
HAL Id: hal-03295264
https://hal.science/hal-03295264

Submitted on 21 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Context-Oriented Framework for Computation
Offloading in Vehicular Edge Computing using WAVE

and 5G Networks
Alisson Barbosa de Souza, Paulo Antonio Leal Rego, Tiago Carneiro, Paulo

Henrique Gonçalves Rocha, José Neuman de Souza

To cite this version:
Alisson Barbosa de Souza, Paulo Antonio Leal Rego, Tiago Carneiro, Paulo Henrique Gonçalves
Rocha, José Neuman de Souza. A Context-Oriented Framework for Computation Offloading in
Vehicular Edge Computing using WAVE and 5G Networks. Vehicular Communications, 2021,
�10.1016/j.vehcom.2021.100389�. �hal-03295264�

https://hal.science/hal-03295264
https://hal.archives-ouvertes.fr

A Context-Oriented Framework for Computation
Offloading in Vehicular Edge Computing using WAVE

and 5G Networks

Alisson Barbosa de Souzaa,∗, Paulo Antonio Leal Regoa, Tiago Carneirobc,
Paulo Henrique Gonçalves Rochaa, José Neuman de Souzaa

aGREat - Federal University of Ceará, Fortaleza, Brazil
bUniversity of Luxembourg, Belval, Luxembourg

cINRIA Lille - Nord Europe, Lille, France

Abstract

Despite technological advances, vehicles are still unable to meet the demands

of some applications for massive computational resources in a feasible time.

One way to deal with this situation is to integrate the computation offloading

technique into a vehicular edge computing system. This integration allows ap-

plication tasks to be executed on neighboring vehicles or edge servers coupled to

base stations. However, the dynamic nature of vehicular networks, allied to over-

loaded servers, can lead to failures and reduce the effectiveness of the offloading

technique. Therefore, we propose a context-oriented framework for computation

offloading to reduce the application execution time and maintain high reliability

in vehicular edge computing. The framework modules perform computational

resources discovery, contextual data gathering, computation tasks distribution,

and failure recovery. Its main part is a task assignment algorithm that seeks

the best possible server to execute each application task, using contextual infor-

mation and WAVE and 5G networks. The results of extensive experiments in

different vehicular environments show that our framework reduces up to 70.3%

of total execution time compared to totally local execution and up to 42.9%

∗Corresponding author
Email addresses: alisson@ufc.br (Alisson Barbosa de Souza), pauloalr@ufc.br (Paulo

Antonio Leal Rego), tiago.carneiro-pessoa@inria.fr (Tiago Carneirob),
paulorocha@great.ufc.br (Paulo Henrique Gonçalves Rocha), neuman@ufc.br (José
Neuman de Souza)

Preprint submitted to Vehicular Communications July 21, 2021

compared to other literature approaches. Concerning reliability, our framework

achieves to offload up to 89.4% of all tasks and needs to recover only 0.8% of

them. Thus, our solution outperforms the totally local execution of the appli-

cation and other existing computation offloading solutions.

Keywords: Vehicular edge computing, Computation offloading, Task

offloading, WAVE, 5G, Task assignment

1. Introduction

Vehicular technologies are increasingly advancing in terms of communication

and intelligence. For example, Vehicular Ad Hoc Networks (VANETs) provide

Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications

[1, 2] using technologies such as Wireless Access in Vehicular Environments5

(WAVE)/IEEE 802.11p [3] and 5G/mmWave (millimeter Wave) [4, 5]. Vehi-

cles have also evolved in intelligence through computing capabilities, cameras,

embedded systems, sensors, and satellite navigation systems [6].

However, the advent of autonomous vehicles and new and popular appli-

cations such as augmented reality, automatic object recognition, and real-time10

video surveillance demand massive computing resources to deal with compli-

cated data processing and critical latency requirements [7, 8]. Thus, despite

technological advances, vehicles do not yet have sufficient on-board computing

resources to handle all of these requirements in a feasible time. Even if more

powerful processors were installed in the vehicles, this could compromise their15

energy and displacement efficiency [6].

One manner to assist vehicles with latency and processing requirements is the

vehicular edge computing system. In this system, computational processing can

be done on Vehicular Clouds (VCs) or edge servers in an integrated or isolated

way, as can be seen in Figure 1. In turn, vehicular clouds are a pool of compu-20

tational resources of two or more vehicles, stationary or in motion, which can

be dynamically coordinated to offer services on demand, through V2V connec-

tions and on-board units (OBUs), as in the cloud computing model. Although

2

VCs have less latency in communication and operate in scenarios without in-

frastructure, they do not present great computational power. Another option is25

to use edge servers coupled with Roadside Units (RSUs) or base stations (BSs)

through V2I connections. These servers are deployed close to streets and roads

by service providers. Even though they have a little more communication la-

tency and can be quite requested by network devices, these servers generally

have greater computational capacity than vehicular clouds [9].30

Vehicular
 Cloud Edge

Less More
Computing Power

Latency

Figure 1: Vehicular edge computing (red line) system showing the integration between the

vehicular cloud and the edge and aspects of latency and computing power. Orange lines

represent V2V connections. Purple lines represent V2I connections.

