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FURTHER ENUMERATION RESULTS CONCERNING A RECENT

EQUIVALENCE OF RESTRICTED INVERSION SEQUENCES

TOUFIK MANSOUR AND MARK SHATTUCK

Abstract. Let asc and desc denote respectively the statistics recording the number of ascents
or descents in a sequence having non-negative integer entries. In a recent paper by Andrews
and Chern, it was shown that the distribution of asc on the inversion sequence avoidance class
In(≥, 6=, >) is the same as that of n − 1 − asc on the class In(>, 6=,≥), which confirmed an
earlier conjecture of Lin. In this paper, we consider some further enumerative aspects related
to this equivalence and, as a consequence, provide an alternative proof of the conjecture. In
particular, we find recurrence relations for the joint distribution on In(≥, 6=, >) of asc and desc
along with two other parameters, and do the same for n − 1 − asc and desc on In(>, 6=,≥).

By employing a functional equation approach together with the kernel method, we are able to
compute explicitly the generating function for both of the aforementioned joint distributions,
which extends (and provides a new proof of) the recent result |In(≥, 6=, >)| = |In(>, 6=,≥)|.
In both cases, an algorithm is formulated for computing the generating function of the asc
distribution on members of each respective class having a fixed number of descents.

1. Introduction

Let Sn denote the set of permutations of [n] = {1, . . . , n}, written in one-line notation. An
inversion within π = π1 · · ·πn ∈ Sn is an ordered pair (a, b) where a, b ∈ [n] with a < b and
πa > πb. The inversion sequence of π is defined by x = x1 · · ·xn, where xi for each i ∈ [n] records
the number of inversions for which πa = i, that is, inversions caused by i when its position relative
to the elements in [i− 1] is decided. Note that such sequences x are characterized by the property
0 ≤ x ≤ i−1 for all i. For example, if π = 451632 ∈ S6, then x = 001332. Let In denote the set of
all inversion sequences of length n. The systematic study of patterns in members of In is a topic
that has only recently been initiated in [3, 12], starting with the avoidance of a single pattern of
length three.
Martinez and Savage [14] extended the notion of pattern avoidance by considering a fixed triple
of relations (ρ1, ρ2, ρ3) ∈ {<,>,≤,≥,=, 6=,−}, where − denotes the universal relation (i.e., x− y
for all x, y ∈ [n]). They studied the set In(ρ1, ρ2, ρ3) consisting of those e = e1 · · · en ∈ In for
which there exist no indices 1 ≤ i < j < k ≤ n such that eiρ1ej , ejρ2ek and eiρ3ek. Note that
sequences in In(ρ1, ρ2, ρ3) are synonymous with members of In({τ1, . . . , τr}) for some patterns
τ1, . . . , τr of length three, where In({τ1, . . . , τr}) denotes the subset of In whose members avoid
each τi for i ∈ [r] in the classical sense. For example, we have In(>,<,≥) = In({101, 201}) and
In(<,−, <) = In({011, 012, 021}).
Since their introduction in [14], the problem of enumerating members of an avoidance class
In(ρ1, ρ2, ρ3) is one that has been investigated extensively, with many connections having been
made to sequences in the OEIS [15]. We refer the reader to [10] and references contained therein.
Moreover, several equivalences among the 343 possible sets In(ρ1, ρ2, ρ3) were conjectured in [14]
and later proven in [2, 5, 7, 9, 10, 17]. Paralleling the study of pattern avoidance on permuta-
tions represented in the one-line notation (see, e.g., [8]), analogous problems, such as avoidance of
vincular [11] or multiple [16] patterns, have been considered on inversion sequences.
A further direction in the study of inversion sequences avoiding a pattern of relation triples is
obtained by considering the distribution of a statistic on members of an avoidance class; see, e.g.,
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[2, 7, 10, 13, 14]. In this paper, we consider the distribution of the number of ascents, descents
and levels over certain avoidance classes of In involving a pattern of relation triples. Recall that
given a sequence w = w1 · · ·wn, an ascent is an index i ∈ [n− 1] such that wi < wi+1, a descent

is one with wi > wi+1 and a level one with wi = wi+1. Let asc(w), desc(w) and lev(w) denote
respectively the number of ascents, descents and levels in the sequence w. Further, recall that
within a descent wj > wj+1 for some j ∈ [n − 1], the entries wj and wj+1 are referred to as a
descent top and a descent bottom, respectively. Note that desc(w) + lev(w) = n − 1 − asc(w) for
all w of length n.
Lin [10] conjectured the following equivalence involving the ascents statistic on the avoidance
classes In(≥, 6=, >) and In(>, 6=,≥):

(1)
∑

e∈In(≥, 6=,>)

qasc(e) =
∑

e∈In(>, 6=,≥)

qn−1−asc(e), n ≥ 1.

This equivalence was shown by Andrews and Chern [1] using a functional equation approach. Here,
we consider some further combinatorial aspects of (1). In particular, we consider a refinement of
both sides of (1) by introducing a variable p which marks the number of descents in members of
each class. We compute an explicit formula for the generating function of the joint distribution
of desc and asc on In(≥, 6=, >), and also of desc and n− 1− asc on In(>, 6=,≥), using the kernel
method [6].
Comparing the p = 1 cases of our main results below (see Theorems 4 and 13), in addition to
providing a new proof of (1), yields a formula for the generating function of both sides of (1).
Such a formula was not given explicitly in [1]. Further, taking p = q = 1 yields a new proof of the
fact first shown by Lin [10] that

(2) |In(≥, 6=, >)| = |In(>, 6=,≥)| = |Sn(4231, 42513)|, n ≥ 1,

which confirmed a conjecture made originally in [14]. Note that the sequence of cardinalities
|Sn(4231, 42513)| for n ≥ 1 corresponding to the q = 1 case of (1) occurs as entry A098746 in
[15]. To show (2), note that Lin did not enumerate either In(≥, 6=, >) or In(>, 6=,≥) directly,
but rather defined a bijection between the two and enumerated instead the set In(>,−, >), which
had been shown in [14] to be equinumerous with In(≥, 6=, >) via a bijection. Thus, the method
employed here allows for a unified proof of (1) and (2), which were shown previously by seemingly
unrelated approaches, and leads to a refinement of these relations in terms of the descents statistic
(and other parameters).
The organization of this paper is as follows. In the next section, we consider the joint distribution
of desc and asc on In(≥, 6=, >) and find its generating function. To do so, a recurrence is found
for a refinement of this distribution involving two additional parameters which is then converted
to a system of functional equations involving the corresponding generating functions. Further, an
algorithm is devised for finding the generating function for the distribution of asc on members
of In(≥, 6=, >) having a prescribed number of descents. In the third section, we consider the
distribution of desc and n − 1 − asc on In(>, 6=,≥) and compute the generating function of this
distribution. Comparable formulas are found and an algorithm is given for determining explicitly
the coefficient of pm for a fixed m in this generating function.
We remark further that in order to obtain recurrences for the joint distribution of (desc, asc) on
In(≥, 6=, >) and of (desc, n−1−asc) on In(>, 6=,≥), we must refine these sets according to a pair of
new parameters on each. In particular, to study members e ∈ In(≥, 6=, >), it is useful to consider
a parameter which we call the height of e and is defined as the maximum letter that starts either
a descent or a level of e. On the other hand, for e ∈ In(>, 6=,≥), it is convenient to consider the
statistic which tracks the smallest letter serving as a descent top for the largest descent bottom in
e. These parameters (and variants thereof) may very well prove interesting to study in their own
right on other types of discrete structures that are often represented as sequences, such as finite
set partitions or functions between two finite sets of prescribed size.
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2. The descents and ascents statistics on In(≥, 6=, >).

We first define two new concepts related to the relative sizes of the non-ascent entries within an
inversion sequence. Let the height of e = e1e2 · · · en ∈ In be given by

hgt(e) = max{ei : 1 ≤ i ≤ n− 1 and ei ≥ ei+1}.
If a = hgt(e) with j ∈ [n − 1] minimal such that ej = a, then let the depth of e be defined
as dep(e) = ej+1. Here, and in the subsequent section, we find it more convenient notationally
to represent members of In using positive instead of non-negative integers, which is achieved by
adding one to each entry of the standard representation.
Let An = In(≥, 6=, >) and suppose e ∈ An has height and depth values of a and b, respectively.
If a > b, then there exists a single descent ab and at most two runs of the letter a, the first of
which has length one. On the other hand, if a = b within e, there can exist only a single run
of a. Within a (maximal) subsequence of the form ab · · · b, any letter beyond the second will be
referred to as a redundant bottom, regardless of whether or not a and b are distinct. For example,
if e = 123116333669 ∈ A12, then hgt(e) = 6 and dep(e) = 3, with the last two 3’s redundant
bottoms. If e = 1132267779 ∈ A10, then hgt(e) = dep(e) = 7, with only the third 7 a redundant
bottom.
We now decompose An into disjoint subsets as follows. Given 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n,
let Bn(i, j) denote the subset of An whose members have height i and last letter j, where the
last letter is not a redundant bottom. Let Cn(i, j) be defined the same as Bn(i, j), but where
the last letter is a redundant bottom. Note that Cn(i, j) can be nonempty only when n ≥ 3 and
1 ≤ j ≤ i ≤ n− 2. Define the distribution polynomial bn(i, j) = bn(i, j; p, q) by

bn(i, j) =
∑

π∈Bn(i,j)

pdesc(π)qasc(π),

and likewise for cn(i, j) = cn(i, j; p, q). For example, we have

B5(3, 4) = {11314, 11324, 11334, 12314, 12324, 12334}
and C5(3, 2) = {11322, 12322}, which implies b5(3, 4) = q2+q3+2pq2+2pq3 and c5(3, 2) = pq+pq2.
Assume bn(i, j) or cn(i, j) to be zero if the subset of An corresponding to i and j is empty.
Let

bn =

n−1
∑

i=1

n
∑

j=1

bn(i, j), n ≥ 2,

and

cn =

n−2
∑

i=1

i
∑

j=1

cn(i, j), n ≥ 3,

and put b1 = 0 and c1 = c2 = 0. Note that bn and cn are polynomials in p and q. Then we seek a
formula for an = an(p, q) defined as

an = bn + cn + qn−1, n ≥ 1.

