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Abstract We herein propose an algorithm for track-
ing smooth bifurcations of nonlinear systems with in-
terdependent parameters. The approach is based on a
complex formulation of the well-known Harmonic Bal-
ance Method (HBM). Hill’s method is used to assess
the stability of the computed forced response curves
and a minimally extended system is built to allow for
the parametric continuation of the detected bifurcation
points. The feasibility of coupling HBM-based mini-
mally extended systems and arclength continuation al-
gorithms is established and demonstrated. The method
offers an efficient way of determining the stability re-
gions of the system. The methodology is applied on a
spur gear pair model including the backlash nonlinear-
ity and subjected to transmission error and mesh stiff-
ness fluctuation whose harmonic contents depend on
several parameters that do not appear explicitly in the
equations of motion.

Keywords Bifurcation analysis · Harmonic balance
method · Nonlinear gear dynamics · Numerical
continuation · Vibro-impacts · Gear backlash

1 Introduction

The design of modern mechanical systems warrants
the consideration of nonlinearities and their impact on
the dynamic behaviour of the system. This constitutes
a challenge, as sources of nonlinearity are numerous.
One can, for instance, cite distributed geometric non-
linearities induced by large deflections in slender struc-
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tures [64,65], composite materials used in lightweight
structures [22,68], friction in bolted assemblies [21,45],
hertzian contact [47] and contact loss in geared sys-
tems [6]. This often results in complicated dynamics as
nonlinear behaviours heavily deviate from their linear
counterparts. Among the various phenomena that non-
linear systems can exhibit, one can mention periodic
and quasi-periodic responses, subharmonic oscillations,
chaos, coexisting solutions and so forth.

A nonlinear dynamic analysis usually consists in
following the evolution of periodic solutions with the
excitation frequency. The most commonly encountered
techniques couple a time-domain method, such as the
shooting method, or a frequency domain method, such
as the harmonic balance (HBM), with a continua-
tion algorithm [59]. Time domain techniques are read-
ily available in continuation toolboxes such as COCO
[12], AUTO [16] (with specialized drivers SLIDECONT
[13], HOMCONT [9] and TC-HAT [62]) or MATCONT
[28]. These softwares are based on a Petrov-Galerkin
method, namely the orthogonal collocation. The HBM
has seen a widespread use in fields as diverse as gear
dynamics [1,2,51,70], rotordynamics [56], brake squeal
[11], bladed disks dynamics [52], nonlinear electri-
cal circuits [26,25], fluid-structure interactions [60,19],
micro-electro-mechanical systems (MEMS) [36], nonlin-
ear tuned vibrations absorbers [30,14]. Karkar et al. [40]
proposed a comparison between the orthogonal colloca-
tion and the HBM. They proved that the latter was less
memory-demanding and offered better convergence, es-
pecially when applied to nonsmooth nonlinearities.

One of the difficulties of the harmonic balance
method lies in expressing the nonlinear forces in the
frequency domain. Woiwode [67] provides a thorough
comparison between two algorithms, HBM-PreCo and
HBM-ANM. The former consists in performing a suc-
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cession of predictions, usually in the direction of the
tangent of the solution branch at a given iteration, fol-
lowed by corrections with a Newton-like solver. The
nonlinear forces are computed by the alternating fre-
quency/time procedure (AFT) [5] which takes advan-
tage of the existence of a closed-form expression of the
nonlinear forces in the time domain. The latter, on the
other hand, is a pure frequency domain formulation of
the HBM which relies on expanding the solution curve
as high-order Taylor series [10,33,39]. It is shown that,
while the HBM-ANM algorithm offers interesting per-
formances with smooth nonlinearities, the AFT-based
algorithm is more suitable for problems involving non-
smooth nonlinearities such as contact.

Due to the multiplicity of possible phenomena and
parameters involved, parametric analyses are required
to gain a thorough understanding of the nonlinear dy-
namic behaviour of the system. Unfortunately, such
analyses often lead to intractable computations. Be-
sides, mechanical systems operating in the nonlinear
regime can possess isolated solutions, i.e, solutions de-
tached from the main solution branch. An elegant so-
lution to these problems consists in following the evo-
lution of bifurcation points, where qualitative changes
of the system’s behaviour occur, when a parameter is
varied. Kuether et al. [44] tracked saddle-node bifur-
cations to unveil the relationship between modal inter-
actions in multi-degree-of-freedom systems and isolated
solutions. Furthermore, Alcorta [3] studied the creation
of subharmonic isolas in a single degree-of-freedom os-
cillator with asymmetric clearances by tracking period-
doubling bifurcations. To achieve this, equations char-
acterizing the bifurcations of interest are usually ap-
pended to the equilibrium equations in order to form
either a standard extended system [3,69,30] or a min-
imally extended system [4,27]. The former technique
is quite common in the bifurcation tracking literature.
The first attempts at numerically following singular
bifurcations date back to the late 1970s. Seydel [58]
proposed a standard extended system to study branch
point bifurcations. Moore and Spence [50] later used
such extended systems to compute saddle-node bifur-
cations. More recently, Xie et al. [69] coupled stan-
dard extended systems with the HBM to follow saddle-
node, branch points and Neimark-Sacker bifurcations
and eventually period-doubling bifurcations [3]. Mini-
mally extended systems, on the other hand, have seen
a much more limited use. They were first introduced by
Griewank and Reddien [31]. Such systems rely on defin-
ing auxiliary quantities that are determined by solving
a linear system of equations. In particular, when the
bifurcation is characterized by the singularity of a jaco-
bian matrix, the expansive computation of a determi-

nant can be bypassed by using a bordering technique
[17], resulting in a single scalar equation added to the
extended system.

