values of the Eulerian acceleration are

above those of the Lagrangian acceleration, which is consistent with previous observations

for sheared and rotating turbulence [27] and likewise observed for isotropic turbulence by

Tsinober et al. [1].

Figure 3 (bottom) shows the pdfs normalized with the corresponding standard deviations

of the two accelerations. For a core region of about five standard deviations, both the

Lagrangian and Eulerian accelerations show approximately the same shape. The tails of

the pdfs of both accelerations weaken with increasing Ri. For small Ri, the tails of the

Lagrangian acceleration are heavier than the tails of the Eulerian acceleration.

Tables II and III provide statistical information of the Lagrangian and Eulerian accel-

erations as a function of the Richardson number at nondimensional time St = 10. The

magnitudes (rms values) of both accelerations decrease with increasing Ri and the mag-

nitude of aE remains always larger than the magnitude of aL, also observed for isotropic

turbulence Tsinober et al. [1]. At small Ri, the heavier tails observed for the normalized

pdfs of aL as compared to aE result in a larger flatness of the Lagrangian acceleration pdf

as compared to its Eulerian counterpart. The flatness values of both accelerations generally

decrease with increasing Ri, indicating a decreased importance of nonlinear effects which

is related to the decreasing Reynolds number. However, unlike in the presence of strong

rotation considered in [27], the flatness values do not reach a value close to three, character-

istic for a Gaussian distribution, in the case of strong stratification. For Ri = 0 the flatness

values of aL and aE are comparable with DNS data of isotropic turbulence [2] at Reλ = 140,

where the values of 24.4 and 12.8 were found, while we find respectively 27.81 and 14.41

in the case of pure shear. Note that for the variances Tsinober et al. [1] found the values

(normalized with ǫ3/2ν−1/2 = 24.84, where ǫ = 1.20 and ν = 0.0028) of 2.75 for aL and 8.19

for aE (and 10.96 for aC), while we find respectively the values 8.20 for aL and 14.81 for aE

(and 22.39 for aC) in the case of pure shear using the same normalization with ǫ3/2ν−1/2.

This shows that the order is consistent and the values are comparable.

14



Figure 4 shows pdfs of the shear term (top, left), the buoyancy term (top, right), the

pressure-gradient term (bottom, left), and the advection term (bottom, right) in the Navier–

Stokes equation. The shear and buoyancy terms depend linearly on fluctuating velocity

components and density and their pdfs have hence a Gaussian shape. While the magnitude

of the shear term pdf decreases with increasing Ri, the magnitude of the buoyancy term

pdf increases. The pdfs of the pressure-gradient and advection terms show a stretched-

exponential shape due to the quadratic nature of the terms. The magnitudes of both terms

decrease with increasing Ri. For small Ri, the pressure-gradient and advection terms clearly

dominate the shear and buoyancy terms, but this dominance somewhat diminishes with

increasing Ri. Hence, the pressure-gradient term is the generally dominant contribution

to the Lagrangian acceleration, while the advection term is important for the Eulerian

acceleration.

Table IV provides the variances of the contributions to the linear term from the shear

term Λ2
S, the buoyancy term Λ2

B, and the viscous term Λ2
V . An estimate for the variance of

the linear term Λ2
DNS is computed using the triangle inequality. The table also provides the

variance of the velocity q2, the ratio of potential to kinetic energies Kρ/K, and a theoretical

estimate for the linear term Λ2 based on equation 14 at nondimensional time St = 10. The

variances of the linear term computed from the simulation results Λ2
DNS and the theoretical

estimate Λ2 agree well, despite the assumption of isotropy used in the derivation of equation

14. The variance of the linear term decreases with increasing Richardson number Ri. The

Taylor-microscale Reynolds number Reλ given in table I yields a measure for the general

importance of nonlinear effects in a turbulent flow. Reλ decreases with increasing Ri. The

results suggest that nonlinear effects contribute the least to the turbulence evolution for the

case with a Richardson number Ri = 1.