One way to take advantage of these available computing resources is to apply

the computation offloading technique, also called task offloading. This technique

offloads smaller parts or tasks of an application to remote devices or servers,

which are vehicles or edge servers in vehicular edge computing systems. Then,

these servers process the tasks and return the result to the client. Computa-35

tion offloading is used to improve applications’ execution time and decrease the

overload of processing [10, 11]. In fact, one of the main objectives of the com-

putation offloading technique is to allow an application to execute in parallel in

less time than execution on the client only [7].

Nevertheless, computation offloading is not always worthwhile due to com-40

munication and processing delays of remote servers [7]. Moreover, the dynamic

3

nature of vehicular networks can reduce the effectiveness of the offloading tech-

nique. This is because the network nodes have rapid movements, leading to

frequent disconnections and offloading failures. Additionally, the servers may

already be overloaded, and there is no support from a central coordination point45

[2]. In such cases, contextual information helps to deal with these challenges.

Context refers to information that characterizes entities, including the situa-

tion of network devices or vehicles. Although contextual information changes

dynamically, it assists in decision or adaptation processes and improves the per-

formance of offloading systems [11, 12]. For example, the information about50

the complete trajectory or route of a vehicle, if available, enables more accurate

vehicle positioning predictions and helps to deliver data between network nodes

[13].

Therefore, we propose a context-oriented framework for computation of-

floading in vehicular edge computing systems using WAVE and 5G networks.55

The objective is to ensure the reduction of application execution time and the

reduction of offloading failures. The framework modules help the vehicle to dis-

cover computational resources and gather contextual data from devices within

its communication range. Such information is used by the algorithm of deci-

sion and task assignment called Greedy Task by Task (GTT), the main part60

of the framework. GTT decides whether offloading is worthwhile and, if so,

decides where to send the tasks. This decision is also the most challenging part

of the framework because finding the best way to distribute tasks to minimize

application execution time is an NP-hard problem [9]. For this decision, we

consider contextual information such as speed, location, direction, CPU capac-65

ity and availability, data rates and communication ranges WAVE and 5G, link

lifetimes, tasks characteristics, distances between devices, transmission and pro-

cessing times, connectivity, known routes of vehicles, and estimated arrival time

to the destination. After the decision, the framework distributes the compu-

tation tasks. Besides, if any task is lost or not executed, the framework has70

mechanisms to recover from failures.

4

1.1. Challenging Issues

Thus, the main challenges related to this work are summarized below:

• Adaptation of computation offloading to the fast movement of nodes in

vehicular networks. This behavior of nodes is linked to frequent discon-75

nections, causing offloading failures [2].

• Gathering of contextual information. In dynamic environments, this in-

formation needs to be gathered and treated in real-time to be valid [12].

• NP-hardness of the task assignment decision problem to minimize appli-

cation execution time. In this way, there is no exact polynomial-time80

solution for this problem. Furthermore, this decision needs to consider

different contextual parameters [9].

1.2. Contributions

We describe the main contributions of this work as follows:

• A context-oriented framework for computation offloading in vehicular edge85

computing with descriptions of the conceptual architecture and offloading

and failure recovery processes.

• GTT, a task assignment algorithm that seeks the best possible servers for

each application task, aiming to minimize applications’ execution time and

process failures. For this, various parameters of contextual information are90

taken into account.

• Use of a special contextual information about known routes of vehicles,

helping to predict vehicle positioning more accurately and avoid offloading

failures.

• Simultaneous use of WAVE and 5G technologies, combining their advan-95

tages, increasing capacities, and decreasing task transmission delays.

5

• Extensive simulations of the proposed solution and literature algorithms,

making it possible to evaluate and validate them in different vehicular

environments in terms of execution time and reliability.

1.3. Organization100

The remainder of the manuscript is organized as follows. Section 2 presents

related works. An overview of the system model and problem formulation is

given in Section 3. Section 4 describes the proposed framework, detailing its

conceptual architecture and processes and its task assignment algorithm. The

details of the experiments are presented in Section 5. Section 6 discusses the105

results. Finally, Section 7 presents the conclusions of this work.

Moreover, we have provided a list of acronyms definitions in Table 1 to make

the paper easier to read.

Table 1: Acronyms definitions.