The parameters considered in the literature are usu-
ally the damping ratio, forcing amplitude and nonlin-
earity level. One peculiarity of geared systems is the in-
ternal excitation generated by the meshing process and
associated to the transmission error defined as the dif-
ference between the instantaneous position of the driven
gear and the position it would occupy if gears were geo-
metrically perfect and infinitely rigid [66]. It mainly re-
sults from teeth deflections and profile deviations, both
manufacturing errors and intentional profile modifica-
tions [66,53,8]. The transmission error is also respon-
sible for the fluctuation of the mesh stiffness between
the mating gear teeth. This generates a multi-harmonic
parametric internal excitation of the system. Numerous
parameters governing the dynamic response are inter-
dependent. For instance, tooth deflections and conse-
quently the transmission error and the mesh stiffness
fluctuations vary with the input torque. Furthermore,
a change in the mean value of the mesh stiffness mod-
ifies the modal basis of the underlying linearized gear
system under load. Consequently, modifying of the in-
put torque not only changes the spectral content of the
excitation but also the frequency and amplitude thresh-
old at which contact loss is likely to occur, leading to
vibro-impacts between the active and reverse flanks of
the gear teeth [55].

To the author’s best knowledge, the present paper is
the very first attempt at employing bifurcation tracking
to study nonlinear gear dynamics. It is structured as fol-
lows: we first introduce the complex harmonic balance
method (CHBM) and its coupling with minimally ex-
tended systems and arclength continuation algorithms
in section 2. The numerical gear model and specifics
of how the interdependant parameters are handled are
detailed in section 3. The results obtained with the pro-
posed methodology are presented and discussed in sec-
tion 4 and section 5 concludes the paper.

2 Numerical procedure

The objective of this section is to propose an original
numerical procedure which allows the tracking of bifur-
cation points.

2.1 Complex Harmonic Balance Method

In the general case, the equation of motion of a n
degrees-of-freedom (DoF) model can be written in ma-
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trix form:

Mq̈+Cq̇+Kq+ fnl(q) = fex (1)

whereM, C,K are respectively the mass, damping and
stiffness matrices and q is the vector of displacements
of each DoF. fnl and fex are vectors containing the non-
linear forces and external periodic forcing, respectively.
Note that obvious time dependence is ommitted in the
notations for clarity.

The following original complex formulation of the
harmonic balance method (CHBM) relies on expand-
ing the periodic solution q of fundamental frequency Ω
in equation (1) as truncated complex Fourier series of
order H:

q = Re

( ∞∑
k=0

q̃ke
ikΩt

)
≈ Re

(
H∑
k=0

q̃ke
ikΩt

)
(2)

where q̃ contains the coefficients of the one-sided
Fourier transform. The frequency domain differential
operator ∇ is used to obtain the expressions of the ve-
locities and accelerations :

∇ = diag(0, i, 2i, . . . ,Hi) (3)

It follows:

q̇ = [TΩ∇⊗ In] q̃ (4)
q̈ =

[
TΩ2∇2 ⊗ In

]
q̃ (5)

where ⊗ is the Kronecker product and In the identity
matrix of size n. The complex exponential functions
form an orthogonal Fourier basis T on which the so-
lution is decomposed. The resulting expression is then
plugged into eq. (1). The passage from the time domain
to the frequency domain is done by eliminating the time
variable via a Galerkin projection on the same Fourier
basis T with the following hermitian inner product:

〈f, g〉 = 2

T

∫ T

0

f(t)g(t)dt (6)

This yields a residual which consists of a set of n(H+1)

nonlinear algebraic equations

R(q̃, Ω) = Z(Ω)q̃+ f̃nl(q̃)− f̃ex = 0 (7)

where Z(Ω) is the dynamic stiffness matrix duplicated
on each considered harmonic:

Z(Ω) = Ω2∇2 ⊗M+Ω∇⊗C+ IH+1 ⊗K (8)

2.2 Treatment of the nonlinear forces

One of the main challenges of using the HBM consists
in determining the Fourier coefficients of the nonlin-
ear forces. The target application of this study is a
geared system. Motion and force are transmitted by
contacts between mating gear teeth. An internal exci-
tation is generated by the meshing process or the cyclic
disturbance of the circular motion of input shaft. Fur-
thermore, backlash (clearance) is introduced through
manufacturing tolerances in order to allow for assem-
bly and operation. Under particular operating condi-
tions and beyond an excitation threshold, contact loss
between gear teeth may occur, the gear response is then
characterized by impacts between the active and/or the
reverse tooth flanks, leading to a highly nonlinear and
discontinuous dynamic mesh force [37,54]. The corre-
sponding proposed contact modelling is described in
detail in section 3.2.

The alternating frequency-time (AFT) procedure [5]
is implemented in order to evaluate the Fourier coeffi-
cients of the nonlinear forces. In practice the nonlin-
ear response is sampled at specific time instants and
back and forth transformations between the time and
frequency domains are performed. The nonlinear force
law being discontinuous, this can induce sampling er-
rors as the fixed discretization does not ensure a good
approximation of the location of the discontinuity. The
approach adopted in this study is the classical AFT
where the DFT is replaced by the fast Fourier trans-
form (FFT). This allows for a higher sampling rate,
thus reducing the discretization-induced errors, while
keeping the computational effort reasonable.

𝐪 𝐪 t , ሶ𝐪(t)
IFFT

𝐟nl(𝐪, ሶ𝐪, t)ሚ𝐟nl
FFT

Frequency domain Time domain

Fig. 1: Illustration of the implemented AFT procedure.

The AFT algorithm is illustrated in Fig. 1. The
Fourier coefficients of the solution at a given iteration
are converted to the time domain by an inverse fast
Fourier transform (iFFT). This time domain solution
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is used to compute the evolution of the nonlinear forces
and their derivatives over one fundamental period of
vibration. The resulting signal is then transferred back
into the frequency domain by a FFT.

2.3 Continuation of the solution with respect to the
excitation frequency

At a given frequency, the forced response curve of a
nonlinear system may exhibit multiple solutions. From
a purely geometrical standpoint, this phenomenon is
associated with turning points, where the curve folds
and reverses direction with respect to the excitation
frequency. The frequency parameter is therefore freed
during the analysis to overcome this issue. The pro-
posed methodology couples the arc-length continuation
procedure [59] to the HBM.