The joint pdfs of the Lagrangian and Eulerian accelerations are shown in figure 5 for

two cases with Richardson numbers Ri = 0.1 (left) and Ri = 1 (right) at nondimensional

time St = 10. The correlation between Lagrangian and Eulerian accelerations is observed

to increase with increasing Ri. The stronger correlation of the Eulerian and Lagrangian

acceleration for Ri = 1 is due to the reduced nonlinearity.

In order to quantify this observation, the Pearson product-moment correlation coefficient

for the Lagrangian and Eulerian accelerations in dependence of the Richardson number Ri

is given in the first line of table V at nondimensional time St = 10. For unstratified shear
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flow with Ri = 0, the Lagrangian and Eulerian accelerations are almost decorrelated as indi-

cated by r = 0.0284. With increasing stratification strength, the Pearson product-moment

correlation coefficient increases monotonically. A high value of r = 0.6634 is observed for

Ri = 1. This can be explained by the decreasing importance of the nonlinearity, quantified

by the decreasing Reynolds number.

To provide further information, geometrical statistics are performed and the vector align-

ment properties of the different acceleration contributions are studied, as introduced in

section II E. For different Richardson numbers we consider the pdf of the cosine of the angle

of two acceleration vectors, shown in Figure 6, the mean value of the cosine as quantitative

measure and the correlation coefficient, assembled in table V. The choice of the cosine is

motivated by the fact that for random fields in 3D the cosine of the angle is uniformly dis-

tributed and not the angle itself. Figure 6 (bottom, left) shows that a strong anti-alignment

of the Eulerian acceleration aE and the convective term aC = N reflected in a peak in the

pdf at cos = −1, corresponding to an angle of 180 degrees. This explains why the Lagrangian

acceleration is smaller than the Eulerian one and also smaller than the convective term, as

the anti-alignment implies that the two vectors aE and aC = N are anti-parallel. The

Lagrangian acceleration aL and the pressure gradient Π in Fig. 6 (bottom, right) even show

a stronger anti-alignment, which confirms that the negative pressure gradient is the driving

force of the flow dynamics. In both cases the anti-alignment is most pronounced for Ri = 0

and becomes weaker for increasing Richardson numbers. This can be further quantified by

mean values of the cosine of the angle and also the correlation coefficient between the two

vectors, the results are given in table V.

The Lagrangian acceleration is positively aligned with the Eulerian one (Fig. 6, top,

left) and also with the convective acceleration (Fig. 6, top, right). For aE this alignment

becomes stronger with increasing Richardson number, while for aC this becomes weaker, as

the nonlinear term diminishes. These results are consistent with those in Tsinober et al. [1]

obtained for isotropic turbulence, in the case of Reλ = 141 (as compared to our value for

unstratified shear flow 157). For example for the average cosine of the angle between aL and

aE Tsinober et al. [1] reports a value 0.105 (for unstratified shear flow we find 0.162), for aL

and aC 0.353 (0.420) and aE and aC -0.762 (-0.657).

Let us also mention that Tsinober et al. [1] showed that Gaussian random fields satisfy

similar alignment properties for aE and aC = N and concluded that this is essentially a

16



kinematic effect.

Figure 7 presents the scale-dependent pdfs of the Lagrangian acceleration aL (left) and

Eulerian acceleration aE (right) for two cases with Ri = 0.1 (top) and Ri = 1 (bottom)

at nondimensional time St = 10. The pdfs have stretched-exponential shapes and the tails

become heavier with increasing scale index j or decreasing scale of the turbulent motion.

For the weakly stratified case with Ri = 0.1, the tails of the Lagrangian acceleration are

generally heavier as those of the Eulerian acceleration. For the strongly stratified case with

Ri = 1, however, the tails of the Eulerian acceleration are generally heavier than those of

their Lagrangian counterpart. This observation reflects the trend for the total acceleration

pdfs with increasing Richardson number discussed above.

In order to quantify the above observations, scale-dependent statistics are provided in

tables VII and VIII for two cases with Richardson numbers Ri = 0.1 andRi = 1, respectively.