ALPR Automatic License Plate Recognition TL Task executed locally

BS Base Station TR Task executed with recovery

FIFO First In, First Out TS Task successfully executed remotely

GCF Greedy for CPU Free V2I Vehicle to Infrastructure

GTT Greedy Task by Task V2V Vehicle to Vehicle

HVC Hybrid Vehicular edge Cloud VANET Vehicular Ad Hoc Network

MDO Multi-Decision based Offloading VC Vehicular Cloud

mmWave Millimeter Wave WAVE Wireless Access in Vehicular Environments

RSU Roadside Unit

2. Related Works

Several works have been developed in the area of computation offloading.110

Among these works, some consider that the clients (devices with applications

that need computing offloading) are people’s smartphones or virtual/augmented

reality devices that participate in non-vehicular environments [14, 15, 16]. Thus,

the solutions proposed in these works do not consider important aspects that

should be considered when the client is a vehicle, such as fast mobility, frequent115

6

network topology changes, and variations in wireless communication channels

[17]. In [18], clients are smartphones of people inside vehicles that send tasks to

be processed on traditional cloud servers. However, in this computation offload-

ing process, the distinctive aspects of vehicular networks are also not considered,

and the objectives do not include reducing the execution time of vehicular appli-120

cations. In addition, clients have energy constraints that vehicles do not have,

and communicating with traditional cloud servers can add high access latency,

making applications with ultra-low latency requirements unfeasible [9].

Therefore, although there are different aspects considered in the offloading

works, this section focuses specifically on the principal works of computation125

offloading in vehicular edge computing systems that have two essential charac-

teristics. The first is that clients are only vehicles. The second is that the main

objective of the proposed solutions is to reduce vehicular applications’ execution

time. These two characteristics are also essential in our work.

In these vehicular edge computing systems, edge servers coupled to base130

stations or vehicles can act as servers and execute third parties’ tasks. These

servers can receive tasks by different communication technologies such as WAVE,

4G, or 5G. In [19, 20], authors presented solutions to allow vehicles to execute

computation tasks on selected neighboring vehicles over 5G/V2V connections.

Nevertheless, using only one communication technology limits the capabilities135

to transmit more network packets and prevents connections to other types of

networks [21, 22, 23]. Another interesting work in [24] proposed a computation

offloading framework for 5G networks. The framework allows tasks to be exe-

cuted only on edge servers coupled to base stations or RSUs. However, these

proposed solutions allow third party tasks to be executed only by vehicles or140

only by edge servers. In either case, there is a waste of computational resources

from unutilized servers.

Some works allow third-party tasks to be executed by vehicles and edge

servers to avoid such a waste of resources. Besides, to increase the network’s

transmission capacities, these works use WAVE and 4G technologies. In [25,145

26, 27, 28], proposed schemes and algorithms enable a vehicle to transfer its

7

computations tasks to neighboring vehicles (via WAVE/V2V) or nearby edge

servers (via 4G/V2I). Then, the latter can process the tasks and return their

results to the requesting vehicle. Nonetheless, while it is an interesting approach,

4G networks are already starting to become outdated. They have deficiencies in150

relation to 5G networks, such as lower data rates, weaker for high mobility, fewer

frequency ranges, and higher latencies. Also, algorithms used in 4G networks

may not be well adapted to 5G networks because of differences in network

architecture, modulation and multiplexing techniques, wireless signal behavior,

limited range, and need for a line of sight between devices [29, 30, 31, 4].155

In [32], the authors proposed a framework to take advantage of several com-

putational resources available locally, in nearby vehicles (via V2V), and on edge

servers (via V2I). WAVE, 4G, and 5G technologies can also be used to increase

network capacity. Even so, there is a prioritization of sending tasks via 5G. In

scenarios where only base stations and few vehicles use 5G, the sending of tasks160

will end up being, mostly, only via V2I and to the edge servers. Thus, this

prioritization by 5G can overload the edge servers and underutilize the vehicles’

computational resources. Moreover, sending via 5G can result in failures due to

inherent technology challenges, such as limited range and the need for devices

to be in the same line of sight. Also, if 5G fails, the algorithm in [32] will need165

to seek for resources via WAVE, which ends up generating more delays in the

offloading process.

Even using different technologies, a computation offloading solution can work

well in one scenario and not work in another. For example, scenarios with many

intersections of streets (urban) or a single road (highway) influence network170

connectivity and interfere with the proposed solutions’ performance. This also

occurs with different vehicular densities [9]. Accordingly, it is important to

submit the proposed solutions to different scenarios and densities, providing

credibility to them, and evaluating the impact of specific situations. Despite

this, as summarized in Table 2, none of these previous works used both the175

highway and urban scenarios in the experiments. Furthermore, most did not

use all the main types of vehicular densities.

8

Table 2: Comparison of different aspects used in related works.