The fundamental idea of the arc-length continua-
tion is to parameterize the sought solution curve by the
curvilinear abscissa s. As a result, the displacement q̃(s)
and frequency Ω(s) also depend on s. In the following
we suppose that iteration k is a converged solution of
equation (1). When that is not the case, a Newton-like
solver is used with an initial guess until convergence is
reached. Given a converged solution at iteration k, the
solution at iteration k+1 is first estimated by comput-
ing the tangent vector ∆Q̃ = (∆q̃, ∆Ω)

T :[
∂q̃R ∂ΩR
∆q̃T ∆Ω

]
(k)

(
∆q̃
∆Ω

)
=

(
0
1

)
(9)

where ∂q̃ and ∂Ω represent the partial derivatives with
respect to the vector of Fourier coefficient and fre-
quency, respectively. The predicted solution, denoted
by the subscript (p), is given by:(
q̃
Ω

)
(p)

=

(
q̃
Ω

)
(k)

+∆s

(
∆q̃
∆Ω

)
(10)

where ∆s is the continuation step. Since the frequency
Ω is treated as an unknown, the system composed of
n(H+1) equations and n(H+1)+1 unkwowns is under-
constrained. The following constraint equation is there-
fore appended to equation (7):

P (q̃, Ω, s) = (∆q̃)T (∆q̃) +∆Ω2 −∆s2 = 0 (11)

Starting from the predicted solution, Newton-like cor-
rections bounded by a radius ∆s of a hypersphere cen-
tered on the solution at iteration k (see Fig. 2) are per-
formed in order to iteratively compute the converged
solution to this augmented system of equations:(
q̃
Ω

)
(k+1)

=

(
q̃
Ω

)
(k)

−
[
∂q̃R ∂ΩR
∂q̃P ∂ΩP

]−1
(k)

R(k)
ex (12)

Fig. 2: Illustration of the arc-length continuation.

where R(k)
ex = (R(q̃, Ω), P (q̃, Ω, s))T is the extended

residual.
Note that system (12) involves complex-valued

Fourier coefficients. Solving (12) with a Newton-like
method thus requires the extended residual function to
be holomorphic [43], which is not usually the case. The
complex extended residual is therefore split into real
and imaginary parts during the correction steps to be
able to resort to real arithmetics.

2.4 Detection of bifurcation points

Local bifurcations1 correspond to sudden changes of the
system behaviour. They are associated with a change
of local stability and possibly mark the appearance of a
different sort of solution. To study such changes, a sta-
bility analysis is carried out using Hill’s method [32]. It
requires a proper post-processing to give accurate re-
sults as previously observed in [46]. A periodic solution
q of eq. (1) is first perturbed by an exponential term:

x0(t) = q(t) + p(t)eΛt (13)

This solution is expressed as truncated Fourier series
of order H and plugged into equation (1). A Galerkin
procedure is then applied and a first order Taylor ex-
pansion is performed on the nonlinear terms. This yields
a quadratic eigenvalue problem :[
Λ2M̃+ ΛC̃+ ∂q̃R

]
p̃ = 0 (14)

1 Since global bifurcations are out of the scope of this pa-
per, local bifurcations are henceforth simply referred to as
bifurcations.
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with

M̃ = I2H+1 ⊗M
C̃ = ∇⊗ 2M+ I2H+1 ⊗C

(15)

Note that the real harmonic balance formalism is used
in the stability analysis since the complex form is solely
used during the computation of the residual and the
AFT algorithm. The above equation is then trans-
formed into a linear eigenvalue problem to reduce the
computational effort [63]:[

C̃ ∂q̃R
−In(2H+1) 0

]
+ λ

[
M̃ 0
0 In(2H+1)

]
= 0 (16)

Of the complete set of 2n(2H + 1) eigenvalues, only
2n are expected to have a physical signification, the
remaining solutions being artifacts stemming from the
multiplicity of harmonics. A robust post-processing of
the computed eigenvalues is therefore necessary. Moore
[49] demonstrated that sorting the eigenvalues by their
imaginary parts and keeping only the 2n eigenvalues
with smallest imaginary part yielded accurate results
for a sufficiently high harmonic truncation order. A con-
verged solution point is eventually deemed stable if the
real part of all retained eigenvalues is negative, and un-
stable otherwise.

The bifurcation involved in the change of stability
is deduced from the path of the eigenvalues as their
real part switch from a negative value to a positive one
(see Fig. 3). However, in the framework of bifurcation
tracking, test functions φ whose zeros correspond to a
particular bifurcation point are defined. Branch points

Fig. 3: Bifurcation scenarii depending on the Imaginary
part of the crossing eigenvalue.

(BP) and saddle-node (SN) bifurcations are character-
ized by the singularity of the jacobian matrix of the
residual (7) that is:

φBP,SN = det (∂q̃R) = 0 (17)

Since both bifurcations are detected with this test func-
tion, a second criterion is used to discriminate SN from
BP bifurcations. It is possible to differentiate SN and
BP bifurcations by computing the rank of the jacobian
matrix augmented with the vector corresponding to the
derivatives with respect to the continuation parameter.
However, when a SN bifurcation point is encountered,
the solution branch folds and turns back with respect to
this parameter. Such bifurcations are therefore identi-
fied by monitoring the sign of the frequency-component
of the tangent vector at each iteration as it is faster to
check for a change of sign of a scalar than to compute
the rank of a matrix:

φSN = ∆Ω (18)

A third test function is defined to detect Neimark-
Sacker (NS) bifurcations, corresponding to the creation
of a branch of quasi-periodic solutions, and period-
doubling (PD) bifurcations. Both bifurcations are char-
acterized by a pair of complex conjugate eigenvalues
crossing the imaginary axis. Their detection rely on the
bialternate matrix product [29]. For A, B two square
matrices of size n, the bialternate product A � B is
defined as

A�B(p,q),(r,s) =
1

2

(∣∣∣∣apr apsbqr bqs

∣∣∣∣+ ∣∣∣∣bpr bpsaqr aqs

∣∣∣∣) (19)

with (1 ≤ q < p ≤ n) and (1 ≤ s < r ≤ n). The
product 2A� In is a diagonal matrix composed of the
sums λi + λj of the eigenvalues of matrix A [27] and is
singular when a pair of complex conjugate eigenvalues
crosses the imaginary axis. A suitable test function is
formulated with the eigenvalue matrix V obtained with
Hill’s method:

φNS,PD =
∣∣2V� I

∣∣ (20)

In order to differentiate between NS and PD bifurca-
tions, the imaginary part of the crossing eigenvalues is
monitored. In case of a PD bifurcation, the imaginary
part equals Ω/2. A NS bifurcation is detected other-
wise. In the special case of eigenvalues that are real
conjugates, a neutral saddle point is detected and can
therefore be ignored.
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2.5 Tracking of a bifurcation point with respect to an
additional parameter

The system of equation is augmented in order to follow
the evolution of a bifurcation with respect to parameter
µ. The new vector of unknowns reads:

Q̃ =
(
q̃T µ Ω

)T
(21)

An equation characterizing the bifurcation of interest
is added to the residual to provide closure:

Rtrack =

 R(q̃, µ,Ω)

g(q̃, µ,Ω)

P (q̃, µ,Ω, s)

 = 0 (22)

where P corresponds to the equation of a hypersphere,
similar to that described in Sect. 2.3, in a n(2H + 1) +

2-dimensional space:

P (q̃, Ω, s) = (∆q̃)T (∆q̃)+∆µ2+∆Ω2−∆s2 = 0 (23)

and g is a scalar function that characterizes the bifur-
cation of interest. As bifurcation points can be detected
by monitoring the singularity of a matrix depending on
the type of studied bifurcation, the proposed method-
ology relies on a bordering technique similar to that
implemented in MATCONT [28] and later adapted to
the HBM framework by Detroux et al. [15]. It consists
in defining a scalar function g that is evaluated by solv-
ing a linear system of equation defined as:[
A b
d† 0

](
w
g

)
=

(
0
1

)
(24)

whereA denotes the jacobian matrix ∂q̃R when SN and
BP bifurcations are tracked, or 2V� I2n in the case of
NS and PD bifurcations. b and d are bordering vectors
that ought to ensure that system (24) is nonsingular
and the superscript † denotes the hermitian transpose.

Special attention must be devoted to the choice
of bordering vectors used during the tracking proce-
dure as they greatly influence the quality of the results.
For saddle-node bifurcations, vectors spanning the null
space of matrix are commonly used. The singular value
decomposition (SVD) of a matrix A is used to deter-
mine the span of its null space as the right singular
vectors associated with singular values equal to zero
provide an orthonormal basis of the null space N (A) of
A. However, during the continuation and Newton cor-
rections, the jacobian matrix may not be singular. In
that case, the null vectors are approximated using the
singular value decomposition (SVD) of the matrix.

Canonical basis vectors ej of Rn(2H+1), i.e.
n(2H+1)-dimensional vectors whose j-th component is
equal to one and all the others equal to zero, are also

good candidates for bordering vectors depending on the
application or the type of bifurcation being studied.

Corrections are then performed with a Newton-like
solver (Fig. 4):

 q̃
µ

Ω


(k+1)

=

 q̃
µ

Ω


(k)

−

∂q̃R ∂µR ∂ΩR
∂q̃g ∂µg ∂Ωg

∂q̃P ∂µP ∂ΩP

−1
(k)

R(k)
track

(25)

As in the previous section, the extended residual is split
into real and imaginary parts to be able to use jacobian-
based solvers. Future work may look into implement-
ing jacobian-free Krylov-Newton solvers such as GM-
RES [42]. The derivatives of the residual and arc-length
equation with respect to the unknown are calculated an-
alytically. In particular, ∂q̃R and ∂ΩR are essentially
the same as with a classical forced response analysis.
The analytical derivations for the additional term ∂µR
are detailed in the next section and depend on the con-
sidered dynamic model. The partial derivatives of the
bordering equation with respect to the unknowns are
expressed as [15]:

∂q̃g = −v†∂q̃Aw (26)
∂µg = −v†∂µAw (27)
∂Ωg = −v†∂ΩAw (28)

where v is computed by solving:[
A b
d† 0

]†(
v
h

)
=

(
0
1

)
(29)

The terms ∂q̃A, ∂µA, ∂ΩA are computed by finite dif-
ference to avoid cumbersome analytical developments
for every new tracking parameter. However, the com-
putations are parallelized to speed up the code.

3 Model description

3.1 Mathematical model

The studied system corresponds to a reverse spur gear
pair, with a gear ratio equal to 1:1. The characteristics
of the gear pair are summarized in Table 1. The model
assumes that the gear blanks are assimilated to 2 rigid
disks with lumped inertia I1 and I2. It has two degrees
of freedom corresponding to the gear rotations θ1 and
θ2. They are connected by the nonlinear restoring force
acting at the gear mesh, as depicted in Fig. 5. The
equations of motion read as follows:{
I1θ̈1 − T1 + rb,1fnl = 0

I2θ̈2 + T2 − rb,2fnl = 0
(30)
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Prediction step

Computation of the residual

Convergence

Initial guess

Solve tangent equation

HB equilibrium Arc�length equation Bordering

Max. number of iterations End of parameter interval

Terminate continuation

YES

NO

NO

NO

YES YES

Correction step

Newton�like correction

Fig. 4: Flow chart of the bifurcation tracking algorithm

where T1 and T2 are the input and output torques, re-
spectively, rb,k denotes the base radius of gear k and
fnl is the nonlinear restoring force acting between the
gear teeth. These equations model a semi-definite sys-

Table 1: Characteristics of the gear pair

Name Gear 1 Gear 2 Unit

Module m 2 mm
Number of teeth Z 50 50 -
Pressure angle α 20 deg
Base radius rb 46.984 46.984 mm

Profile shift coefficient x 0 0 -
Addendum coefficient ha 1 1 -
Dedendum coefficient hd 1.25 1.25 -

Face width bf 20 mm

Tip relief modification

Length l 1.75 1.75 mm
Amount a 5 5 µm

tem with a rigid-body mode corresponding to the ideal
input/output law of the gear pair in order to eliminate
the rigid body mode:

θ̇2

θ̇1
=
Z1

Z2
=
rb,1
rb,2

(31)

In the following, we introduce the transmission error q,
defined as the relative displacement at the gear mesh:

q = rb,1θ1 − rb,2θ2 (32)

The equation of motion can therefore be written as:

Meq q̈ + fnl (q, t) = Fs (33)

withMeq =
I1I2

r2b,1I2+r
2
b,2I1

Fs =
T1

rb,1
= T2

rb,2

(34)
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rb,1

rb,2

�
fnl(t)

Fig. 5: Nonlinear gear model.

where Meq is an equivalent mass associated with the
lumped inertia I1 and I2 and F is the applied force as-
sociated with the input and output torques. The sources
of damping in gear transmission are numerous and dif-
ficult to evaluate. It is therefore usual [20,38] to define
an equivalent viscous damping to model an average en-
ergy dissipation in the system, although this does not
account changes in the state of contact. An equivalent
viscous damping term C = 2ξ

√
kmMeq, with ξ = 5%

and km the mean value of the mesh stiffness (sect. 3.2),
is introduced at this stage. We consider a linear damp-
ing force that is not influenced by the contact loss non-
linearity. The complete equation of motion thus reads:

Meq q̈ + Cq̇ + fnl (q, t) = Fs (35)

3.2 Contact modelling

Depending on the operating conditions, the above de-
scribed model can exhibit either:

– a linear behaviour when the amplitude of the dy-
namic response is smaller than the static deflection,

– single-sided impacts when oscillations are sufficient
to generate intermittent contact but small enough
to never cross the backlash,

– double-sided impacts when the vibration amplitude
is large enough that impacts on the reverse flank of
the adjacent tooth occur.

The nonlinear force fnl representing the contact force
between gear teeth, or lack thereof, is modelled by a
piecewise (PW) linear function. The transmitted torque
induces a static deflection qs, known as the static trans-
mission error (STE), which depends on the angular po-
sition of the driving wheel θ1 and is defined at a low
rotational speed by eq. (32). This generates a periodic
displacement excitation for non-zero rotational speeds.
Linearizing the contact force around the static equilib-
rium leads to the definition of a periodic mesh stiffness
km(t) which in turn results in contact loss possibly oc-
curring at a threshold j(t) (see Fig. 6):

j(t) = b+ qs(t)−
Fs

km(t)
(36)

where b is the constant half backlash. The nonlinear
mesh force can therefore be written as:

fnl (q, t) = km(t) (q − j(t))H (q − j(t))
+ km(t) (q + j(t))H (−q − j(t)) (37)

where H is the Heaviside step function.

𝐹

𝑘𝑚(𝑡)𝐹𝑠

𝑞
𝑏 𝑗 𝑡 𝑞𝑠(𝑡)−𝑏

Fig. 6: Nonlinear force model.

One might argue that using a PW linear represen-
tation of the contact force might lead to numerical dif-
ficulties, especially convergence issues. In practice, PW
smooth force laws are often regularized with third or-
der polynomials [20,61], square root functions [34,67],
arctangent/hyperbolic tangent functions [71] or quintic
splines [41] to cite a few. More recently, Margielewicz
et al. [48] and Saunders et al. [57] proposed two studies
that aimed at assessing the capacity of regularized force
laws to capture various nonlinear phenomena including
chaotic responses.



Bifurcation tracking of geared systems with parameter-dependent internal excitation 9

Although regularization techniques may help con-
vergence, such functions generate other difficulties.
First, they induce new sources of errors since the
amount of smoothening depends on a user-defined pa-
rameter that needs to be fine tuned and can result in
either a nonzero force when contact is lost or in in-
correct predictions of the contact forces. Besides, when
the contact is stiff, regularization techniques often prove
suboptimal since small errors in the displacement may
lead to severe inaccuracies in the computed force. Fi-
nally, with appropriate preconditioning, e.g. by using a
Jacobi preconditioner as suggested in [43], the HBM is
found to offer quite satisfying convergence, thus elimi-
nating the need for regularization.

The STE qs(t) and mesh stiffness km(t) being peri-
odic signals whose fundamental frequency corresponds
to the mesh frequency ωm = Z1Ω, they can be written
as truncated Fourier series:
qs(t) =

Hqs∑
k=0

qc,ks cos(kΩt) + qs,ks sin(kΩt)

km(t) =
Hkm∑
k=0

kc,km cos(kΩt) + ks,km sin(kΩt)

(38)

where Hqs and Hkm are the harmonic truncation order
of the STE and the mesh stiffness, respectively. Without
loss of generality, we assume Hqs = Hkm in this study.

The STE and mesh stiffness are computed with an
in-house code. The complete numerical procedure is de-
tailed in [53]. The STE is evaluated at several successive
angular positions θ1 with contact established along con-
tact lines that are evaluated prior to the computation.
The location of these theoretical contact lines is deter-
mined by means of a kinematic analysis carried out for
each angular position of the driving wheel. This allows
for the estimation of the location of the contact point on
the gear teeth. The equation describing the tooth con-
tact at an angular position θ1 for a transmitted load Fs
reads:{
H (θ1) .P (θ1) = qs (θ1) .1− e (θ1)

1T .P (θ1) = Fs
(39)

under the constraints{
−H (θ1) .P (θ1) + qs (θ1) .1 ≥ e (θ1)

P (θ1) ≥ 0 (40)

The contact lines are discretized and a compliance ma-
trix H is built using an analytical tooth bending model
based on the Reissner-Mindlin thick plate theory cou-
pled to a Ritz-Galerkin approximation. The interested
reader can find more details on the approach in [24].
This matrix links the displacement stemming from the
global deformation of the teeth to the applied forces.
A local deformation estimated by Hertz theory is in-
troduced a posteriori. Potential manufacturing errors,

tooth profile modifications are introduced in vector e
and P (θ1) is the distributed load on the contact lines.