While the magnitude of the total Eulerian acceleration aE is larger than the magnitude of

the total Lagrangian acceleration aL, the ordering is reversed for the accelerations at some

scales of the turbulent motion. For the case with Ri = 0.1, the original ordering holds at

the scale with the largest magnitude, which is j = 6 for both accelerations. At that scale,

the pdfs of the total accelerations are also most similar to the pdfs of the accelerations at

that scale. For the case with Ri = 1, the ordering observed for the magnitudes of the total

accelerations holds more generally at different scales of the turbulent motion. The pdfs of

the total accelerations are again most similar at the scales with the largest magnitudes,

which are j = 4 for the Lagrangian acceleration and j = 5 for the Eulerian acceleration.

The flatness of the accelerations generally increases with scale index j, indicating more

intermittency at the smallest scales of motion. Note that for the Lagrangian acceleration,

flatness values close to three are observed for the larger scales with j = 1, indicating that

the Lagrangian acceleration at large scale is mainly determined by linear effects.

Figure 8 shows the scale-dependent joint pdfs of the Lagrangian and Eulerian accelera-

tions for two cases with Ri = 0.1 (left) and Ri = 1 (right) as well as at large scale with

scale index j = 3 (top) and at small scale with j = 7 (bottom) at nondimensional time

St = 10. Consistent with the observation for the total accelerations discussed above, the

correlation increases with stratification strength at the two scales shown. In addition, the

correlation decreases with increasing scale index j or decreasing scale of the turbulent motion

considered.
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This observation is shown more quantitatively using the Pearson product-moment cor-

relation coefficient in table VI. The correlation coefficient tends to increase with increasing

Richardson number Ri. Similarly, at all Richardson numbers, the correlation coefficient

decreases with decreasing scale or increasing scale index j. The components at the largest

scale index j or smallest scale of motion are characterized by very high flatness values. This

indicates strong intermittency present in the motion with the localized activity impacting

the correlation coefficient. Note that with increasing Ri, the Taylor micro-scale Reynolds

number Reλ decreases. Starting from the same initial conditions, an increase of the Richard-

son number Ri necessarily results in the decrease of the Taylor micro-scale Reynolds number

Reλ due to the effect of stratification. Hence it is difficult to determine if the origin of the

increased intermittency is due to the increased stratification or decreased Reλ as the two

effects are linked.

C. Lagrangian and Eulerian Time-Rates of Change of Fluctuating Density

The time-rates of change of fluctuating density can also be defined using Lagrangian and

Eulerian approaches as

sL =
∂ρ

∂t
+ u · ∇ρ and sE =

∂ρ

∂t
, (20)

respectively.

Figure 9 (top) shows the pdfs of the Lagrangian time-rate of change of fluctuating density

(left) and of the corresponding Eulerian time-rate of change (right). The difference in the

pdfs of the time-rates of change is well more pronounced than the difference obtained for the

accelerations. Figure 9 (bottom) shows the normalized pdfs of the two time-rates of change.

While the shape of the Eulerian time-rate of change pdf is again found to be stretched-

exponential, the Lagrangian time-rate of change pdf has a more Gaussian shape. The

extreme values of the Eulerian time-rate of change of fluctuating density are substantially

larger than those of the Lagrangian time-rate of change.

Tables II and III, respectively, provide the dependence of the magnitudes of the La-

grangian and Eulerian time-rates of change on the Richardson number Ri. Note that for

Ri = 0, the density is a passive scalar (zero gravity) with a mean gradient. Again, the mag-

nitude of sE always remains larger than the magnitude of sL, consistent with the findings

for the accelerations.
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The flatness of the Lagrangian and Eulerian time-rates of change are also given in tables

II and III, respectively. The flatness of sE is always larger than that of sL and their values

generally decrease with increasing Ri. For strong stratification, the flatness of the Lagrangian

time-rate of change assumes values around three for Ri = 1, while the Eulerian time-rate of

change yields a value of 5.475.