Reference Technology Server Scenario Vehicular Density Contextual Information Objective

WAVE Cellular VC Edge Urban Highway High Medium Low
Known
Routes

CPU
Capacity

CPU
Availability + Reliability

Ref. [19] 5G
√ √ √ √ √

Ref. [20] 5G
√ √ √ √

Ref. [24]
√

5G
√ √ √ √ √

Ref. [25]
√

4G
√ √ √ √ √

Ref. [26]
√

4G
√ √ √ √

Ref. [27]
√

4G
√ √ √ √ √

Ref. [28]
√

4G
√ √ √ √ √ √ √

Ref. [32]
√

4G/5G
√ √ √ √ √ √

Ref. [33]
√

5G
√ √ √ √ √ √ √ √

Our proposal
√

5G
√ √ √ √ √ √ √ √ √ √ √

In order to help deal with different scenarios, contextual information provides

data that assists computation offloading systems [11]. One such information is

the known routes of vehicles, a set of geographical coordinates that vehicles will180

travel. This information helps estimate vehicles’ positions within a given time

more accurately, avoiding sending tasks to those who will lose connectivity [13].

In our previous work [33], we proposed a scheme that applies computation of-

floading to edge servers, via 5G/V2I, and vehicles, via WAVE/V2V. However,

the scheme does not use information about CPU capacity and known routes of185

vehicles. In fact, although the works mentioned in this section use various con-

textual information, none of them use the known routes of vehicles. Moreover,

most of the works in Table 2 does not aim to increase reliability by counting and

recovering eventual failures, even knowing that a failure can lead to increased

latency, incomplete information, and application crashes.190

Our proposed framework aims to fill the gaps left by the mentioned works.

In terms of technology and servers, we allow tasks to be sent to edge servers and

vehicles simultaneously through 5G/V2I and WAVE/V2V connections. With

this, we increase the network’s transmission capacities and took advantage of

all available computing resources. In addition, we use several contextual in-195

9

formation, such as CPU capacity and availability, distances between devices,

WAVE and 5G ranges, known routes of vehicles, and estimated arrival time to

the destination. Then, we use an algorithm to assign tasks so that the best

available servers execute them, aiming to minimize the applications’ execution

time and the number of offloading failures. Finally, we used different scenario200

configurations to analyze our proposal.

For more details about other works, we have done an extensive review and

classification of several solutions of computation offloading in VANETs [9].

3. System Model and Problem Formulation

This section presents an overview of the system model and problem formu-205

lation. First, we describe the network general structure. Then, we present the

models for communication and computation. Finally, we present the problem

formulation. In turn, Table 3 lists the definitions of the main symbols used.

Table 3: Symbols definitions.

τ Task r Transmission rate

B Bandwidth S Set of chosen servers

C Computational capacity s Data size

c CPU cycles required to process a task server Chosen server for the client

client Client vehicle T Workload or set of tasks

d Distance t Time

F Set of feasible servers u Velocity

nτ Total number of tasks in a workload W Number of tasks to be executed by client

P Transmission power X Number of tasks to be executed by servers

p Position Y Backup of T

R Communication range

3.1. Network General Structure

The network topology considered in this work has different types of nodes.210

For example, it has a set of vehicles V = {v1, v2, v3, ..., vnv}, where nv is the

total number of vehicles on the network. The topology also has a set of edge

servers E = {e1, e2, e3, ..., ene}, where ne is the total number of edge servers

10

present on the network. Since each edge server is connected to a different 5G

base station, ne also represents the total number of 5G base stations on the215

network. The 5G base stations are installed on the shoulders of streets or roads.

The edge servers are connected via optical fiber to the 5G base stations. With a

battery power supply, vehicles can simultaneously process, store, transmit data,

and use sensors. Besides, vehicles periodically generate beacon messages and

distribute them in a one-hop broadcast to all nodes within their communication220

range.

We consider client as a vehicle that offloads tasks to other vehicles (via

V2V communication) or to edge servers (via V2I communication). Offloading

decisions are made based on information from other devices. However, the

decision of whether and how to offload is made only by the client. This decision225

can lead client to take the following actions: execute all tasks locally, execute

all tasks remotely (on one or more servers), or execute some tasks locally and

some more remotely.

A server is any vehicle or edge server that can receive and process one or

more tasks sent by the client. All vehicles and edge servers in our topology230

can act as a server. Such possible servers continuously run offloading services in

background that can 1) advertise the computational resources available on the

server to other devices and 2) enable them to receive and execute tasks from

other devices.

The client has two network interfaces in our network topology: WAVE/IEEE235

802.11p and 5G/mmWave. All other vehicles have only WAVE/IEEE 802.11p

interfaces. All edge servers have an only connection to base stations (which

also have 5G/mmWave interfaces). All vehicles present the same communica-

tion range. All base stations connected to the edge servers also have the same

communication range. In the WAVE/IEEE 802.11p interface, we only consider240

one-hop communications. On the 5G/mmWave interface, if the client wants to

transmit something to the edge server, it must first transmit to the 5G base

station. The latter then forwards the data to the edge server via a wired link.