As with the STE, the mesh stiffness is defined for
every angular position θ1 of the driving gear. It is com-
puted by differentiating the transmitted load Fs with
respect to the STE qs:

km(θ1) =
∂Fs

∂qs(θ1)
(41)
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Fig. 7: Time evolution of the static transmission error
and mesh stiffness computed by solving Eq. (39) and re-
constructed with 6 harmonics for torque values ranging
from 20 N·m ( ) to 200 N·m ( )

Figure 7 shows the time evolutions of the STE and
mesh stiffness computed with the above-described pro-
cedure. Several computations were carried out with
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torques ranging from 20 N·m to 200 N·m and results are
displayed over two mesh periods. One can see that the
mean value of the STE increases with the input torque.
Besides, the peak-to-peak value of the static transmis-
sion error decreases for torques up to about 120 N·m
and increases for higher input torques. This minimum
is linked to the length and amount of tip relief applied
to the gear tooth profile (Table. 1) and corresponds to
the optimal torque for which the excitation is minimum
[18]. Figure 7 also shows that the mean value and the
fluctuations of the mesh stiffness no longer evolve for
torques higher than 80 N·m.

3.3 Internal excitations

As stated in the introduction, the internal excitations
qs(t) and km(t) are quite sensitive to several operating
and design parameters such as the input torque or the
tooth profile modifications. The main limitation is that
the STE qs(t) and the mesh stiffness km(t) are usu-
ally used as input data in the dynamic simulations of a
geared system. Their dependence on these parameters
therefore does not appear explicitly in the equations of
motion. This issue has to be addressed since the bi-
furcation tracking procedure requires the terms of the
equations of motion and their derivatives be evaluated
for each value of the tracking parameter µ.

In the algorithm used in this paper, the time evolu-
tions of the internal excitation are reconstructed from
their Fourier coefficients in the AFT procedure:
qs(µ, t) =

Hqs∑
k=0

qc,ks (µ) cos(kΩt) + qs,ks (µ) sin(kΩt)

km(µ, t) =
Hkm∑
k=0

kc,km (µ) cos(kΩt) + ks,km (µ) sin(kΩt)

(42)

During the bifurcation tracking procedure, coefficients
qc,ks , qs,ks , kc,km and ks,km and their derivatives have to be
evaluated at a priori unknown values of parameter µ.
A third order polynomial fit was found to provide sat-
isfying approximations of the Fourier coefficients which
can exhibit a non-monotonic evolution with parameter
µ. However, the mean value of the mesh stiffness k̃0m(µ)

is modelled with a hyperbolic tangent function K̃0
m(µ)

of the form:

K̃0
m(µ) = κ1 tanh(κ2µ) + κ3 (43)

where κ1 κ2, κ3 and κ4 are four coefficients determined
by solving a nonlinear curve-fitting problem in the
least-squares sense, that is:

Find κ = (κ1, κ2, κ3, κ4) ∈ R4 that solves

min
κ

∥∥∥κ1 · tanh(κ2µ+ κ3) + κ4 − k̃0m(µ)
∥∥∥2
2

(44)

Such a function is chosen for physical reasons. Indeed,
the mean value of the mesh stiffness is expected to in-
crease with the input torque. Using a third order poly-
nomial for this harmonic can therefore result in a non-
physical model due to oscillations known as Runge’s
phenomenon. As can be seen in Fig. 8 (with paramenter
µ corresponding to the applied torque), a hyperbolic
tangent fit prevents such oscillations and leads to a
more accurate model. Note that this issue could po-
tentially also be circumvented with the use of spline
interpolation.
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Fig. 8: Model of the first harmonics: mean value of the
mesh stiffness (a), real part of the 1st harmonic of the
mesh stiffness (c), imaginary part of the 1st harmonic
of the mesh stiffness (e), mean value of the STE (b),
real part of the 1st harmonic of the STE (d), imaginary
part of the 1st harmonic of the STE (f). The blue solid
line ( ) and the red dots ( ) correspond to the fitted
model and the computations with the in-house code,
respectively.
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4 Results and discussion

The following section aims at presenting the results ob-
tained with the proposed methodology applied to the
above-described gear model. The analysis is carried out
for an operating rotational speed range of [0 8000] rpm.
In the following, we focus on the primary resonance
of the SDOF gear pair. A single harmonic is there-
fore retained both for the STE and mesh stiffness func-
tions. It should however be stressed that the proposed
methodology can be easily extended to additional har-
monics if secondary resonances are of interest. For all
computations, the mean value as well as 7 harmonics
of the mesh frequency (ωm = Z1Ω) of the dynamic
response are retained. The vector of harmonics reads
H = (0 50 100 150 200 250 300 350)

T . Since the
investigated model consists of a single DoF, the sam-
pling rate for the AFT procedure was chosen relatively
high and set to 212.

The solution for each computed point being a
n(2H+1)+2-dimensional vector, we define here a scalar
quantity which is used to plot results. In the following,
the evolution of DTERMS corresponding to the root
mean square of the fluctuation of the dynamic trans-
mission error is plotted, that is:

DTERMS =

√∑
k>0

Qk (45)

with Qk the amplitude of the harmonic corresponding
to the k-th element of vector H excluding the 0-th har-
monic.

4.1 Description of the dynamic response

We first analyse the effect of the input torque on the
resulting dynamics. Increasing the input torque leads
to a larger static deflection of the gear teeth. Contact
loss is therefore less likely to occur, up to a point where
only large torque fluctuations can make the teeth lose
contact. As with all continuation procedures, the bifur-
cation tracking computation requires an initial guess.
This initial guess is computed thanks to a preliminary
forced response computation at one end of the torque
interval. Since the initial guess must be close to a bi-
furcation point, the preliminary computation ought to
be performed with a parameter for which the system’s
behaviour is expected to be nonlinear. For instance, we
are interested in the dynamic behaviour of the gear pair
in a torque range of [20 120] N·m. Since a high torque
tends to prevent contact loss, the forced response com-
putation is carried out at the lowest torque of the pa-
rameter interval T = 20 N·m. The corresponding mean

value of the mesh stiffness is equal to 447 N·µm which
results in a natural frequency of the underlying linear
system equal to f0 = ω0/2π = 5730 Hz. This mode is
excited by the internal excitation for an operating ro-
tational speed Ω = 720 rad/s and results are displayed
in Figure 9.
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Fig. 9: Forced response of the gear model for an input
torque T = 20 N·m.