Figure 10 shows pdfs of the buoyancy term (left) and advection term (right) in the

advection-diffusion equation for fluctuating density. The buoyancy term pdf has a Gaussian

shape as it is linearly related to the fluctuating density. Its variance increases with increasing

Ri, because the stratification rate Sρ increases. The more Gaussian shape of the Lagrangian

time-rate of change of fluctuating density can be explained by the lack of a quadratic term

in the advection-diffusion equation for fluctuating density. The large difference observed

between the Lagrangian and Eulerian time-rates of change of fluctuating density is due to

the advection term.

IV. CONCLUSIONS

A series of direct numerical simulations was performed in order to study the Lagrangian

and Eulerian acceleration properties in stably stratified turbulent shear flows. With increas-

ing Richardson number Ri, the evolution of the turbulent kinetic energy K changes from

growth to decay and the variances of the Lagrangian acceleration aL and the Eulerian ac-

celeration aE decrease. The acceleration pdfs were observed to have a stretched-exponential

symmetric shape and the flatness decreases with increasing Ri.

We studied the cancellation of Eulerian and convective accelerations of fluid particle using

geometrical statistics of the vector quantities. We found a strong preference for the anti-

alignment of both vectors, which decreases with the Richardson number. This cancellation

explains why the variance of the Lagrangian acceleration is smaller than its Eulerian coun-

terpart and it supports, according to Tsinober et al. [1], who performed similar analyses for

isotropic turbulence, the random Taylor hypothesis for shear flow which becomes however

weaker with increasing stratification. Nevertheless, we do not find an order of magnitude

difference in the acceleration variances, as predicted by Tennekes [11] for isotropic turbu-

lence and necessary so that the random Taylor hypothesis strictly holds. These findings are

in agreement with Lin [12], who showed that Taylor’s hypothesis does in general not hold for
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shear flow. Analyzing the alignment properties of the scale-dependent contributions of the

acceleration is an interesting perspective for future work, already in the context of isotropic

turbulence. This would allow to check if the hypothesis holds for shear flows at least as

small scales.

An estimation of the variances of the Lagrangian and Eulerian accelerations has been

derived from the Navier–Stokes equations which requires the ratio of potential to kinetic

energy. A comparison of the estimation with results from the direct numerical simulations

showed good agreement for the considered range of Richardson numbers.

The pdfs of the pressure-gradient and advection terms in the Navier–Stokes equation,

which are both quadratic terms, also have stretched-exponential shapes. The Lagrangian

and Eulerian accelerations are mainly determined by the pressure-gradient and advection

terms, respectively. While the quadratic terms are dominant for small Ri, their dominance

is somewhat diminished for large Ri. The pdfs of the shear and buoyancy terms in the

Navier–Stokes equation, which are both linear terms, were observed to have a Gaussian

shape. While the variance of the shear term decreases with Ri, the variance of the buoyancy

term increases with Ri.

In addition, the Lagrangian and Eulerian time-rates of change of fluctuating density and

of fluctuating vorticity (see appendix A) were considered. For both quantities, the Eule-

rian time-rates of change showed substantially larger extreme values than their Lagrangian

counterparts. Due to a lack of a quadratic term on the right-hand-side of the advection-

diffusion equation for fluctuating density, the pdf of the Lagrangian time-rate of change has

an almost Gaussian shape, while the pdf of the Eulerian time-rate of change was observed

to have exponential to stretched-exponential shapes. For fluctuating vorticity we found that

the Lagrangian time-rate of change is mainly determined by the vortex streching and tilting

term.

A scale-dependent analysis using orthogonal wavelet decomposition provided insight into

the intermittency of the Lagrangian and Eulerian accelerations. At small scales of the tur-

bulent motion, the pdfs exhibit heavy tails, resulting in very large flatness values and corre-

sponding intermittency. The correlation between the Lagrangian and Eulerian accelerations

has likewise been analyzed and we found stronger correlation at large scales of turbulent

motion as well as with increasing Richardson number. At small scales this correlation is

substantially reduced.
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For rotating and sheared homogeneous turbulence, Salhi et al. [28] observed a dominance

of linear terms in the cases with strong rotation and the flatness of the Lagrangian accelera-

tion assumes a value of about 3. This observation suggests that linear theory can accurately

describe properties of such flows. In the present study, however, the flatness never reaches

values close to three, even for very large Richardson numbers. Hence, linear theory should

not yield agreement with direct numerical simulation results. Indeed, Hanazaki and Hunt

[23] found important differences between linear theory and the fully nonlinear evolution of

homogeneous turbulence in stratified shear flows.