Note that an gives the joint distribution of desc and asc on An, where the qn−1 term accounts for
the sequence 12 · · ·n which belongs to no subset Bn(i, j) or Cn(i, j).
The arrays bn(i, j) and cn(i, j) satisfy the following system of recurrences.

Lemma 1. We have

bn(i, j) = δi,n−2 · qn−2 + qcn−1(i, i) + q

j−1
∑

ℓ=i+1

bn−1(i, ℓ) + q

i−1
∑

k=1

bn−2(k, i) + q

i−1
∑

ℓ=1

cn(i, ℓ)

+ q2
i−1
∑

ℓ=1

n−i−2
∑

s=1

cn−s(i, ℓ), 1 ≤ i ≤ n− 2 and i < j ≤ n,(3)
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with bn(n− 1, n) = 0 for n ≥ 2,

(4) bn(i, i) = δi,n−1 · qn−2 +
i−1
∑

k=1

bn−1(k, i) + q
i−1
∑

ℓ=1

n−i−1
∑

s=1

cn−s+1(i, ℓ), 1 ≤ i ≤ n− 1,

(5) bn(i, j) = δi,n−1 · pqn−2 + p

j
∑

k=1

bn−1(k, i) + p

i−1
∑

k=j+1

i−k−1
∑

s=0

(

i− k − 1

s

)

qs+1cn−s−1(k, j),

for 1 ≤ j < i ≤ n− 1,

(6) cn(i, j) = bn−1(i, j) + cn−1(i, j), 1 ≤ j < i ≤ n− 2,

(7) cn(i, i) = δi,n−2 · qn−3 + cn−1(i, i) +

i−1
∑

k=1

bn−2(k, i), 1 ≤ i ≤ n− 2.

Furthermore, we have the following alternative recurrences to (3) and (5) above when i < j and

i > j, respectively:

(8) bn(i, j) =
i

∑

ℓ=1

j−i−1
∑

t=0

(

j − i− 1

t

)

qt+1cn−t(i, ℓ) +
i−1
∑

ℓ=1

j−i−1
∑

t=0

n−i−t−2
∑

s=1

(

j − i− 1

t

)

qt+2cn−s−t(i, ℓ)

and

1

pq
(bn(i, j)− q

i−1
∑

k=j+1

bn−1(k, j)) = δj,n−2 · qn−3 +

i−1
∑

k=j+1

cn−1(k, j) +

j
∑

k=1

k
∑

ℓ=1

cn−1(k, ℓ)

+

j
∑

ℓ=2

ℓ−1
∑

k=1

bn−2(k, ℓ) + q

j
∑

k=2

k−1
∑

ℓ=1

n−k−2
∑

r=1

cn−r−1(k, ℓ).(9)

Proof. To show (3), let π ∈ Bn(i, j) where j > i. Note that 1 ≤ i ≤ n − 2 is required since the
height cannot be achieved for the first time by the penultimate letter if j > i. Suppose that π has
depth ℓ for some ℓ ∈ [i]. Then it may be verified that π can be decomposed uniquely as

π = π′iℓrisα,

where s ≥ 0, α is a (strictly) increasing sequence in [i + 1, j] ending in j and π′ contains only
letters in [i− 1], with r ≥ 1 if ℓ < i and r = 1 if ℓ = i. To see this, note that π′ cannot contain any
letters greater than i, for otherwise i would fail to be the height of π. Further, if ℓ < i, then π′

cannot contain i either, for then (≥, 6=, >) would be realized by iiℓ. On the other hand, if ℓ = i,
one need only consider the leftmost occurrence of i to obtain the stated decomposition.

If |α| > 1, then the weight of all possible such π is given by q
∑j−1

ℓ=i+1 bn−1(i, ℓ), upon deleting j
and considering the penultimate letter which belongs to [i + 1, j − 1] in this case. So assume α
consists of only the terminal j, i.e., π = π′iℓrisj, where ℓ, r and s are as before. We consider then
the following cases on s and ℓ: (i) s = 0, ℓ = i; (ii) s ≥ 1, ℓ = i; (iii) s = 0, ℓ < i; (iv) s ≥ 1, ℓ < i.
One may verify that the respective contributions towards bn(i, j) in the four cases are given by

(i) δi,n−2 · qn−2 + q
∑i−1

k=1 bn−2(k, i), (ii) qcn−1(i, i), (iii) q
∑ℓ−1

i=1 (bn−1(i, ℓ) + cn−1(i, ℓ)) and (iv)

q2
∑i−1

ℓ=1

∑n−i−2
s=1 (bn−s−1(i, ℓ)+ cn−s−1(i, ℓ)). Note that in (iii), deletion of the final j results in an

arbitrary member of Bn−1(i, ℓ) ∪ Cn−1(i, ℓ) for some ℓ ∈ [i − 1], upon considering whether r = 1
or r > 1 in the decomposition of π above, where the factor of q accounts for the ascent arising
due to j. In (iv), on the other hand, there are two extra ascents that arise since j > i > ℓ with
s ≥ 1 so that deletion of is along with the terminal j from π results in a sequence enumerated by
bn−s−1(i, ℓ) + cn−s−1(i, ℓ). Now observe that (6) follows from the definitions, upon removing the
final letter which must be equal to its predecessor in this case. Formula (3) then follows from (6)
and combining all the previous cases.
To show (4), let π ∈ Bn(i, i) where 1 ≤ i ≤ n− 1. First suppose that π ends in i, i with no other
i’s occurring in π. If i < n− 1, then deleting the final letter results in a member of Bn−1(k, i) for
some k ∈ [i − 1], whereas if i = n − 1, then in addition one can have π = 12 · · · (n − 1)(n − 1),
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which is accounted for by the extra term δi,n−1 · qn−2. So assume it is not the case that π ends in
i, i with no others i’s occurring. Note that it is not possible for π to have a single run of i’s which
occurs at the end and has length three or more, for that would imply that the terminal i is a
redundant bottom with such π not being enumerated by bn(i, i). Then we must have π = π′iℓris,
where π′ has letters only in [i − 1], r, s ≥ 1 and ℓ ∈ [i − 1]. Note that the first i occurring in the
j-th position for some j ≥ i, together with r ≥ 1, implies s ≤ n− i− 1. Then deletion of is from
π results in members of Bn(i, i) whose weight is given by the second sum in (4), upon applying
(6). Combining the previous cases now yields (4).
To show (5), let π ∈ Bn(i, j) where 2 ≤ i ≤ n− 1 and j ∈ [i− 1]. Then j not a redundant bottom
implies we must have π = π′ij where max(π′) < i. If i = n− 1, then π′ = 12 · · · (n− 2) is possible,
which is accounted for by δi,n−1 · pqn−2, so assume π′ has height k for some k ∈ [n− 2]. Note that
k ≥ i is impossible, for otherwise kij would correspond to an occurrence of (≥, 6=, >). If k ∈ [j],

then the terminal j may be deleted yielding a p
∑j

k=1 bn−1(k, i) possibilities, where the factor of
p accounts for the descent between i and j. So assume k ∈ [j + 1, i − 1]. Then π must have the
form π = αkjrβj, where max(α) < k, r ≥ 1 and β is increasing on [k + 1, i] with last letter i.

If |β| = s + 1, then there are
(

i−k−1
s

)

ways in which to choose the members of β. Deleting β
from π (keeping the terminal j) yields a member of Cn−s−1(k, j), as the resulting sequence would
end in a redundant (descent) bottom in this case. Considering all possible k and s then gives the
weight of the remaining members of Bn(i, j) and implies (5), where the pqs+1 factor in the final
sum accounts for the ascents caused by the members of β and the descent between the last two
letters.
To show (7), first note that π ∈ Cn(i, i) must end in a run of i’s of length at least three with all
other letters outside of this run strictly less than i. Upon deleting the final i, there are cn−1(i, i)
possibilities if π ends in four or more i’s. Otherwise, π = π′ii, where π′ ∈ Bn−2(k, i) for some
k < i or π′ = 12 · · · (n− 2), the latter applying only if i = n− 2, which implies (7). To show (8),
consider the same four cases (i)–(iv) used in the proof of (1) above, but where the single terminal
j is replaced with an increasing sequence β in [i+1, j] whose last letter is j. Then the first sum on
the right side of (8) gives the contribution towards the overall weight of those members of Bn(i, j)
in which cases (i)–(iii) apply. This is seen upon deleting all letters in β where |β| = t + 1 and
adding back an extra copy of the letter ℓ to the end, which results in a member of Cn−t(i, ℓ). To
find the weight of members of Bn(i, j) in case (iv), first delete from π both β and is (which directly
precedes β) and then add back a letter ℓ to the end. Note that the resulting sequence belongs to
Cn−s−t(i, ℓ) for some ℓ < i, with i ≤ n − s − t − 2 implying s ∈ [n − i − t − 2]. Considering all
possible ℓ, t and s then gives the second sum on the right side of (8).
To show (9), suppose π ∈ Bn(i, j) where i > j. Then we may write π = ρij, where max(ρ) < i,
and consider cases based on the last letter t of ρ. If t > j, then deleting i from π results in a

member of Bn−1(t, j) and considering all possible t yields a contribution of q
∑i−1

t=j+1 bn−1(t, j)

towards the weight in this case. Now suppose t = j. If ρ = 12 · · · (n− 2), then i = n− 1, j = n− 2
and π has weight pqn−2. So assume ρ 6= 12 · · · (n− 2) and let hgt(ρ) = k. If k < j, then deleting i

and the terminal j implies a contribution of pq
∑j−1

k=1 bn−2(k, j) towards the weight. If k = j, then
either ρ = ρ′jr+1 or ρ = ρ′jℓsjr, where r, s ≥ 1, ℓ ∈ [j − 1] and max(ρ′) < j. Removing i from π
in the first case and removing the terminal section jrij from π and adding back a copy of ℓ in the
second (so that the resulting sequence is ρ′jℓs+1) yields respective contributions of pqcn−1(j, j)

and pq2
∑j−1

ℓ=1

∑n−j−2
r=1 cn−r−1(j, ℓ), upon considering all possible ℓ and r in the latter case. Note