If the edge server wants to transmit something to a vehicle, the reverse path is

11

taken.245

3.2. Communication Model

Below, we present the communication models related to the link lifetime,

position prediction based on known routes of vehicles, and data transmission

rate.

3.2.1. Link Lifetime250

It is possible to estimate how long two neighboring network nodes remain

connected within each other’s communication range. The estimate is made

through kinematic calculations since parameters such as speed, direction, and

distance between nodes do not vary significantly [34]. The work in [35] proposed

a way to calculate this estimate. For this, we use four parameters: px position of255

the node on the x-axis, py position of the node on the y-axis, ux vector velocity

of the node on the x-axis, and uy vector velocity of the node on the y-axis. We

assume that the nodes follow a linear path in a short period. Thus, Equation 1

describes the position of the node i as a function of time t:

pi(t) =

pxi + uxi · t

pyi + uyi · t

 , (1)

where pi(t) is the position of node i at time t.260

We consider that a node j is a neighbor of the node i. Thus, the Equation

2 shows how to estimate the future distance between nodes i and j:

d2i,j = d2j,i = ‖pj(t)− pi(t)‖2 =

pxj − pxi
pyj − pyi

+

uxj − uxi
uyj − uyi

 · t
2

= αi,jt
2 + βi,jt+ γi,j ,

(2)

where αi,j ≥ 0, γi,j ≥ 0. Then, the future relative distance between j and i

is di,j(t) =
√
αi,jt2 + βi,jt+ γi,j .

With this, it is possible to calculate the link lifetime. According to [35]265

and [36], the link lifetime of the two nodes (i and j) is the estimated time

12

ti,jlink = t1 − t0, where t1 is the time when the distance d between the two nodes

becomes greater than their communication range R and t0 is the initial time of

the nodes. For the two nodes to be connected, d must be less than or equal to

R.270

For ti,jlink to be calculated, it is necessary to make di,j(t) ≤ R. If we square

both sides of the inequality and put R on the other side, we get the Equation

3, which gives the value of ti,jlink:

d2i,j(t)−R2 = 0 (3)

Since we already have an equation that describes d2i,j(t), we get the Equation

4 below:275

αi,jt
2 + βi,jt+ γi,j −R2 = 0, (4)

where t represents ti,jlink. Thus, to know the value of ti,jlink, it is only necessary

to solve the second degree equation presented in Equation 4.

However, if two nodes have very similar mobility (for example, if they are

close to each other, with similar velocities and going in the same direction),

tlink tends to be infinite. To adjust this question, [37] proposed an upper limit280

constant for very large values of tlink. We defined this constant as tmaxlifetime

with a value of 100 seconds. That way, if tlink > 100s, tlink becomes 100

seconds.

3.2.2. Position Prediction Based on Known Routes of Vehicles

Public or private vehicles can share information from their on-board navi-285

gation systems, such as their trajectories/routes and the estimated arrival time

to the destination. With this, it is possible to estimate, with more precision, if

two neighboring network nodes will still be connected after a given time tκ [13].

The trajectory or route of a vehicle j is a set of points (geographic coordi-

nates) that will be traveled by it as follows:290

[(pxj (t0), pyj (t0)) ; (pxj (t1), pyj (t1)) ; ... ; (pxj (tn), pyj (tn))],

13

where (pxj (t0), pyj (t0)) represents the latitude and longitude of the vehicle at

the initial time t0 and (pxj (tn), pyj (tn)) represents the latitude and longitude of

the vehicle at the estimated arrival time tn.

Thus, the distance to be travelled (dtotal) is calculated as follows:295

dtotal =

n∑
`=1

√
(pxj (t`)− pxj (t`−1))2 + (pyj (t`)− pyj (t`−1))2. (5)

Therefore, the average vehicle speed is uj = dtotal/(tn − t0). Then, the esti-

mated distance traveled by the vehicle j in a given time tκ is: dest = uj(tκ−t0).