Perspectives for future work include a component-wise analysis of the Lagrangian and

Eulerian acceleration, a more detailed scale-wise decomposition of the geometric properties

of the accelerations, and corresponding terms for the vorticity evolution.
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Appendix A: Lagrangian and Eulerian Time-Rates of Change of Fluctuating Vor-

ticity

The Lagrangian and Eulerian time-rates of change of fluctuating vorticity ω are defined

as

cL =
∂ω

∂t
+ u · ∇ω and cE =

∂ω

∂t
, (A1)

respectively. This definition is analogous to the definition for the Lagrangian and Eulerian

accelerations in order to enable a comparison between the accelerations and vorticity time-

rate of change statistics. Again, the analysis is performed at the nondimensional time

St = 10.

Figure 11 (top) shows the probability distribution functions (pdfs) of the Lagrangian

time-rate of change cL (left) and of the Eulerian time-rate of change cE (right). Similar to
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the accelerations, pdfs with stretched-exponential shapes are observed for both time-rates

of change and a strong and similar influence on the Richardson number Ri is obtained.

Again, stronger extreme values are obtained for the Eulerian time-rate of change, but the

difference to the Lagrangian time rate of change is much more pronounced here as compared

to the accelerations. Figure 11 (bottom) shows the normalized pdfs of the two time-rates of

change. Again, for a core region of about five standard deviations, both the Lagrangian and

Eulerian time-rates of change have an approximately similar shape. For small Richardson

numbers Ri, the tails of the Lagrangian time-rate of change are heavier than those of their

Eulerian counterparts. However, this ordering is reversed at larger Ri.

The magnitudes of the Lagrangian and Eulerian vorticity time-rates of change are given

in tables II and III, respectively. Similar to the magnitudes of the accelerations, the mag-

nitudes of both time-rates of change decrease with increasing Ri and the variance of cE

remains always larger than the variance of cL. This difference in the magnitudes for the

vorticity time-rate of change pdfs is much more pronounced than that of the accelerations.

The heavier tails observed for the pdf of cL as compared to cE at small Ri results in a larger

flatness of the Lagrangian time-rate of change pdf as compared to its Eulerian counterpart.

Again, the ordering of the flatness values is reversed at larger Ri. While the flatness values

decrease with increasing Ri, the flatness is again observed to level off at a value of approxi-

mately 5, well above the value of 3 expected for a Gaussian pdf. Hence, some nonlinearity

is still present even in the case of strongly suppressed turbulence in strongly stratified flows.

Figure 12 shows pdfs of the shear term (top, left), the buoyancy term (top, right), the

vortex tilting and stretching term (bottom, left), and the advection term (bottom, right)

in the vorticity equation. The shear and buoyancy terms depend linearly on the curl of

fluctuating velocity components and fluctuating density, respectively. Similarly to the re-

spective terms in the Navier–Stokes equation, the magnitude of the shear term decreases

with increasing Ri and the magnitude of the buoyancy term increases. The pdfs of the vor-

tex tilting and stretching term and the advection term show stretched-exponential shapes

due to the quadratic nature of the terms. The magnitudes of both terms decrease with

increasing Ri. For small Ri, the vortex tilting and stretching term as well as the advection

term clearly dominate the shear and buoyancy terms, but this dominance again is reduced

for large Ri. In the case of vorticity, the vortex tilting and stretching term is the generally

dominant contribution to the Lagrangian time-rate of change, while the advection term is
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important for the Eulerian time-rate of change.