that r, s ≥ 1 and ℓ < j implies two ascents (and a descent) are lost with the removal of jrij
from π. The remaining possibility when t = j is for j + 1 ≤ k ≤ i − 1, in which case ρ = ρ′kjr,

where max(ρ′) < k and r ≥ 1. Deleting i and considering all k yields pq
∑i−1

k=j+1 cn−1(k, j), as the

resulting sequence ends in kjr+1 where k > j.
Now assume t < j, and again let k = hgt(ρ). Note that k > j is not possible in this case, for
otherwise ktj is an occurrence of (≥, 6=, >). If k = j, then ρ = ρ′jℓr, where ℓ ∈ [j − 1] and r ≥ 1,

and thus there are pq
∑j−1

ℓ=1 cn−1(j, ℓ) possibilities, upon deleting i and the terminal j and putting
back an ℓ. So assume k < j. Considering whether t ≤ k or k < t < j implies ρ must have one of
the following four forms: (a) ρ = ρ′kℓskr, (b) ρ = ρ′kr+2, (c) ρ = ρ′kℓskrα or (d) ρ = ρ′kr+2α,
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where r ≥ 0, s ≥ 1, ℓ ∈ [k − 1], max(ρ′) < k and α is a nonempty (strictly) increasing sequence
in [k + 1, j − 1]. Deleting i and j from π in (b) or in the r = 0 case of (a), and adding a copy

of the current final letter, yields a contribution of pq
∑j−1

k=1

∑k

ℓ=1 cn−1(k, ℓ), upon considering all
possible k and ℓ. If r ≥ 1 in (a), then removal of the final r + 2 letters of π, followed by adding

an ℓ, yields pq2
∑j−1

k=2

∑k−1
ℓ=1

∑n−k−2
r=1 cn−r−1(k, ℓ), as the resulting sequence is of the form ρ′kℓs+1

where s ≥ 1. Further, it is seen that cases (c) and (d) combine to yield pq
∑j−2

k=1

∑j−1
t=k+1 bn−2(k, t),

where t denotes the last letter of α.
Finally, combining the ten contributions towards the weight coming from all the cases above, and
observing the simplifications

cn−1(j, j) +

j−1
∑

ℓ=1

cn−1(j, ℓ) +

j−1
∑

k=1

k
∑

ℓ=1

cn−1(k, ℓ) =

j
∑

k=1

k
∑

ℓ=1

cn−1(k, ℓ),

j−1
∑

k=1

bn−2(k, j) +

j−2
∑

k=1

j−1
∑

ℓ=k+1

bn−2(k, ℓ) =

j−1
∑

k=1

bn−2(k, j) +

j−1
∑

ℓ=2

ℓ−1
∑

k=1

bn−2(k, ℓ) =

j
∑

ℓ=2

ℓ−1
∑

k=1

bn−2(k, ℓ)

and
j−1
∑

ℓ=1

n−j−2
∑

r=1

cn−r−1(j, ℓ) +

j−1
∑

k=2

k−1
∑

ℓ=1

n−k−2
∑

r=1

cn−r−1(k, ℓ) =

j
∑

k=2

k−1
∑

ℓ=1

n−k−2
∑

r=1

cn−r−1(k, ℓ),

yields (9) and completes the proof. �

From the recurrences in the prior lemma, we have that the nonzero values of bn(i, j) and cn(i, j)
are given for n = 2 by b2(1, 1) = 1, for n = 3 by b3(1, 2) = b3(1, 3) = b3(2, 2) = q, b3(2, 1) = pq,
c3(1, 1) = 1 and for n = 4 by

b4(1, 2) = q b4(1, 3) = q + q2 b4(1, 4) = q + 2q2 b4(2, 1) = pq

b4(2, 2) = q + pq2 b4(2, 3) = q2 + pq2 b4(2, 4) = q2 + pq2 b4(3, 1) = pq + pq2

b4(3, 2) = pq + pq2 b4(3, 3) = q + q2 c4(1, 1) = 1 c4(2, 1) = pq

c4(2, 2) = q,

which may be verified directly using the definitions.
Define now the following generating functions: A(x) =

∑

n≥1 anx
n, B(x) =

∑

n≥2 bnx
n and

C(x) =
∑

n≥3 cnx
n. Then clearly,

A(x) = B(x) + C(x) +
x

1− qx
.

Note that A(x) is the (ordinary) generating function for the joint distribution of desc and asc on
In(≥, 6=, >) for n ≥ 1. In order to study B(x) and C(x), we refine them as follows. Define

B0(x, v) =
∑

n≥2

n−1
∑

i=1

bn(i, i)v
ixn,

B+(x, v, w) =
∑

n≥2

n−1
∑

i=1

n
∑

j=i+1

bn(i, j)v
iwjxn,

B−(x, v, w) =
∑

n≥3

n−1
∑

i=2

i−1
∑

j=1

bn(i, j)v
iwjxn,

C0(x, v) =
∑

n≥3

n−2
∑

i=1

cn(i, i)v
ixn,

C−(x, v, w) =
∑

n≥4

n−2
∑

i=2

i−1
∑

j=1

cn(i, j)v
iwjxn.
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Translating (3)–(9) above in terms of these generating functions yields the following system of
functional equations.

Lemma 2. We have B(x) = B0(x, 1)+B+(x, 1, 1)+B−(x, 1, 1) and C(x) = C0(x, 1)+C−(x, 1, 1),
where

B+(x, v, w) =
qvw2x3(w + 1)

1− qvwx
+

qwx

1− w
(C0(x, vw) − wC0(wx, v))

+
qwx

1− w
(B+(x, v, w) − wB+(wx, v, 1)) +

qwx2

1− w
(B+(x, 1, vw) − w2B+(wx, 1, v))

+
qw

1− w
(C−(x, vw, 1) − C−(wx, v, 1))

+
q2w

1− w

(

x

1− x
C−(x, vw, 1) − wx

1− wx
C−(wx, v, 1)

)

,

B0(x, v) =
vx2

1− qvx
+ xB+(x, 1, v) +

q

1− x
C−(x, v, 1),

B−(x, v, w) =
pqv2wx3

(1− qvx)(1 − qvwx)
+

px

1− w
(B+(x,w, v) −B+(x, 1, vw))

+
pqvx

1− v − qvx

(

C−(x, v, w) − C−(
vx

1− qvx
, 1− qvx, w)

)

,

C−(x, v, w) =
x

1− x
B−(x, v, w),

C0(x, v) =
vx3

(1− x)(1 − qvx)
+

x2

1− x
B+(x, 1, v),

B+(x, v, w) =
qw

1− w − qwx

(

C0(x, vw) − C0(
wx

1− qwx
, v(1− qwx))

)

+
qw

1− w − qwx

(

C−(x, vw, 1) − C−(
wx

1 − qwx
, v(1− qwx), 1)

)

+
q2wx

1− w − qwx

(

1

1− x
C−(x, vw, 1)− w

1− wx − qwx
C−(

wx

1 − qwx
, v(1− qwx), 1)

)

and

1

pq
B−(x, v, w)

=
vx

p(1− v)
(B−(x, v, w) −B−(vx, 1, w)) +

v2wx3

1− qvwx
+

vx

1− v
(C−(x, v, w) − C−(vx, 1, w))

+
x

1− w

(

v

1− v
(C−(x, vw, 1) + C0(x, vw) − C−(vx, w, 1)− C0(vx, w))

− vw

1− vw
(C−(x, vw, 1) + C0(x, vw) − C−(vwx, 1, 1)− C0(vwx, 1))

)

+
x2

1− w

(

v

1− v
(B+(x, 1, vw)− vB+(vx, 1, w)) − vw

1− vw
(B+(x, 1, vw) − vwB+(vwx, 1, 1))

)

+ qx2

(

v

(1− v)(1 − vw)(1 − x)
C−(x, vw, 1)− v2w

(1 − v)(1− vw)(1 − vwx)
C−(vwx, 1, 1)

− v2

(1 − v)(1− w)(1 − vx)
C−(vx, w, 1) +

v2w

(1 − v)(1− w)(1 − vwx)
C−(vwx, 1, 1)

)

.

By use of the first, fourth and fifth equations in Lemma 2 with v = 1, we find a formula for
B+(x, 1, w):

B+(x, 1, w) =
qwx(qx − x+ 1)

(qwx− wx+ w + x− 1)(1− x)
B−(x,w, 1)
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+
qw2x(1− x)(qwx − wx + 1)

(qwx − wx + w + x− 1)(1− wx)2
B−(wx, 1, 1)

+
qw2x(1− x)

(qwx − wx + w + x− 1)(1− wx)
B+(wx, 1, 1)

+
qw2x3(1− w)(wx − w − 1)

(qwx − wx + w + x− 1)(1− qwx)(1 − wx)
.

Using this last expression twice (both for B+(x, 1, vw) and B+(vx, 1, w)), substituting into the
final equation in Lemma 2 and replacing x with x/v, we obtain the following result.

Lemma 3. The generating function A(x) is given by

A(x) =
1

1− x
B+(x, 1, 1) +

1− x+ qx

(1− x)2
B−(x, 1, 1) +

x

(1 − x)(1 − qx)
,

where

K(x, v)B−(x/v, 1, v) = A1(x, v)B
−(x, 1, 1) +A2(x, v)B

+(x, 1, 1) +A3(x, v),

with

K(x, v) = (x− v)(qx + v − 1)(qvx+ v2 − vx− v + x)− qx2(qvx− qx+ v2 − vx− 2v + 2x)p,

A1(x, v) = (x− v)(qvx + v2 − vx− v + x)xq

+
(v − x)x2((qv − q − v + 2)x2 + (v2 − v − 2)x− v2 + 2v)qp

(1− x)2
,

A2(x, v) =
(x− v)(1 − v)(qx2 + vx− x2 − v + x)xp

1− x
,

A3(x, v) =
(x− v)(qx2 − qx+ vx− x2 − v + x+ 1)(1− v)pqx3

(1 − x)(1 − qx)
.