Figure 9 shows that the system exhibits a pro-
nounced softening behaviour around the primary res-
onance. This is due to the fact that the response am-
plitude is such that the gear teeth do not stay in con-
tact over a full vibration cycle. This leads to an in-
termittent contact state and a smaller apparent mesh
stiffness. It should be noted that the contact loss is se-
vere enough that two saddle-node bifurcations emerge
on the main solution branch at Ω = 505 rad/s and
Ω = 400 rad/s, respectively. This is of particular impor-
tance since this gives rise to a hysteretic behaviour, i.e.
the well-known amplitude-jump phenomenon, that may
induce a sudden appearance of large-amplitude vibra-
tions of the geared system. Another important aspect
is that the system only exhibits single-sided impacts,
i.e, vibro-impacts only occur on the active tooth flank
and the amplitude of oscillation is never large enough
to cross the (half) backlash (see Fig. 10). If that were
the case, the solution branch around the primary res-
onance would fold back towards the high frequencies,
resulting in a hardening behaviour.

One can also note that, although only one harmonic
is considered in the internal excitation, a barely notice-
able resonance arises around Ω = ω0/100 = 360 rad/s
due to the convolution between the harmonic of the
STE and the mesh stiffness (Fig. 11). To ensure that
the computed solution has converged, another compu-
tation is carried out considering harmonics orders up
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Fig. 10: Dynamic transmission error on top of the pri-
mary resonance after the saddle-node bifurcation (a)
and close-up (b). The DTE and the gap limit are plot-
ted as a blue solid line ( ) and black dashed line ( ),
respectively.

to 7 · Z and ten sidebands around each harmonic of
the mesh frequency. Figure 12 shows the harmonic con-
tent of a point located on the upper branch of the pri-
mary resonance, where the harmonic distortion due to
the nonlinearity is expected to be largest. It is clear
that only harmonics multiple of the number of gear
teeth contribute to the response, therefore validating
the choice of retained harmonics. Besides, odd harmon-
ics are negligible due to the asymmetric modelling of
the gear backlash.

4.2 Bifurcation tracking with respect to the input
torque

Either detected saddle-node bifurcation can be chosen
as a starting point for the tracking procedure. Depend-
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Fig. 11: Spectral content of the response at Ω =

360 rad/s.
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Fig. 12: Spectral content of the response on the upper
branch of primary resonance at Ω = 400 rad/s showing
negligible harmonics.

ing on the discretization of the forced response curve
and ensuing quality of the initial guess, more iterations
than that needed for the remaining of the tracking may
be required. As explained is section 2.5, the null vectors
of the jacobian matrix of the HBM residual computed
via a SVD were used as bordering vectors. Figure 13
displays the saddle-node tracking curve and forced re-
sponse curves for a few different values of input torque.
Note that these additional curves are not required for
the analysis and only used in this paper for clarity and
validation.

Figure 13 shows that the location of the primary
resonance shifts towards the high frequencies as the in-
put torque is increased. Indeed, the resonance is excited
at a rotational speed of about Ω = 720 rad/s with an
input torque T = 20 N·m and Ω = 790 rad/s with
a torque T = 120 N·m. This behaviour is induced by
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the torque-dependence of the average mesh stiffness.
Note that the frequency at which the primary reso-
nance occurs is similar for input torques T = 95 N·m
and T = 100 N·m. This is coherent with Fig. 8a which
shows a linear increase of the average mesh stiffness
followed by a plateau around 540 N/µm. From figure
13, it is interesting to note that the maximum ampli-
tude increases with the input torque until it starts to
dwindle beyond T = 45 N·m. Despite the increasing
maximum amplitude, the extent of the region of insta-
bility, bounded by the solid red curve, does not grow
both in the torque-frequency and amplitude-frequency
planes. since the lower amplitude-limit of the SN curve
increases much faster than the upper limit.

One can see that not only does the resonance peak
straightens but the maximum amplitude also suddenly
decreases for high input torques. This highlights the in-
terdependence between the applied torque and the in-
ternal excitation: a larger static load not only results in
a larger static deflection but also has a significant influ-
ence on the harmonic content of both the STE and mesh
stiffness. Besides, modifying the mean value of the mesh
stiffness alters the damping term C = 2ξ

√
kmMeq (see

Fig. 8a). We can thus distinguish two torque ranges:
– Up to about T = 80 N·m, the mean value of the

mesh stiffness varies almost linearly with the input
torque. The evolution of the unstable region is there-
fore governed by two phenomena. Firstly, the larger
static deflection of the gear teeth induced by the
higher static load increases the amplitude of oscil-
lation required to lose contact. Secondly, since the
damping term is expressed as a square root of the
average mesh stiffness, the system is expected to
exhibit more energy dissipation, leading to smaller
vibration amplitudes.

– For torques higher than T = 80 N·m, the mean value
of the mesh stiffness shows a horizontal asymp-
tote and the damping no longer increases. Physi-
cally speaking, this comes from the fact that contact
is fully established and the global tooth deflection
overcomes the local deflection of the tooth profile de-
viations. As a result, the global dynamic behaviour
is now only governed by the load-induced deflection.
It is important to stress that tracking saddle-node

bifurcations in a geared system does not give the bound-
aries of vibro-impact responses as such responses are
bounded by grazing bifurcations, i.e. impacting peri-
odic orbits with a zero normal velocity [35]. Tracking
SN bifurcations can however provide an approximation:
the larger the unstable region, the larger the frequency
interval exhibiting vibro-impacts.