Appendix B: Lagrangian and Eulerian component pdfs

While the main manuscript exclusively discusses the properties of vector pdfs, this ap-

pendix presents component pdfs of the Lagrangian and Eulerian accelerations in order to

address their anisotropy in turbulent stratified shear flow. Figure 13 compares the vector

pdfs with their x−, y−, and z−component pdfs for the Lagrangian acceleration (left) and

Eulerian acceleration (right) for two cases with weak stratification with Ri = 0.1 (top) and

with strong stratification with Ri = 1 (bottom). All pdfs show similar shapes and the

flow anisotropy is reflected in the variances. A similar observation holds for the pdfs of

Lagrangian and Eulerian time-rate of change of fluctuating vorticity (not shown here).

The ratios of the component variances to the corresponding vector variances of the La-

grangian and Eulerian accelerations are given in tables II and III, respectively. For small

Richardson numbers Ri, the variance ratios show an almost equipartition between the three

components for both the Lagrangian and Eulerian accelerations. For large Ri, however,

the ratio of the vertical variances to the vector variances gains due to the direct impact

of the buoyancy term in the vertical component of the Navier–Stokes equation. Figure 2

shows that the ratio of potential to kinetic energy increases with increasing Ri. Hence the

buoyancy term impacts particularly the vertical component of the accelerations.
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FIG. 4. Pdfs of the shear (top, left), buoyancy (top, right), pressure-gradient (bottom, left), and

advection (bottom, right) terms in the Navier–Stokes equations at nondimensional time St = 10.

28



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

a E
/a

E
rm

s

aL/aL
rms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

a E
/a

E
rm

s

aL/aL
rms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

FIG. 5. Joint pdfs of Lagrangian acceleration aL and Eulerian acceleration aE for Richardson

numbers Ri = 0.1 (left) and Ri = 1 (right) at nondimensional time St = 10 using a linear color
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FIG. 7. Scale-dependent normalized pdfs of Lagrangian acceleration aL (left) and Eulerian accel-

eration aE (right) for Richardson numbers Ri = 0.1 (top) and Ri = 1 (bottom) at nondimensional

time St = 10. Note that the flat sections in the pdfs around zero are artifacts of an even number
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FIG. 8. Scale-dependent joint pdfs of Lagrangian acceleration aL and Eulerian acceleration aE for

Richardson numbers Ri = 0.1 (left) and Ri = 1 (right) and at large scale with scale index j = 3
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scale.
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FIG. 9. Pdfs (top) and normalized pdfs (bottom) of Lagrangian time-rate of change of fluctuating

density sL (left) and Eulerian time-rate of change sE (right) at nondimensional time St = 10.
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FIG. 10. Pdfs of the buoyancy (left) and advection (right) terms in the advection-diffusion equation

for fluctuating density at nondimensional time St = 10.
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FIG. 11. Pdfs (top) and normalized pdfs (bottom) of Lagrangian time-rate of change of vorticity

cL (left) and Eulerian time-rate of change cE (right) at nondimensional time St = 10. Note that

pdfs for the vector quantities are shown.
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FIG. 12. Pdfs of the shear (top, left), buoyancy (top, right), vortex tilting and stretching (bottom,

left), and advection (bottom, right) terms in the vorticity equation at nondimensional time St = 10.
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FIG. 13. Comparison of normalized vector pdfs with their corresponding normalized component

pdfs for Lagrangian acceleration (left) and Eulerian acceleration (right) for Ri = 0.1 (top) and

Ri = 1 (bottom) at nondimensional time St = 10.
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TABLE I. Overview of the simulation cases, including the Richardson number Ri, the shear rate

S, the Brunt–Väisälä frequency N , the Taylor-micro scale Reynolds number Reλ, The viscosity ν,

the turbulent velocity fluctuation q, the dissipation rate of kinetic energy ǫ, the cut-off wavenumber

kmaxη, the overturning scale Loverturn, the Ellison scale LEllison, the Ozmidov scale LOzmidov, the

Taylor microscale λ, and the Kolmogorov scale η. All values are given at nondimensional time

St = 10. All symbols are defined in the text.