Note that the kernel equation K(x, v) = 0 (see prior lemma) has two power series solutions v1(x)
and v2(x), where

v1(x) = 1 + (
√
pq − q)x− q((2p+ 1)

√
pq − 2pq − p)

2
√
pq

x2

− q(4(5pq + 3p+ q + 1)
√
pq − 12p2q − 8pq2 − 16pq − 3p− q)

8
√
pq

x3 + · · · ,

v2(x) = 1− (
√
pq + q)x− q((2p+ 1)

√
pq + 2pq + p)

2
√
pq

x2

− q(4(5pq + 3p+ q + 1)
√
pq + 12p2q + 8pq2 + 16pq + 3p+ q)

8
√
pq

x3 + · · · .

Substituting v = v1(x) and v = v2(x) into

K(x, v)B−(x/v, 1, v) = A1(x, v)B
−(x, 1, 1) +A2(x, v)B

+(x, 1, 1) +A3(x, v),

and solving for B−(x, 1, 1) and B+(x, 1, 1), we obtain

B−(x, 1, 1) =
px(v1(x) − 1)(v2(x) − 1)

((q − 1)x2 − v1(x)v2(x) + xv1(x) + xv2(x))(p− q)
,

B+(x, 1, 1) = − qx(qx − x+ 1)(v1(x) − 1)(v2(x) − 1)

(1− x)((q − 1)x2 − v1(x)v2(x) + xv1(x) + xv2(x))(p − q)

+
qx2((q − 1)x(v1(x)v2(x) + x2) + (x2 − x+ 1− qx)(v1(x) + v2(x)) + (1 − 2q)x2 + (1 + 2q)x− 2)

(1− x)(1 − qx)((q − 1)x2 − v1(x)v2(x) + xv1(x) + xv2(x))
.

Hence, by Lemma 3, we have the following result.
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Theorem 4. The generating function A(x) is given by

A(x) = (1− v1(x)− v2(x)− (q − 1)x)x(q − 1)x2 − v1(x)v2(x) + x(v1(x) + v2(x)),

where v1(x) and v2(x) are the power series solutions to K(x, v) = 0 as defined above.

Remark: The equation K(x, v) = 0 actually has four roots, namely, v1(x), v2(x) and the two
additional roots given by

v3(x) = x+ q
√
px

√
x+

q(2p+ 1)

2
x2 +

q(4p2 + 8pq + 8p+ 1)

8
√
p

x2
√
x+ · · · ,

v4(x) = x− q
√
px

√
x+

q(2p+ 1)

2
x2 − q(4p2 + 8pq + 8p+ 1)

8
√
p

x2
√
x+ · · · ,

where it is assumed p, q, x > 0. To determine which of these roots are to be used in obtaining an
explicit formula for B−(x, 1, 1) as a Taylor series, we define

F (x, v, w) =
px(v − 1)(w − 1)

((q − 1)x2 − vw + xv + xw)(p − q)
.

Note that F (x, v, w) = F (x,w, v) and so it suffices to consider the first terms in the expansion of
F (x, vi(x), vj(x)) centered at x = 0 for 1 ≤ i < j ≤ 4:

F (x, v1(x), v2(x)) = pqx3 + (2q + 3)pqx4 + · · · ,

F (x, v1(x), v3(x)) = −
√
p(q −√

pq)

q(p− q)

√
x+ · · · ,

F (x, v1(x), v4(x)) =

√
p(q −√

pq)

q(p− q)

√
x+ · · · ,

F (x, v2(x), v3(x)) = −
√
p(q +

√
pq)

q(p− q)

√
x+ · · · ,

F (x, v2(x), v4(x)) =

√
p(q +

√
pq)

q(p− q)

√
x+ · · · ,

F (x, v3(x), v4(x)) =
p

q(p− q)

1

x
+ · · · .

Hence, we must take v1(x) and v2(x), as was done above.

2.1. Case p = q = 1. Letting p = q = 1 in Lemma 3 gives

K ′(x, v)B−(x/v, 1, v) = A′(x, v)B−(x, 1, 1) + (1− x)A′(x, v)B+(x, 1, 1) +A′′(x, v),

where

K ′(x, v) = v3 − v2 + 2vx− x2,

A′(x, v) =
x(v − x)(vx − v + x)

(1− x)2
,

A′′(x, v) =
x3(v − x)(vx − v + 1)

(1− x)3
.

Thus, by taking v = 1 or

v = v3(x) = 1 +
16

9
sin4(

1

3
arcsin(

3
√
3x

2
))− 8

3
sin2(

1

3
arcsin(

3
√
3x

2
)) = 1− 2x− 3x2 − 10x3 + · · · ,

the latter being a root of K ′(x, v) = 0, we obtain

(2x− 1)(x− 1)B+(x, 1, 1)− (x2 − x+ 1)B−(x, 1, 1)− x3 = 0,

xv3(x)− v3(x) + x

(1− x)2
B−(x, 1, 1) +

xv3(x)− v3(x) + x)

1− x
B+(x, 1, 1) +

x2(xv3(x)− v3(x) + 1)

(1− x)3
= 0.
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Theorem 5. Let y = cos(13 arcsin(
3
√
3x
2 )). Then the generating function

∑

n≥1 an(1, 1)x
n is given

by

− (4y2 − 1)2 − 9x

2A

(

B + (64y6 − 96y4 + 36y2 + 27x− 4)(64y6 − 12y2 − 27x+ 2)
√
1− 4x

)

,

where A = (256y8 − 256y6 − 48y4 + 56y2 + 81x− 8)(x(4y2 − 1)4 + (x− 1)((4y2 − 1)2 − 9x)2) and
B = (4y2 − 1)6 − 9(32y4x+ 16y4 − 16y2x− 8y2 − 7x+ 1)((4y2 − 1)2 − 9x).

2.2. Coefficient of pm. Note that Lemma 2 implies the following formula.

Lemma 6. The generating function A(x) is given by

A(x) =
1

1− x
B+(x, 1, 1) +

1− x+ qx

(1− x)2
B−(x, 1, 1) +

x

(1 − x)(1 − qx)
,

where
(

1− pqvx2

(1− x)(1 − v − qvx)

)

B−(x, v, w) =
pqv2wx3

(1 − qvwx)(1 − qvx)
+

px(B+(x,w, v) −B+(x, 1, vw))

1− w

− pqv2x2

(1 − v − qvx)(1 − vx− qvx)
B−(

vx

1− qvx
, 1− qvx, w)

and

(1− w − qwx)B+(x, v, w) =
qvw2x3(1 + w − wx)(1 − w)

(1− x)(1 − wx)(1 − qvwx)
+

qwx2

1− x
B+(x, 1, vw)

− qw3x2

1− wx
B+(wx, 1, v)− qw2xB+(wx, v, 1) +

qwx(1 − x+ qx)

(1− x)2
B−(x, vw, 1)

− qw2x(1 − wx + qwx)

(1 − wx)2
B−(wx, v, 1),

with

B+(x, v, 1) =
x

(1− qx)(1 − x− qx)
B+(

x

1− qx
, 1, v(1− qx))− x

1− x
B+(x, 1, v)

− 1− x+ qx

(1 − x)2
B−(x, v, 1) +

1− x

(1 − x− qx)2
B−(

x

1− qx
, v(1 − qx), 1)

− (qx+ x− 2)qvx3

(1− x− qx)(1 − qx)(1 − x)(1 − qvx)
.

Given a generating function f(x) = f(x, p), we denote its coefficient of pm by f(x|m). From
Lemma 6, one obtains the following result.

Proposition 7. We have

A(x|m) =
1

1− x
B+(x, 1, 1|m) +

1− x+ qx

(1− x)2
B−(x, 1, 1|m) +

x

(1− x)(1 − qx)
δm,0,

where B+(x, v, w|m) and B−(x, v, w|m) satisfy

B−(x, v, w|m) =
qvx2

(1− x)(1 − v − qvx)
B−(x, v, w|m − 1) +

qv2wx3

(1− qvwx)(1 − qvx)
δm,1

+
x(B+(x,w, v|m− 1)−B+(x, 1, vw|m− 1))

1− w

− qv2x2

(1− v − qvx)(1 − vx− qvx)
B−(

vx

1− qvx
, 1− qvx, w|m − 1),(10)

(1− w − qwx)B+(x, v, w|m) =
qvw2x3(1 + w − wx)(1 − w)

(1− x)(1 − wx)(1 − qvwx)
δm,0 +

qwx2

1− x
B+(x, 1, vw|m)

− qw3x2

1− wx
B+(wx, 1, v|m) − qw2xB+(wx, v, 1|m) +

qwx(1 − x+ qx)

(1− x)2
B−(x, vw, 1|m)
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− qw2x(1− wx + qwx)

(1 − wx)2
B−(wx, v, 1|m)(11)

and

B+(x, v, 1|m) =
x

(1− qx)(1 − x− qx)
B+(

x

1− qx
, 1, v(1− qx)|m)− x

1− x
B+(x, 1, v|m)

− 1− x+ qx

(1 − x)2
B−(x, v, 1|m) +

1− x

(1 − x− qx)2
B−(

x

1− qx
, v(1 − qx), 1|m)

− (qx+ x− 2)qvx3

(1− x− qx)(1 − qx)(1 − x)(1 − qvx)
δm,0,(12)

with B−(x, v, w|m) = 0 for m < 0.

2.2.1. Case m = 0. By Proposition 7, we see that B−(x, v, w|0) = 0 and thus

(1− w − qwx

w − x
)B+(x/w, 1, w|0) = qx3(1 + w − x)(1 − w)

(w − x)(1− x)(1− qx)
− qwx

1− x
B+(x, 1, 1|0).

Let w = w0(x) =
1
2 (1 + x− qx+

√

(1 + x− qx)2 − 4x). Then

B+(x, 1, 1|0) = (w0(x) + 1− x)(w0(x)− 1)x2

w0(x)(qx − 1)(w0(x) − x)

and

B+(x, 1, w|0) = (w0(wx) − w)(w + w0(wx) − wx)qw2x3

w0(wx)(w0(wx) − wx)(qwx − 1)(qwx + w − wx− 1 + x)
.