Besides, bifurcation tracking offers a very conve-
nient way of computing the stability regions of the sys-

tem as the analysis only requires a few preliminary com-
putations of the STE and mesh stiffness fluctuations to
build the model, contrary to having to finely discretize
the torque range and perform STE and mesh stiffness
fluctuations computations for each considered param-
eter value. Future work could look into developing a
fully coupled static and dynamic solver which would
eliminate the need for any preliminary computation.

4.3 Bifurcation tracking with respect to a tooth profile
modification

The following section aims at presenting the analysis
of the sensibility of the nonlinear dynamic response to
an implicit parameter which is of utmost importance
in the design of gears. Tooth profile modifications are
commonly employed to modify the internal excitation
and diminish the fluctuations of the static transmission
error for a target operating torque [7,18].

However, mechanical systems often operate in a
given torque range which obviously includes the torque
for which the STE fluctuation is minimized. Such de-
signs usually overlook the excitation stemming from the
fluctuating mesh stiffness. Besides, the sensibility of the
nonlinear dynamic response to variations in the profile
modifications, either intentional or coming from manu-
facturing defects, is seldom studied.

In the following, tip relief modifications ranging
from a = 0 µm, corresponding to the unmodified
tooth profile, to a = 15 µm are investigated. A torque
T = 100 N·m is applied to the system. The previous
section showed that such a torque is at the limit of
the region of instability for an amount of tip relief of
a = 5 µm. This section investigates the robustness of
this design with respect to a variability of the parame-
ter.

As in the previous section, a preliminary forced re-
sponse computation is carried out at one end of the pa-
rameter interval. In our case, the unmodified gear pair
(a = 0 µm) is used as a starting point. As shown in Fig.
14, the primary resonance lies around Ω = 750 rad/s
and is associated to a unstable region spanning about
∆Ω = 100 rad/s between two SN bifurcations. Com-
puting the associated SN curve reveals that increasing
the amount of tip relief reduces the distance between
the two SN bifurcations and the size of the associated
unstable region. Just before reaching an amount of tip
relief a = 3 µm, the two SN bifurcation merge together
and disappear, leading to a stable response. Note that in
this application, using null vectors in the bordered sys-
tem (24) proved unsatisfactory. Canonical basis vectors
of Rn(2H+1) were found to yield much more accurate
results.
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(a) Amplitude-frequency plane (b) Amplitude-torque plane

(c) Torque-frequency plane (d) 3D-space

Fig. 13: Forced response curves and saddle-node bifurcation tracking curve. Coloured solid and dashed lines in the
amplitude-frequency planes correspond to stable responses and unstable responses, respectively. Red circle markers
( ) denote saddle-node bifurcations. The saddle-node tracking curve is represented as a red solid line ( ).

Another computation can be initialized at the other
end of the parameter range (a = 15 µm) to verify
whether increasing the amount of tip relief does not re-
sult in the appearance of an additional unstable region.
The RMS value of the dynamic transmission error at
low frequency is much higher than with the unmodified
tooth profile, indicating a larger static deflection of the
gear teeth. Interestingly, the forced response curve for
an amount of tip relief of a = 15 µm reveals a heavily
nonlinear behaviour with a vibration amplitude about
twice as high as the response with an unmodified tooth
profile.

This indicates that there exist a subset of parameter
values that allows for a stable response over the whole
frequency range. Computing the SN tracking curve,

shows that increasing the amount of tip relief a beyond
5 µm prove suboptimal as another region of instabil-
ity, and associated softening behaviour is created. One
can also note that the point of emergence of SN bifur-
cations lies at a higher amplitude (DTERMS ≈ 3.5 µm
and a ≈ 5.2 µm) and than the one associated to the first
unstable region (DTERMS ≈ 3 µm and a ≈ 2.4 µm),
confirming that the static deflection is larger.

From these results, we can define a set of amount of
tip relief that ensures a stable response over the whole
range of rotational speed of the system. Considering the
studied system and an input torque T = 100 N·m, us-
ing gears modified with a tip relief a ∈ [3 5] µm yield
acceptable results. This result can also be used during
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(a) Amplitude-frequency plane (b) Amplitude-tip relief plane

(c) Tip relief-frequency plane (d) 3D-space

Fig. 14: Forced response curves and saddle-node bifurcation tracking curve. Coloured solid and dashed lines in the
amplitude-frequency planes correspond to stable responses and unstable responses, respectively. Red circle markers
( ) denote saddle-node bifurcations. The saddle-node tracking curve is represented as a red solid line ( ).

the design phase to estimate the required manufactur-
ing tolerances.

Finally, although the method is illustrated on a
SDOF gear model, the proposed methodology can be
employed on MDOF systems including the shafts, bear-
ings and housing flexibility and even large scale gear
transmissions (with appropriate model order reduction)
to optimize the tooth profile modifications of systems
potentially operating in a nonlinear regime associated
to contact loss and vibro-impact responses. This is a
particularly important result, as profile modifications
are usually designed using static computations [23] or
empirical modifications [72].

5 Concluding remarks

A frequency-domain method for tracking bifurcations
and determining the domain of stability of nonlinear
systems was introduced. The proposed methodology is
based on a complex formulation of the harmonic bal-
ance method coupled to an arc-length continuation al-
gorithm and bordering technique to form a minimally
extended system. The system is solved using a Newton-
like method requiring derivatives that can be formu-
lated (semi-)analytically. Future work may explore the
possibility of implementing a jacobian-free Newton-
Krylov solver to alleviate the cumbersome implementa-
tion of parameter-dependent partial derivatives or the
potentially expensive computation via finite differences.
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Bifurcation tracking analysis was applied to a
geared system for the very first time. The algorithm was
adapted to the peculiarities of such systems, namely the
parameter-dependant internal excitation and damping
(through the mean value of the mesh stiffness). The
methodology can be easily extended to an arbitrary
number of harmonics and be coupled with other means
of computing the STE and mesh stiffness, e.g. analyti-
cal of FE-based methods. The feasibility of developing
a fully-coupled solver could also be investigated.

Non-intrusive model order reduction techniques can
easily be used to study the domains of stability of multi-
degree-of-freedom gear transmissions, meaning that the
optimization of tooth profile modifications of large-scale
geared systems is now within reach.
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