For simplicity, we call the estimated position pj(tκ) of (ϕx, ϕy). If tκ > tn,

then (ϕx, ϕy) it is the final position of the trajectory, already known. If tκ < tn,

to find (ϕx, ϕy), add the distances between the points of the vehicle’s trajectory,300

from the initial point as in Equation 5, until the sum of these distances is greater

than dest. When this happens, we know that (ϕx, ϕy) is approximately on the

line between the last and the penultimate points added, respectively ($x, $y)

and ($x−1, $y−1). With these two points, we calculate the general equation of

the line as a function of (ϕx, ϕy) as follows:305

($y −$y−1)ϕx + ($x −$x−1)ϕy +xy−1 −$x−1 −$y = 0, (6)

In addition, the distance between (ϕx, ϕy) and ($x−1, $y−1) is dest minus

the distance from the initial point of the vehicle’s trajectory until ($x−1, $y−1),

which we call d%. Thus, we can obtain another equation as a function of (ϕx, ϕy):

√
(ϕx −$x−1)2 + (ϕy −$y−1)2 = dest − d% . (7)

Combining the Equations 6 and 7, we were able to obtain the estimated

position of the vehicle j in time κ. The same procedures are used to calculate310

the position of a vehicle i in time κ. After this, we calculate the distance

between i and j in time κ and check if it is less than the communication range.

14

3.2.3. Data Transmission Rate

According to [28, 26, 38, 39], in WAVE/V2V communications, the data

transmission rate between a node i and a node j at a given time t is given by:315

ri,jV 2V (t) = BV 2V log2(1 +
PtL

V 2V
i |φ2|
ω

), (8)

where BV 2V is the bandwidth between i and j, Pt is the transmission power

of the node, LV 2V
i is the loss of system propagation, φ is the fading coefficient

of the uplink channel, and ω is the power of the white Gaussian noise.

Thus, the average uplink rate between nodes i and j is given by:

ri,jV 2V =

∫ ti,jlink

0

ri,jV 2V (t) dt

ti,jlink
. (9)

As [40], for simplicity, we can neglect the time to access the control (CCH)320

and service (SCH) WAVE channels and the time spent on switching channels,

such as the guard interval.

Thus, the time it takes to transmit data of size s from i to j via WAVE/V2V

is given by:

ti,jtrans =
s

ri,jV 2V

+
di,j

uprop
+ tother, (10)

where uprop is the propagation speed over the wireless medium and tother325

are estimates of possible network and queue delays.

For 5G/V2I communications, the authors in [41, 42, 43] show that the data

transmission rate between a node i and a node j in a given time t is given by:

ri,jV 2I(t) = BV 2I log2(1 +
Ptd

−ε
i,j |φ2|
ω

), (11)

where BV 2I represents the bandwidth between i and j, di,j is the distance

between i and j and the factor ε is the exponent of propagation loss of the330

system. Due to the fast transmission rates on the wired link and the coexisting

15

deployment between the base station and the edge server, the transmission delay

of the wired link is neglected in this work [43].

In this way, the average uplink rate between nodes i and j is given by:

ri,jV 2I =

∫ ti,jlink

0

ri,jV 2I(t) dt

ti,jlink
. (12)

Thus, the time it takes to transmit data of size s from i to j, via 5G/V2I, is335

given by:

ti,jtrans =
s

ri,jV 2I

+
di,j

uprop
+ tother. (13)

3.3. Computation Model

The vehicles have different computational capacities and CPU availability

over time. The same is true with edge servers. Each vehicle or edge server has

a computational capacity Cv and Ce, respectively.340

We consider a computationally intensive and real-time application that gen-

erates a workload or set T = {τ1, τ2, τ3, ..., τnτ } of tasks. Each task τ ∈ T can

be processed locally by the client or remotely in an independent, asynchronous,

and parallel way. Thus, each workload can have its tasks distributed for local

or remote execution (on the edge servers or in other vehicles) or in both local345

and remote environments. In addition, each task τ ∈ T is a tuple composed of

the following parameters {cτ , supτ , sdownτ }, where cτ indicates the total number

of CPU cycles required to execute the task τ , supτ shows the data size for upload

of τ (which includes input parameters, the code to be executed and information

about the device that generated the task) and sdownτ shows the size of the pro-350

cessing results of τ for download (which includes information on which device

the results should be sent to). sup and sdown are known for the history of the

application analyzed by the system. Each task is executed with 100% of the

CPU available for task executions. Each CPU available from any node on the

network can only execute one task at a time. Tasks are placed in a queue and355

taken out in First In, First Out (FIFO) model to be executed.

16

Next, we can see the details of the computational modeling of the execution

for each environment [28].

3.3.1. Local Computation

When the client chooses to execute a task locally, the local execution delay360

of the client is set to tclient. Cclient is described as the computational capacity

of the client node (in CPU cycles per second). tclient consists of two parts: 1)

queue delay (there may be other tasks waiting to be executed or in execution)

and 2) processing delay of the task on the CPU. The queue delay is given by:

tqueueclient =

g∑
w=1

cw
Cclient

, (14)

where w represents each task in the queue of the client node and g represents365

the number of tasks that were already waiting in the queue or executing.

The processing delay of a task τ on the client CPU is given by:

tprocclient =
cτ

Cclient
. (15)

Thus, the local execution delay in the client node of a task τ ∈ T is given

by:

tclient = tqueueclient + tprocclient . (16)

3.3.2. Remote Server Computation370

A client vehicle generates a task and send it to execute on a remote server.