Thus, by Lemma 2, we have C−(x, v, w|0) = B−(x, v, w|0) = 0, and then by Proposition 7, we get

B+(x, v, w|0) = qvw2x2(vwx − vw − v + 1)
√

q2v2w2x2 − 2qv2w2x2 + v2w2x2 − 2qvwx− 2vwx+ 1

2(qvw2x2 − qvwx + qwx − vwx + wx+ v − 1)(qvwx − vwx + vw + x− 1)

+
qvw2x2(2qwx2 − qwx+ 2wx2 − 2wx− 2x+ 1)

2(qvwx − vwx+ vw + x− 1)(qwx− 1)(qvw2x2 − qvwx + qwx− vwx + wx + v − 1)

+
qv2w2x2(2x− 1− w(2qx2 + 2x2 − 4x+ 1) + xw2(q2x+ 2qx2 − 2qx+ q − 2x+ 2))

2(qvwx − vwx+ vw + x− 1)(qwx− 1)(qvw2x2 − qvwx + qwx− vwx + wx + v − 1)

+
qv3w3x3(wx− w − 1)(q − 1)(qwx − 1)

2(qvwx − vwx+ vw + x− 1)(qwx− 1)(qvw2x2 − qvwx + qwx− vwx + wx + v − 1)
.

Hence, Proposition 7 implies the following result.

Theorem 8. We have

A(x|0) = 2x

1− x− qx+
√

(1− x− qx)2 − 4qx2
.

2.2.2. Case m = 1. By the m = 0 case and Proposition 7, we have

B−(x, v, w|1) = qv2wx3

(1− qvwx)(1 − qvx)
+

x(B+(x,w, v|0) −B+(x, 1, vw|0))
1− w

=
vwx(qvx − vx2 + vx+ x− 1)

√

(1− (1 + q)vwx)2 − 4qv2w2x2

2(qv2wx2 − qvwx + qvx− vwx + vx+ w − 1)(qvwx − vwx + vw + x− 1)

+
vwx((1 − x)(1 − vx)(1 − vwx) + qvx(vwx2 − wx− w + 2x− 1) + q2v2wx2)

2(qv2wx2 − qvwx + qvx− vwx + vx+ w − 1)(qvwx − vwx + vw + x− 1)
.

So the generating function B+(x/w, 1, w|1) satisfies

(1− w − qwx

w − x
)B+(x/w, 1, w|1)

= − qwx

1− x
B+(x, 1, 1|1) + qwx(w − x+ qx)

(w − x)2
B−(x/w,w, 1|1)− qwx(1 − x+ qx)

(1− x)2
B−(x, 1, 1|1).
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By substituting w = w0(x), we obtain

B+(x, 1, 1|1) = (w0(x) − x+ qx)(1 − x)

(w0(x)− x)2
B−(x/w0(x), w0(x), 1|1)−

1− x+ qx

1− x
B−(x, 1, 1|1),

which implies that the expression of B+(x, 1, w|1) can be found from

(1− w − qwx

1− x
)B+(x, 1, w|1)

= − qw2x

1− wx
B+(wx, 1, 1|1) + qwx(1 − x+ qx)

(1 − x)2
B−(x,w, 1|1)− qw2x(1 − wx+ qwx)

(1− wx)2
B−(wx, 1, 1|1).

Hence, by Proposition 7, one gets an explicit formula for B+(x, v, 1|1), and subsequently for
B+(x, v, w|1), which implies the following result.

Theorem 9. We have

A(x|1) = q3(q − 1)x4 − (4q3 + q2 + q + 1)x3 + (6q2 + 5q + 3)x2 − (4q + 3)x+ 1

2q2x4
√

(1− x− qx)2 − 4qx2

+
q3x3 − (3q2 + 2q + 1)x2 + (3q + 2)x− 1

2q2x4
.

2.2.3. General Case. Note that our calculation may be extended to any m > 1. More precisely,
to find the generating function A(x|m), we have the following algorithm:

• Let m > 1. Suppose we have found the generating functions B+(x, v, w|m − 1) and
B−(x, v, w|m − 1).

• By (10), we have an explicit formula for the generating function B−(x, v, w|m).
• By (11), we have

(1− w − qwx

w − x
)B+(x/w, 1, w|m)

= − qwx

1− x
B+(x, 1, 1|m)

+
qwx(w − x+ qx)

(w − x)2
B−(x/w,w, 1|m) − qwx(1 − x+ qx)

(1 − x)2
B−(x, 1, 1|m).

Thus, by taking w = w0(x) and using the formula of B−(x/w,w, 1|m), we obtain an
explicit formula for the generating function B+(x, 1, 1|m).

• By (11) with v = 1, we obtain an explicit formula for B+(x, 1, w|m).
• By (12), we derive a formula for B+(x, v, 1|m).
• Thus, by (11) and the results of the previous steps, we obtain a formula for B+(x, v, w|m).
• Hence, by Proposition 7, namely,

A(x|m) =
1

1− x
B+(x, 1, 1|m) +

1− x+ qx

(1− x)2
B−(x, 1, 1|m),

we derive a formula for the generating function A(x|m).

Applying this algorithm for m = 2, 3 yields

A(x|m) =
am

2qm+1x3m+1(qx+ x− 1)2m−3
√

(1 − x− qx)2 − 4qx2
2m−1+

bm
2qm+1x3m+1(qx + x− 1)2m−3

,

where

a2 = (x+ 1)(x− 1)7 + x(2x3 − 5x2 − 3x− 9)(x− 1)5q − 2x2(x4 + 6x3 − 13x2 + 9x− 18)(x− 1)3q2

− 2x3(x− 1)(3x4 − 30x3 + 53x2 − 63x+ 42)q3 − 2x4(3x4 − 36x3 + 80x2 − 105x+ 63)q4

+ x5(2x5 + x4 − 9x3 + 64x2 − 126x+ 126)q5 − 2x6(3x4 + 5x3 + 10x2 − 21x+ 42)q6

+ 2x7(3x3 + 4x2 − 3x+ 18)q7 − x8(2x2 + 9)q8 + x9q9,

b2 = (x+ 1)(x− 1)4 + x(2x3 − 2x2 + 3x− 6)(x− 1)2q + x2(x − 1)(4x3 − 11x2 + 15x− 15)q2

+ 2x3(3x3 − 10x2 + 15x− 10)q3 + x4(8x2 − 15x+ 15)q4 − x5(2x2 − 3x+ 6)q5 + x6q6,
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a3 = −(2x2 + 2x+ 1)(x− 1)12 − x(4x4 − 6x3 − 25x2 − 18x− 15)(x− 1)10q

− x2(3x6 − 18x5 − 15x4 − 4x3 + 147x2 + 34x+ 105)(x− 1)8q2 + x3(4x7 + 29x6 − 144x5

+ 74x4 − 404x3 + 692x2 − 286x+ 455)(x− 1)6q3 + x4(6x8 − 40x7 − 195x6 + 714x5 − 1325x4

+ 2944x3 − 3211x2 + 2262x− 1365)(x− 1)4q4 − x5(12x8 + 15x7 + 89x6 − 1131x5 + 2715x4

− 5925x3 + 7381x2 − 5291x+ 3003)(x− 1)3q5 + x6(5x8 + 10x7 − 65x6 + 1320x5 − 4210x4

+ 9650x3 − 12837x2 + 9724x− 5005)(x− 1)2q6 − x7(x− 1)(5x9 − 11x8 − 15x7 + 73x6 − 1422x5

+ 5370x4 − 13143x3 + 17853x2 − 14157x+ 6435)q7 + x8(22x9 − 25x8 − 28x7 − 112x6 + 1448x5

− 6076x4 + 15192x3 − 20526x2 + 16302x− 6435)q8 − x9(35x8 + 26x6 + 214x5 − 1130x4 + 5170x3

− 9878x2 + 9724x− 5005))q9 + x10(20x7 − 2x6 + 20x5 − 62x4 + 1132x3 − 3619x2 + 4290x

− 3003)q10 + x11(5x6 + 20x5 − 4x4 − 114x3 + 1045x2 − 1352x+ 1365)q11 − x12(10x5 + 9x4

+ 12x3 + 245x2 − 286x+ 455))q12 + x13(3x4 + 4x3 + 43x2 − 36x+ 105)q13 − x14(4x2 − 2x+ 15)q14

+ x15q15,

b3 = −(2x2 + 2x+ 1)(x− 1)7 − x(2x2 + x+ 2)(2x2 + x− 5)(x− 1)5q − x2(3x6 + 2x5 + 5x4 − 49x3

+ 57x2 − 61x+ 45)(x− 1)3q2 − x3(11x6 − 33x5 + 86x4 − 218x3 + 276x2 − 236x+ 120)(x− 1)2q3

− x4(x− 1)(19x6 − 97x5 + 287x4 − 588x3 + 707x2 − 532x+ 210)q4 − x5(27x6 − 166x5 + 532x4

− 1007x3 + 1134x2 − 770x+ 252)q5 − x6(35x5 − 181x4 + 474x3 − 665x2 + 532x− 210)q6 + x7(5x5

− 34x4 + 128x3 − 240x2 + 236x− 120)q7 + x8(3x4 − 16x3 + 48x2 − 61x+ 45)q8 − x9(4x2

− 7x+ 10)q9 + x10q10.