Ri 0 0.1 0.2 0.5 1

S 5.3345 5.3345 5.3345 5.3345 5.3345

N 0.0000 1.6869 2.3856 3.7720 5.3345

Reλ 156.90 104.08 76.60 42.84 32.83

ν 0.0010 0.0010 0.0010 0.0010 0.0010

q 1.5856 1.0779 0.7969 0.4428 0.3028

ǫ 1.2838 0.6230 0.3436 0.1048 0.0390

kmaxη 1.1992 1.4368 1.6673 2.2437 2.8723

Loverturn 3.1052 2.0101 1.4728 0.8288 0.7119

LEllison 0.2619 0.1835 0.1324 0.0619 0.0312

LOzmidov N/A 0.3603 0.1591 0.0442 0.0160

λ 0.09895 0.09656 0.09613 0.09675 0.10841

η 0.00528 0.00633 0.00735 0.00988 0.01265
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TABLE II. Lagrangian acceleration statistics at nondimensional time St = 10 showing the rms of

the Lagrangian acceleration aL, the flatness FlaL and the ratio of the component-wise variances

and the total variance. The variance and flatness values of the time-rates of change of fluctuating

density sL and FlsL and fluctuating vorticity cL and FlcL are likewise given.

Ri 0 0.1 0.2 0.5 1

aL 19.427 9.833 5.519 1.808 0.942

FlaL 27.814 26.041 13.115 9.364 4.111

a2Lx/a
2
L 0.335 0.318 0.306 0.320 0.327

a2Ly/a
2
L 0.325 0.327 0.331 0.356 0.390

a2Lz/a
2
L 0.340 0.355 0.363 0.324 0.242

sL 0.00117 0.00070 0.00091 0.00101 0.00119

FlsL 7.220 6.148 5.152 3.989 3.249

cL 490.484 232.508 128.472 44.395 19.725

FlcL 65.574 53.766 21.168 14.123 9.177

TABLE III. Eulerian acceleration statistics at nondimensional time St = 10 showing the rms of

the Eulerian acceleration aE , the flatness FlaE and the ratio of the component-wise variances and

the total variance. The variance and flatness values of the time-rates of change fluctuating density

sE and FlsE and of fluctuating vorticity cE and FlcE are likewise given.

Ri 0 0.1 0.2. 0.5. 1

aE 26.100 11.689 6.258 1.975 1.075

FlaE 14.414 13.413 11.028 9.510 5.691

a2Ex/a
2
E 0.302 0.320 0.339 0.408 0.434

a2Ey/a
2
E 0.329 0.312 0.292 0.261 0.273

a2Ez/a
2
E 0.369 0.368 0.369 0.331 0.293

sE 0.00577 0.00239 0.00231 0.00138 0.00129

FlsE 24.992 24.624 21.960 16.053 5.475

cE 2,020.203 781.238 372.030 91.830 34.461

FlcE 37.813 35.619 27.855 24.893 17.724
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TABLE IV. Variance of the contributions to the linear term from the shear term Λ2
S , the buoyancy

term Λ2
B , and viscous term Λ2

V , an estimate for the variance of the linear term using the triangle

inequality Λ2
DNS , the variance of the velocity q2, the ratio of potential to kinetic energies Kρ/K,

and an estimate for the linear term Λ2 given in equation 14 at nondimensional time St = 10.

Ri 0 0.1 0.2 0.5 1

Λ2
S 14.5746 6.3796 3.2517 0.8430 0.3596

Λ2
B 0.0000 0.2728 0.5681 0.7767 0.7886

Λ2
V 6.8850 2.5158 1.1384 0.2568 0.0723

Λ2
DNS 21.4596 9.1682 4.9581 1.8764 1.2205

q2 2.5142 1.1619 0.6350 0.1961 0.0917

Kρ/K 0.0000 0.0825 0.1571 0.2783 0.3021

Λ2 23.8427 11.2910 6.5897 2.6358 1.6579

TABLE V. Mean value of the cosine of the angle cos and Pearson product-moment correlation

coefficient r between the Lagrangian accelerations aL, the Eulerian acceleration aE, the convective

contribution aC = N and the pressure gradient aC = Π at nondimensional time St = 10. The

correlation coefficient is determined for all three components of the vector fields.