As part of vehicular edge computing, the server is a vehicle or edge server. Such

a server executes the task and returns the result of the execution to the client

vehicle that generated the task.

Thus, the delay in executing the task on the server is divided into four parts.375

The first part is the upload of supτ from the client vehicle to the server. If the

upload is via WAVE/V2V, the delay is given by Equation 10. If the upload is

via 5G/V2I, the delay is given by Equation 13.

17

The second part is the waiting time for the task in the server queue tqueueserver

[44, 19]. To be processed, the task must wait for all tasks that were already380

waiting or executing on the server to finish executing. This time is given by:

tqueueserver =

q∑
x=1

cx
Cserver

, (17)

where x represents each task in the queue of the server node and q represents

the number of tasks that were already waiting in the queue or in execution.

The third part consists of the time it takes to process a task τ :

tprocserver =
cτ

Cserver
. (18)

The fourth part of the delay is the time it takes to transmit the process-385

ing result (sdownτ) from the server to the client. If the transmission is via

WAVE/V2V, the time is given by Equation 10. If it is via 5G/V2I, the time is

given by Equation 13.

Thus, the delay for executing a task τ ∈ T on a remote server is given by:

tserver = tuploadclient + tqueueserver + tprocserver + tdownloadclient . (19)

3.3.3. Total Execution Time390

As we consider that workload has a total of nτ tasks, they are distributed

to be executed locally and on remote servers (vehicles or edge servers).

So, we assume that tasks are distributed as follows:

• W tasks are distributed to the client;

• X1 tasks are distributed to the server1, X2 to the server2, X3 to the395

server3 and so on up to Xk to the serverk, so that X1+X2+X3+...+Xk =

X;

Thus, the total time required to execute tasks locally is given by:

ttotalclient =

W∑
w=1

twclient , (20)

18

where w represents each task distributed to the client node, and W repre-

sents the total number of tasks distributed to the client.400

In turn, the total time required to execute tasks on remote servers is given

by:

ttotalservers = max

{ X1∑
x1=1

tx1
server1 ,

X2∑
x2=1

tx2
server2 , ...,

Xk∑
xk=1

txkserverk

}
, (21)

where x1 represents each task distributed to the server1, x2 each task to the

server2, xk each task to the serverk; X1 represents the total number of tasks

distributed to the server1, X2 the total tasks to the server2, and Xk the total405

tasks to the serverk.

Therefore, the total time to execute the workload is described as:

ttotal = max

{
ttotalclient, t

total
servers

}
. (22)

3.4. Problem Formulation

The objective of this work is to minimize the execution time of a vehicu-

lar application through the computation offloading process in vehicular edge410

computing systems, satisfying reliability restrictions. So the problem can be

formulated as follows:

P1 : min ttotal

s.t. C1 : W +X = nτ ,

C2 :

Xk∑
xk=0

txkserverk < tclient,serverklink

∨ (dclient,serverk(txkserverk) < R) .

Thus, problem P1, identified as an NP-hard problem [9], involves finding a

way to assign computation tasks to different servers in order to minimize ttotal.

The value of ttotal is calculated according to the Equation 22. This equation415

19

takes into account the total time required to execute tasks locally (ttotalclient) and

the total time required to execute tasks on remote servers (ttotalservers). The value

of ttotalclient depends on the tasks assigned to the client, the queue time, and the

processing capacity of the client, as shown in Equation 20 and the equations in

Section 3.3.1. The value of ttotalservers depends on the time to execute tasks on each420

server. In turn, this time depends on the tasks assigned, the processing capacity

of the servers, their queue times, and upload and download times, as presented

in Equations 19 and 21. The upload and download times follow the equations

in Section 3.2.3, which consider the network bandwidth and tasks size, as well

as other parameters.425

Regarding the constraints of problem P1, C1 ensures that the sum of the

total tasks executed on the client (W) and the total tasks executed on remote

servers (X) is equal to the number of tasks in the application workload (nτ).

The constraint C2 means that the time txkserverk to execute a workload xk on a

given serverk needs to be less than the link lifetime between client and serverk,430

according to Equation 4. Or, if the client and serverk routes are known, the dis-

tance between their estimated positions in time txkserverk , following the Equations

6 and 7, must be less than the communication range R.

As mentioned before, the value of txkserverk used in the C2 constraint is calcu-

lated according to the Equation 19. Such equation considers several parameters435

such as the characteristics of the tasks assigned, the bandwidth to transmit

the tasks (see Section 3.2.3), the server’s computational capacity, and its queue

time (see Section 3.3.2). With the constraint C2, the problem formulation aims

to contribute to greater reliability of the computation offloading process. This

constraint makes the client aware of possible servers’ mobility. It also prevents440

the client from choosing a possible serverk that goes out of its communication

range without completing the computation offloading process.