3. The desc and n− 1− asc statistics on In(>, 6=,≥).

We start by decomposing the set Tn = In(>, 6=,≥) as follows. To do so, it is useful to consider
the largest descent bottom x of e = e1e2 · · · en ∈ Tn where e contains at least one descent; that is,
x = max{ei+1 : 1 ≤ i ≤ n − 1 and ei > ei+1}. If w is the leftmost letter of e forming a descent
with x, then w will be referred to as the leftmost top of e. Let Un(i, j) for i < j denote the subset
of Tn consisting of those e having leftmost top i and largest letter j, where it is assumed further
that e ends in a j. Let Vn(i, j) for i < j be the same as Un(i, j) except that j is not the last letter
of e. Let Wn(i, j) for i > j be the subset of Tn whose members e have leftmost top i and are
expressible as e = e′ijs for some s ≥ 1 where max(e′) ≤ i. Finally, let Zn(i) be the subset of Tn
whose members end in i and are weakly increasing (i.e., contain no descents).
A few remarks are in order concerning these definitions. Note that the leftmost letter i forming a
descent with x within any member of Tn is also the smallest such letter, for otherwise a (>, 6=,≥)
would be present with ixz, where z is the smallest. Further, no element greater than i can occur
anywhere to the left of the first i due to avoidance of (>, 6=,≥), with all i’s occurring as a single run
(directly preceding the first x). Similarly, x is the only element less than i occurring somewhere to
the right of the run of i’s. Thus, members of Vn(i, j) must end in x, for otherwise there would be an
occurrence of (>, 6=,≥) involving the last letter or a descent bottom that exceeds x contradicting
its maximality. Further, members of Wn(i, j) are seen to have largest descent bottom j. Finally,
a common interpretation for the parameter j which applies to all three of the subsets Un(i, j),
Vn(i, j) and Wn(i, j) is that it represents the largest element occurring anywhere to the right of
the run of the letter i.
Define the distribution polynomial un(i, j) = un(i, j; p, q) by

un(i, j) =
∑

π∈Un(i,j)

pdesc(π)qn−1−asc(π),

and likewise for vn(i, j), wn(i, j) and zn(i). For example, we have V5(2, 4) = {12141},
U5(2, 4) = {11214, 12114, 12134, 12144, 12214},
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W5(3, 2) = {11132, 11232, 11322, 11332, 12232, 12322, 12332}
and

Z4(4) = {1114, 1124, 1134, 1224, 1234},
which implies v5(2, 4) = p2q2, u5(2, 4) = pq+4pq2, w5(3, 2) = 4pq2+3pq3 and z4(4) = 1+3q+ q2.
Put zero for any of these polynomial arrays if the subset of Tn corresponding to the parameters in
question is empty. Thus, these arrays may be nonzero only for the following parameter values: (i)
un(i, j): n ≥ 4, 2 ≤ i ≤ n− 2 and i < j ≤ n, (ii) vn(i, j): n ≥ 5, 2 ≤ i ≤ n− 3 and i < j ≤ n− 1,
(iii) wn(i, j): n ≥ 3 and 1 ≤ j < i ≤ n− 1 and (iv) zn(i): n ≥ 1 and 1 ≤ i ≤ n.

Define un =
∑n−2

i=2

∑n

j=i+1 un(i, j) for n ≥ 4, and likewise vn for n ≥ 5, wn for n ≥ 3 and zn for

n ≥ 1. Then we seek a formula for tn = tn(p, q) given by

tn = un + vn + wn + zn, n ≥ 1,

where we put zero for un, vn or wn if the corresponding subset of Tn is empty. Note that tn gives
the joint distribution of the desc and n−1−asc statistics on all of Tn. Recall that n−1−asc(π) =
desc(π) + lev(π) for all π ∈ In.
The arrays un(i, j), vn(i, j), wn(i, j) and zn(i) satisfy the following system of intertwined recur-
rences.

Lemma 10. We have

(13) un(i, j) = qun−1(i, j) +

i−1
∑

ℓ=1

wn−1(i, ℓ) +

j−1
∑

ℓ=i+1

(un−1(i, ℓ) + vn−1(i, ℓ)),

for 2 ≤ i ≤ n− 2 and i < j ≤ n,

(14) vn(i, j) = q(pun−1(i, j) + vn−1(i, j)),

for 2 ≤ i ≤ n− 3 and i < j ≤ n− 1,

wn(i, j) = pqzn−1(i) + q(2wn−1(i, j)− qwn−2(i, j)− pqzn−2(i)) + pq

j−1
∑

k=2

un−2(k, j)

+ pq

j−1
∑

k=2

(un−1(k, j)− qun−2(k, j)) +

i−1
∑

k=j+1

(wn−1(k, j)− qwn−2(k, j)− pqzn−2(k)),(15)

for 1 ≤ j < i ≤ n− 1,

(16) zn(i) = qzn−1(i) +

i−1
∑

j=1

zn−1(j), 1 ≤ i ≤ n− 1,

(17) zn(n) =

n−1
∑

j=1

zn−1(j), n ≥ 2,

with the initial condition z1(1) = 1.

Proof. To show (13), first suppose π ∈ Un(i, j) where i and j are as given. If the penultimate
letter of π is also j, then there are clearly qun−1(i, j) possibilities, so assume that this is not the
case. Let ℓ be the second largest letter of π occurring to the right of the last i, x be the maximum
descent bottom and y be the penultimate letter. Then y < x is not possible, for otherwise ixy
would be an occurrence of (>, 6=,≥). Further, x < y < ℓ is also not possible. To see this, suppose
to the contrary that x < y < ℓ and let w denote the rightmost letter in π that is distinct from
both y and j. If w > y, then y would be a descent bottom, contradicting that x is the maximum
descent bottom. If w < y, then an occurrence of (>, 6=,≥) would be witnessed by ℓwy. Thus, we
must have y = ℓ or y = x. If y = ℓ and ℓ ∈ [i + 1, j − 1], then there are un−1(i, ℓ) possibilities by
definition, upon deleting j. If y = x and ℓ ∈ [i + 1, j − 1], then π is expressible as π = π′ℓxrj for
some r ≥ 1 where max(π′) ≤ ℓ. Note that the letter directly preceding the run xr must be ℓ, for
otherwise membership in Tn would be violated. Removing j from π then gives vn−1(i, ℓ) for the
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contribution towards the weight in this case. Thus, the total weight of the members of Un(i, j)

in question for which i < ℓ < j is given by
∑j−1

ℓ=i+1(un−1(i, ℓ) + vn−1(i, ℓ)). On the other hand,
only ℓ = x is possible if it is assumed that ℓ ≤ i. In this case, all letters to the right of the last i
(except j) are x. Thus, removing j and considering all possible values of x yields the remaining
sum on the right side of (13), which finishes the proof of (13).
To show (15), suppose π ∈ Wn(i, j) where 1 ≤ j < i ≤ n−1. If π ends in two or more j’s or if it is
of the form π = π′ij, where π′ has no descents, then there are contributions towards the weight of
qwn−1(i, j) and pqzn−1(i), respectively. Note that the extra q factor in the former case accounts
for the level between the last two letters of π which is lost when the final letter is deleted, whereas
pq in the latter case accounts for the descent between i and j which is lost. So assume henceforth
π = π′ij, where π′ contains at least one descent; note that max(π′) ≤ i. Let k denote the final
letter of π′. If k ∈ [j + 1, i− 1], then there are wn−1(k, j)− qwn−2(k, j)− pqzn−2(k) possibilities
for each k by subtraction, upon deleting i, and summing over all k gives the last summation
expression on the right side of (15). If k = i, then one gets q(wn−1(i, j)− qwn−2(i, j)−pqzn−2(i)),
where the q factor accounts for the extra level occurring between the last two letters i.
Suppose now k = j and let z and ℓ denote the largest descent bottom and leftmost top of π′,
respectively. Then ℓ = i is not possible, for otherwise (>, 6=,≥) is realized with iji, so we must
have ℓ < i. If j < ℓ < i and z 6= j, then ℓzj would not be allowed, whereas if z = j, then the
resulting inversion sequence would be of a form not even enumerated by wn(i, j) since ℓ, and not
i, would be the leftmost top of π. If ℓ = j, then jzj would occur with z < j, which is again
not allowed. Thus, we must have 2 ≤ ℓ ≤ j − 1 and deleting ij from π yields a member of
Un−2(ℓ, j). Considering all possible ℓ in this case then gives a contribution towards the weight

of pq
∑j−1

ℓ=2 un−2(ℓ, j). Finally, if k < j, then ℓ ≥ j would imply ℓkj is not permissible, whence
2 ≤ ℓ ≤ j − 1. Then deleting i from π in this case results in a member of Un−1(ℓ, j) in which the
next-to-last letter is not j. By subtraction, there is a contribution of pq(un−1(ℓ, j)− qun−2(ℓ, j))
for each ℓ, which we then sum over ℓ. Combining now all of the previous cases implies (15).
The remaining formulas can be shown quickly. To realize (14), consider cases based on whether
the terminal run of the maximum descent bottom of π ∈ Vn(i, j) is of length one or greater than
one. Note that in the former case, the next-to-last letter must be j resulting in a descent involving
the final two letters. To show (16) and (17), we delete the final i from π ∈ Zn(i) and consider
cases on whether the next-to-last letter equals i or is less than i, noting that the first option is not
possible in the case i = n since π ∈ In. �

From the recurrences, we have that the nonzero values of the arrays above are given for n = 2 by
z2(1) = q, z2(2) = 1, for n = 3 by w3(2, 1) = pq, z3(1) = q2, z3(2) = 2q, z3(3) = 1 + q and for
n = 4 by

u4(2, 3) = pq u4(2, 4) = pq w4(2, 1) = 3pq2

w4(3, 1) = pq + pq2 w4(3, 2) = pq + pq2 z4(1) = q3

z4(2) = 3q2 z4(3) = 3q + 2q2 z4(4) = 1 + 3q + q2,

which may be verified directly.
Now define

U(x, v, w) =
∑

n≥4

n−2
∑

i=2

n
∑

j=i+1

un(i, j)v
iwjxn,

V (x, v, w) =
∑

n≥5

n−3
∑

i=2

n−1
∑

j=i+1

vn(i, j)v
iwjxn,

W (x, v, w) =
∑

n≥3

n−1
∑

i=2

i−1
∑

j=1

wn(i, j)v
iwjxn,

Z(x, v) =
∑

n≥1

n
∑

i=1

zn(i)v
ixn.
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By translating (13)–(17) above in terms of these generating functions, we obtain the following
system of functional equations.

Lemma 11. We have

U(x, v, w) = qxU(x, v, w) +
wx

1− w
(W (x, vw, 1) − wW (wx, v, 1))

+
wx

1− w
(U(x, v, w) + V (x, v, w) − wU(wx, v, 1) − wV (wx, v, 1)),

V (x, v, w) = pqxU(x, v, w) + qxV (x, v, w),

W (x, v, w) =
pqx

1− w
(wZ(x, v) − Z(x, vw)) + 2qxW (x, v, w) − q2x2W (x, v, w)

− pq2x2

1− w
(wZ(x, v) − Z(x, vw)) +

pqvx2

1− v
(U(x, 1, vw) − vU(vx, 1, w))

+
pqvx

1− v
(U(x, 1, vw)− U(vx, 1, w) − qxU(x, 1, vw) + qvxU(vx, 1, w))

+
v

1− v
(xW (x, v, w) − qx2W (x, v, w)) − pqvx2

(1− v)(1 − w)
(wZ(x, v) − Z(x, vw))

− vx

1− v
(W (vx, 1, w) − qvxW (vx, 1, w)) +

pqv2x2

(1− v)(1 − w)
(wZ(vx, 1) − Z(vx, w)),

Z(x, v) = vxZ(vx, 1) + vx+ qxZ(x, v) +
vx

1− v
(Z(x, v) − Z(vx, 1)).