Ri 0 0.1 0.2 0.5 1

r(aL,aE) 0.0284 0.0510 0.0882 0.2852 0.6634

r(aL,aC) 0.5823 0.6205 0.6232 0.5493 0.2741

r(aE,aC) -0.7961 -0.7516 -0.7241 -0.6443 -0.5378

r(aL,aP ) -0.9728 -0.9545 -0.9211 -0.7014 -0.2843

cos(aL,aE) 0.1617 0.1957 0.2397 0.4347 0.7033

cos(aL,aC) 0.4199 0.4579 0.4582 0.3749 0.1964

cos(aE ,aC) -0.6573 -0.5945 -0.5563 -0.4561 -0.3538

cos(aL,aP ) -0.9110 -0.8761 -0.8157 -0.5273 -0.2659
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TABLE VI. Pearson product-moment correlation coefficient r for the scale-dependent Lagrangian

and Eulerian accelerations at nondimensional time St = 10. The correlation coefficient is deter-

mined for all three components of the accelerations.

Ri 0 0.1 0.2 0.5 1

r (j = 0) 0.8584 0.9716 0.9892 0.9969 0.9995

r (j = 1) 0.8065 0.9347 0.9625 0.9957 0.9990

r (j = 2) 0.5208 0.6709 0.8287 0.9728 0.9921

r (j = 3) 0.1988 0.3427 0.5072 0.8257 0.9512

r (j = 4) 0.0884 0.1380 0.2141 0.4959 0.7765

r (j = 5) 0.0308 0.0478 0.0739 0.2002 0.4528

r (j = 6) 0.0116 0.0196 0.0304 0.0993 0.2919

r (j = 7) 0.0037 0.0097 0.0248 0.1248 0.3337

r (j = 8) -0.0052 0.0200 0.0261 0.1707 0.3837

TABLE VII. Scale-dependent Lagrangian and Eulerian acceleration statistics for Ri = 0.1 at

nondimensional time St = 10 showing the rms of the Lagrangian and Eulerian acceleration, aE

and aL, and the flatness, FlaE and FlaL for the total and the scale-dependent contributions at

scale 2−j .

j total 0 1 2 3 4 5 6 7 8

aL 9.833 0.156 0.361 0.769 1.787 3.672 5.666 5.773 3.491 1.280

FlaL 26.041 4.933 3.468 4.706 4.968 6.844 10.979 39.138 119.480 252.821

aE 11.689 0.150 0.360 0.682 1.589 3.477 6.026 7.137 5.344 2.364

FlaE 13.413 4.296 3.304 4.103 5.061 5.981 8.114 12.607 27.600 65.829
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TABLE VIII. Scale-dependent Lagrangian and Eulerian acceleration statistics for Ri = 1 at nondi-

mensional time St = 10 showing the rms of the Lagrangian and Eulerian acceleration, aE and aL,

and the flatness, FlaE and FlaL .

j total 0 1 2 3 4 5 6 7 8

aL 0.942 0.079 0.257 0.328 0.405 0.450 0.435 0.336 0.190 0.058

FlaL 4.111 5.690 3.210 4.042 4.064 4.248 6.316 11.850 15.906 38.999

aE 1.075 0.079 0.257 0.330 0.410 0.473 0.530 0.483 0.254 0.062

FlaE 5.691 5.700 3.210 4.021 4.034 4.166 6.524 10.411 21.338 66.034

42


	Lagrangian and Eulerian Accelerations in Turbulent Stratified Shear Flows
	Abstract
	I Introduction
	II Approach
	A Equations of Motion
	B Numerical Approach
	C Variance Estimates for the Lagrangian and Eulerian Accelerations in Stratified Shear Flow
	D Scale-dependent decomposition of Lagrangian and Eulerian accelerations
	E Geometrical statistics

	III Results
	A Turbulence Evolution
	B Lagrangian and Eulerian Accelerations
	C Lagrangian and Eulerian Time-Rates of Change of Fluctuating Density

	IV Conclusions
	 Acknowledgments
	A Lagrangian and Eulerian Time-Rates of Change of Fluctuating Vorticity
	B Lagrangian and Eulerian component pdfs
	 References