The last equation in Lemma 11 implies
(

1− qx

v
− x

1− v

)

Z(x/v, v) = x+ xZ(x, 1)− x

1− v
Z(x, 1).

By taking v = v0(x) =
1
2 (1 − x+ qx+

√

(1− x+ qx)2 − 4qx), we obtain

Z(x, 1) =
1− v0(x)

v0(x)
,

and hence

Z(x, v) =
vx(v0(vx)− v)

v0(vx)((1 − v)(1 − qx)− vx)
.(18)

Further, Lemma 11 gives

V (x, v, w) =
qpx

1− qx
U(x, v, w).

Thus Lemma 11 implies that the generating functions U(x, 1, v) and W (x, v, 1) satisfy

U(x, 1, v) = qxU(x, 1, v) +
xv

1− v
(W (x, v, 1)− vW (vx, 1, 1))

+
vx

1− v
(U(x, 1, v) +

pqx

1− qx
U(x, 1, v)− vU(vx, 1, 1)− pqvx

1− qx
U(vx, 1, 1)),

W (x, v, 1) = 2qxW (x, v, 1)− q2x2W (x, v, 1) +
pqvx2

1− v
(U(x, 1, v)− vU(vx, 1, 1))

+
pqvx

1− v
(U(x, 1, v)− U(vx, 1, 1)− qxU(x, 1, v) + qvxU(vx, 1, 1))

+
v

1− v
(xW (x, v, 1)− qx2W (x, v, 1))− vx

1− v
(W (vx, 1, 1)− qvxW (vx, 1, 1))

+ F (x, v),

where

F (x, v) = lim
w→1

(

pqx(1− qx)

1− w
(wZ(x, v) − Z(x, vw)) − pqvx2

(1− v)(1 − w)
(wZ(x, v) − Z(x, vw))

+
pqv2x2

(1− v)(1 − w)
(wZ(vx, 1) − Z(vx, w))

)

.
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Hence, by finding U(x, 1, v) in the first equation and substituting it into the second with use of
(18), one obtains the following result.

Lemma 12. We have

K(x, v)W (x, v, 1) = A(x, v)W (vx, 1, 1) +B(x, v)U(vx, 1, 1) + F (x, v),

where

K(x, v) =
(qx− 1)2((qx− 1)2 − (pqx2 + 2q2x2

− 2qx2
− 4qx+ 2x+ 2)v + (qx− x− 1)2v2)

(1− v)((qx− 1)2 − (pqx2 + q2x2
− qx2

− 2qx+ x+ 1)v)
,

A(x, v) = −

xv((qx− 1)2 + (q3x3 + q(p− q − 1)x2
− (q − 1)x+ 1)v + qx(q(pq + q − 1)x2 + (1− 2q)(p+ 1)x+ p+ 1)v2)

(1− v)((qx− 1)2 − (pqx2 + q2x2
− qx2

− 2qx+ x+ 1)v)
,

B(x, v) = −

pqvx((qx− 1)2 − qx(q(2q − 1)x2 + (p− 4q + 1)x+ 2)v + qx2(q2(q − 1)x2
− (1− 2q)(p− q)x− p+ q)v2)

(1− qvx)((qx− 1)2 − (pqx2 + q2x2
− qx2

− 2qx+ x+ 1)v)
,

F (x, v) =
p(qv(q − 1)x2

− q(v + 1)x+ 1)

2((q − 1)vx− qx− v + 1)

√

(1− vx+ qvx)2 − 4qvx

+
(qv2(q − 1)2x3

− qv(qv − 2q + v)x2 + (2qv + q + v)x− 1)

2(qvx− qx− vx− v + 1)
.

For the kernel equation K(x/v, v) = 0, namely,

pqvx2 − ((qx− v)(v − 1)− vx)2 = 0,

we have two different power series solutions v(x) = f1(x), f2(x) such that v(0) = 1 that are given
by

f1(x) = 1− (1−√
pq)x− q

2
√
pq

(
√
pq(p+ 2)− p(2q + 1))x2

− q

8
√
pq

(8
√
pq(2pq + q + p+ 1)− p(5pq + 8q2 + 24q + 3)x3 + · · · ,

f2(x) = 1− (1 +
√
pq)x− q

2
√
pq

(
√
pq(p+ 2) + p(2q + 1))x2

− q

8
(8
√
pq(2pq + p+ q + 1) + p(5pq + 8q2 + 24q + 3))x3 + · · · .

Replacing x by x/v in Lemma 12, we have

K(x/v, v)W (x/v, v, 1) = A(x/v, v)W (x, 1, 1) +B(x/v, v)U(x, 1, 1) + F (x/v, v).

By taking v = f1(x) and v = f2(x) in this last equation, we obtain the system

A(x/f1(x), f1(x))W (x, 1, 1) +B(x/f1(x), f1(x))U(x, 1, 1) + F (x/f1(x), f1(x)) = 0,

A(x/f2(x), f2(x))W (x, 1, 1) +B(x/f2(x), f2(x))U(x, 1, 1) + F (x/f2(x), f2(x)) = 0,

which leads to

U(x, 1, 1) = −A(x/f1(x), f1(x))F (x/f2(x), f2(x)) −A(x/f2(x), f2(x))F (x/f1(x), f1(x))

A(x/f1(x), f1(x))B(x/f2(x), f2(x)) −A(x/f2(x), f2(x))B(x/f1(x), f1(x))
,(19)

W (x, 1, 1) = −F (x/f1(x), f1(x))B(x/f2(x), f2(x)) − F (x/f2(x), f2(x))B(x/f1(x), f1(x))

A(x/f1(x), f1(x))B(x/f2(x), f2(x)) −A(x/f2(x), f2(x))B(x/f1(x), f1(x))
.(20)

Moreover, we have V (x, 1, 1) = qpx
1−qx

U(x, 1, 1). Combining the results above yields the following

generating function formula.

Theorem 13. The generating function
∑

n≥1 tn(p, q)x
n is given by

1− qx+ qpx

1− qx
U(x, 1, 1) +W (x, 1, 1) + Z(x, 1),

where Z(x, 1), U(x, 1, 1) and W (x, 1, 1) are given by (18), (19) and (20), respectively.
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Remark: The equation K(x/v, v) = 0 actually has six roots (counting multiplicities), namely,
v1(x) = f1(x), v2(x) = f2(x), v3(x) = v4(x) = qx and the following additional root of multiplicity
two given by

v5(x) = v6(x) = qx+ q
√
px

√
x+

q(p+ 2)

2
x2 +

√
pq(p+ 8q + 12)

8
x2

√
x+ · · · ,

assuming p, q, x > 0. We must decide which roots to use in obtaining an explicit formula for
U(x, 1, 1) as a series, and in accordance with (19), we define

G(x, v, w) = −A(x/v, v)F (x/w,w) −A(x/w,w)F (x/v, v)

A(x/v, v)B(x/w,w) −A(x/w,w)B(x/v, v)
.

Since G(x, v, w) = G(x,w, v), it suffices to consider the first few terms in the expansion of
G(x, vi(x), vj(x)) about x = 0 for (i, j) ∈ {(1, 2), (1, 3), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (5, 6)}.
From this, it is seen that G(x, vi(x), vj(x)) is a generating function in x whose coefficients are
polynomials in p and q only when (i, j) = (1, 2).

3.1. Case p = q = 1. Then the kernel equation K(x/v, v) = 0 in this case has for two of its roots

v = 1 and v = 1 +
16

9
sin4(

1

3
arcsin(

3
√
3x

2
))− 8

3
sin2(

1

3
arcsin(

3
√
3x

2
)).

Proceeding as in the proof of Theorem 13, we obtain the following result.

Theorem 14. Let y = cos(13 arcsin(
3
√
3x
2 )). Then the generating function

∑

n≥ tn(1, 1)x
n is given

by

− (4y2 − 1)2 − 9x

2A

(

B + (64y6 − 96y4 + 36y2 + 27x− 4)(64y6 − 12y2 − 27x+ 2)
√
1− 4x

)

,

where A = (256y8 − 256y6 − 48y4 + 56y2 + 81x− 8)(x(4y2 − 1)4 + (x− 1)((4y2 − 1)2 − 9x)2) and
B = (4y2 − 1)6 − 9(32y4x+ 16y4 − 16y2x− 8y2 − 7x+ 1)((4y2 − 1)2 − 9x).

Remark: Comparing Theorems 5 and 14 implies (2), which was originally shown in [10] by a
different method.

3.2. Case p = 1. Comparing the formulas from Theorems 4 and 13 when p = 1, one can show
with the aid of mathematical programming the following result which is equivalent to (1).

Corollary 15. We have an(1, q) = tn(1, q) for all n ≥ 1.

Remark: The joint distributions an(p, q) and tn(p, q) are seen however to differ for general p, where
p marks the number of descents (upon comparing the n = 5 terms of the corresponding generating
functions).

3.3. Coefficient of pm. Recall that we denote the coefficient of pm in a generating function f(x)
by f(x|m). Note that by (18), we get

Z(x, v|0) = vx(v0(vx) − v)

v0(vx)((1 − v)(1− qx) − vx)
,

with Z(x, v|m) = 0 for all m ≥ 1.
By Lemma 12, we get

K ′(x, v)W (x, v, 1) = A′(x, v)W (vx, 1, 1) +B′(x, v)U(vx, 1, 1) + F ′(x, v),

where

K
′(x, v) =

(qx− 1)2((q − 1)vx− qx− v + 1)2

1− v
−

(qx− 1)2vx2qp

1− v
,

A
′(x, v) =

vx(qx− 1)(1− qvx)((q − 1)vx− qx− v + 1)

1− v
−

v2x2q(q2vx2 + (1− 2q)vx+ v − x)

1− v
p,

B
′(x, v) = (qx− 1)(q(q − 1)vx2

− qvx− qx+ 1)qxvp+
q2x3v2((1− 2q)vx+ v + 1)

1− qvx
p
2
,
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F
′(x, v) = (q(q − 1)vx2

− qvx− qx+ 1)

(

1

2
(1− qx)p−

vx2q

2((q − 1)vx− qx− v + 1)
p
2

)

√

(1− vx+ qvx)2 − 4qvx

+ (vx(q(1− 2q)vx2 + qvx+ 1)− (1− qx)(1− qvx)2)

(

1

2
(1− qx)p−

vx2q

2((q − 1)vx− qx− v + 1)
p
2

)

.

Thus,

K ′(x/v, v|0)W (x/v, v, 1|m) +K ′(x/v, v|1)W (x/v, v, 1|m− 1)

= A′(x/v, v|0)W (x, 1, 1|m) +A′(x/v, v|1)W (x, 1, 1|m− 1)(21)

+B′(x/v, v|1)U(x, 1, 1|m− 1) +B′(x/v, v|2)U(x, 1, 1|m− 2)

+ F ′(x/v, v|1)δm,1 + F ′(x/v, v|2)δm,2.

This equation performs a procedure which computes the coefficient of pm for all m ≥ 0. Clearly,

V (x, v, w|m) = U(x, v, w|m) = W (x, v, w|m) = 0, m ≤ 0.

Hence, by Theorem 13, we have that the coefficient of p0 in the generating function
∑

n≥1 tnx
n is

given by Z(x, 1) = 1−v0(x)
v0(x)

.

3.3.1. Case m = 1. Suppose m = 1. Clearly, Z(x, v|1) = 0. By Lemma 11, we have V (x, v, w|1) =
0. Then by (21), we get

((q − 1)vx− qx− v2 + v)2(qx− v)2

v2(1 − v)
W (x/v, v, 1|1)

= − ((q − 1)vx− qx− v2 + v)x(qx − 1)(qx− v)

1− v
W (x, 1, 1)

− 1

2
(qx− v)(q(q − 1)x2 − qxv − qx+ v)

√

(q − 1)2x2 − 2(q + 1)x+ 1

+
1

2
(qx− v)(q(q − 1)2x3 − q(q − 1)vx2 − 2q2x2 + (2q + 1)vx+ qx− v).

Differentiating with respect to v and then substituting v = v0(x), we obtain

W (x, 1, 1|1) = q(q − 1)2x3 − q(3q − 1)x2 + (3q + 1)x− 1

2x(qx− 1)
√

(q − 1)2x2 − 2(q + 1)x+ 1
+

(qx − 1)2 − qx2

2x(qx− 1)
,

which leads to an explicit formula for W (x/v, v, 1) and hence for W (x, v, 1).
To find U(x, 1, 1|1), we use Lemma 11 to get

(1− qx

w
− x

1− w
)U(x/w, 1, w|1) = x

1− w
(W (x/w,w, 1|1)− wW (x, 1, 1|1))− xw

1− w
U(x, 1, 1|1).

By taking w = v0(x) and using the expressions for W (x/w,w, 1|1) and W (x, 1, 1|1) (from the
previous step), we obtain explicit formulas for U(x, 1, 1|1) and U(x/w, 1, w|1). In particular,

U(x, 1, 1|1) = q(q − 1)4x5 − q(q − 1)(5q2 − 3q − 1)x4 + (10q3 + 1)x3 − 2(5q2 + 4q + 2)x2 + (5q + 4)x− 1

2x(1− qx)
√

((q − 1)2x2 − (2q + 1)x+ 1)3

+
(q(q − 1)3x4 − q2(4q − 3)x3 + (6q2 + 3q + 1)x2 − (4q + 3)x+ 1)

2x(1− qx)((q − 1)2x2 − (2q + 1)x+ 1)
.

By Theorem 13, we have that the coefficient of p1 in the generating function
∑

n≥1 tnx
n is given

by

U(x, 1, 1|1) +W (x, 1, 1|1).

3.3.2. Case m ≥ 2. Letm ≥ 2 and suppose we have determined the generating functionsW (x, v, 1|m−
1) and U(x, 1, w|m−1). Now let us describe an algorithm for findingW (x, v, 1|m) and U(x, 1, w|m).

• By Lemma 11, we have Z(x, v|m) = 0 and V (x, 1, w|m) = qx

1−qx
U(x, 1, w|m − 1). Hence,

we know V (x, 1, w|m).
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• By Lemma 11, and noting Z(x, v|m− 1) = 0, we have

(1− qx/v)(1 − qx

v
− x

1− v
)W (x/v, v, 1|m)

=
qx2

v(1 − v)
(U(x/v, 1, v|m− 1)− vU(x, 1, 1|m− 1))

+
qx

1− v
((1 − qx/v)U(x/v, 1, v|m− 1)− (1− qx)U(x, 1, 1|m− 1))− x(1 − qx)

1− v
W (x, 1, 1|m).

Note that v = v0(x) is a solution to 1 − qx
v
− x

1−v
= 0. Hence, by taking v = v0(x) and

using the prior established results for W (x, v, 1|m− 1) and U(x, 1, w|m− 1), we obtain an
explicit formula for W (x, 1, 1|m), which leads to a formula for W (x/v, v, 1|m) and thus
W (x, v, 1|m).

• By Lemma 11, we have

(1 − qx

w
− x

1− w
)U(x/w, 1, w|m) =

x

1− w
(W (x/w,w, 1|m)− wW (x, 1, 1|m))

+
x

1− w
(V (x/w, 1, w|m)− wU(x, 1, 1|m)− wV (x, 1, 1|m)).

By taking w = v0(x) and using expressions of W (x, v, 1|m) (see second step of the algo-
rithm) and V (x, 1, w|m) (see first step), we obtain U(x, 1, 1|m), which leads to an explicit
formula for U(x, 1, w|m).

Hence, by applying the algorithm above, one can find the generating functions W (x, v, 1|m) and
U(x, 1, w|m) from W (x, v, 1|m− 1) and U(x, 1, w|m− 1). Then the coefficient of pm in the gener-
ating function

∑

n≥1 tnx
n is given by

U(x, 1, 1|m) + V (x, 1, 1|m) +W (x, 1, 1|m), m ≥ 2.

4. Concluding remarks

In this paper, we have discussed various computational aspects related to the joint distribution of
desc and asc on In(≥, 6=, >) as well as of desc and n− 1− asc on In(>, 6=,≥). As a consequence
of our results, we obtained new proofs of (1) and (2) above in a unified way. As a first step in
our proofs, we established, by combinatorial arguments, Lemmas 1 and 10, which we then rewrote
in terms of generating functions thereby obtaining systems of functional equations. Note that we
proceeded in this manner since the recurrences are intertwined and involve intricate relationships
between multiple arrays and parameters. We leave it as a challenge for the reader to express
the relations between the various generating functions directly using the symbolic enumeration
technique described in [4], which appears more difficult to implement in this case than the method
presented here in deriving these relations.
Let A(x, v, w) = A(x, v, w; p, q) be given by

A(x, v, w) = B+(x, v, w) +B−(x, v, w) +B0(x, vw) + C−(x, v, w) + C0(x, vw) +
wx

1− qwx
,

where the B and C functions are defined just prior to Lemma 2. By the definitions, the coefficient
of xn in A(x, v, w) is the joint distribution of the height, last letter, desc and asc statistics on
In(≥, 6=, >), marked by v, w, p and q, respectively. Note that A(x, 1, 1) coincides with A(x)
defined above. Let B(x, v, w) = B(x, v, w; p, q) be given by

B(x, v, w) = U(x, v, w) + V (x, v, w) +W (x, v, w) + Z(x, v),

where the U , V , W and Z functions are defined just prior to Lemma 11. Note that the coefficient
of xn of B(x, v, w) gives the joint distribution of the following four parameters considered on
In(>, 6=,≥): (i) leftmost top, (ii) largest letter occurring to right of leftmost top, (iii) desc and
(iv) n− 1− asc. Here, the leftmost top of an inversion sequence with no descents is defined as its
last letter, with parameter (ii) assuming a value of zero in this case.
Then we have the following table of univariate distributions when n = 6 obtained by setting all
but one of {v, w, p, q} equal to unity in A(x, v, w) or B(x, v, w). Note that the only distributions
that the A and B groups have in common when n = 6 are the respective last ones, with these
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f(x; q) [x6](f(x; q))

A(x, q, 1; 1, 1) 102q5 + 142q4 + 131q3 + 88q2 + 31q + 1
A(x, 1, q; 1, 1) 102q6 + 102q5 + 102q4 + 85q3 + 62q2 + 42q
A(x, 1, 1; q, 1) 77q2 + 286q + 132
A(x, 1, 1; 1, q) q5 + 50q4 + 220q3 + 188q2 + 35q + 1
B(x, q, 1; 1, 1) 42q6 + 112q5 + 123q4 + 116q3 + 101q2 + q
B(x, 1, q; 1, 1) 60q6 + 69q5 + 67q4 + 59q3 + 49q2 + 59q + 132
B(x, 1, 1; q, 1) 51q2 + 312q + 132
B(x, 1, 1; 1, q) q5 + 50q4 + 220q3 + 188q2 + 35q + 1

Table 1. Distributions of different statistics on I6(≥, 6=, >) and I6(> 6=,≥).

being equal due to (1). In particular, the descents statistic distribution is different on In(≥, 6=, >)
and In(>, 6=,≥). Consider replacing Z(x, v) with Z(x, t), where t ∈ {1, w, vw}, in the definition
of B(x, v, w) above keeping all other terms the same. Such replacements would correspond to
different definitions of the leftmost top statistic in the case of a (weakly) increasing inversion
sequence. Three other similar tables can be obtained when n = 6, using Z(x, t) instead of Z(x, v)
as described in the definition of B(x, v, w), and in each case, there is no other commonality
between the A and B groups of distributions outside of the one correlating to (1). We thus leave
as an open problem the question of finding other equally distributed, naturally defined statistics
on In(≥, 6=, >) and In(>, 6=,≥) and further, if possible, a generalization of (1) in terms of joint
distributions of two or more statistics defined on the respective classes.
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