Although we consider several parameters in the problem formulation, we

do not consider the storage capacity of devices in constraints for two reasons.

The first is that the servers discard the tasks, freeing up storage space after445

proper processing and returning the results to the client. The second is that,

20

unlike data offloading (or caching), the storage space required in computation

offloading is typically small [45].

4. Proposed Framework

In this section, we present the proposed framework for vehicular systems.450

It manages all stages of the computation offloading technique to minimize the

execution time of vehicular applications reliably, according to the objective and

restrictions of problem P1. The main part of this framework, the task assign-

ment algorithm, is responsible for providing good and feasible solutions to the

problem at hand.455

Next, we describe in detail the architecture of the proposed framework and

its managed computation offloading process.

4.1. Framework Architecture

Figure 2 shows the Application and Partitioner modules and conceptual

architecture of the proposed framework.460

The Application module represents the applications running on the vehicle’s

operating system. As seen in Figure 2, it sends data to a Partitioner module

in order to analyze whether the application workload can be partitioned. If it

is possible, the Partitioner divides the application workload into smaller tasks

that can be executed on different devices and in a parallel, asynchronous, and465

independent way. The application workload then moves to the Decision Maker

module. After the workload has been processed, the Application receives the

results through the Local Execution or the Data and Context Gatherer module,

when the results come from remote devices. Information from local sensors and

other devices is also captured through the Data and Context Gatherer module.470

Next, we describe each module of the proposed framework.

4.1.1. Sensors

The Sensors module is responsible for sending to the Data and Context

Gatherer module local information such as location (via Global Positioning

21

 PROPOSED
FRAMEWORK

Figure 2: Application and Partitioner modules and conceptual architecture of the computa-

tion offloading framework proposed for vehicular systems. The box with dotted lines repre-

sents an application running on a vehicle, along with the Partitioner module and the proposed

framework. The latter is represented by the smaller box with a gray background. The arrows

indicate the direction of the information flow between the modules.

System), speed, and direction.475

4.1.2. Task Queue

Tasks from remote devices or the client are placed in the Task Queue by the

Task Distributor module. After a task passes through the queue, it goes to the

Local Execution module. Information about the storage capacity of the queue

and the number of tasks in it is periodically passed on to the Data and Context480

Gatherer module.

4.1.3. Local Execution

With CPU and other resources, the Local Execution module process tasks

that come from the Task Queue with the processing delays described in Section

3.3. Through information contained in the task, this module checks whether it485

is local or came from a remote device. Then, it can forward the processing result

to the local application or to remote devices (via the WAVE or 5G modules).

22

4.1.4. WAVE and 5G

The WAVE module is responsible for sending and receiving messages from

the WAVE network via V2V. The 5G module is responsible for sending and490

receiving messages from the 5G network via V2I.

These modules can send periodic signaling and safety messages and other

data to remote devices. Upon receiving messages, these modules forward them

to the Data and Context Gatherer module. These messages can be: requests

to execute a task to a remote device (offloading request), replies to offloading495

requests (offloading reply), tasks, data downloaded to a running application,

and context data from other devices.

4.1.5. Task Distributor

This module analyzes the tasks received from the Decision Maker and the

location where they will be executed. If the decision is to execute a task locally,500

the Distributor forwards it to the local Task Queue. If the decision is to run a

task remotely, the Distributor sends it to the WAVE or 5G modules (or both),

depending on the choice made by the Decision Maker.

This module is also responsible for storing a backup of tasks that have been

offloaded to remote servers. Thus, upon being informed that the remote server505

has failed to return the processing result, this module then sends the stored

copies of the lost tasks to be executed locally.

4.1.6. Data and Context Gatherer

Through the WAVE and 5G modules, the Data and Context Gatherer can

receive messages involving application data or remote processing results. Then,510

the Gatherer forwards it to the local Application module. If the received message

involves remote contextual information, this module forwards it to the Decision

module. If the Gatherer receives periodic local contextual information through

the Sensors, the Task Queue and the Local Execution module (CPU capacity),

this module forwards it to the Application module or to the Decision module.515

Upon receiving an offloading request, a reply for an offloading request, or a task

23

to be executed, this module forwards them to the Decision Maker module.

This module also monitors possible offloading failures. This is done by ana-

lyzing the signaling messages received from the chosen remote servers and ver-

ifying their connectivity with the client. After failure detection, the Gatherer520

notifies the Decision Maker that triggers the Task Distributor. More details of

failure handling are described in Section 4.2.4.

4.1.7. Decision Maker

The Decision Maker module receives tasks from the Partitioner, starts re-

source discovery, and gathers all real-time contextual information (local and525

remote) from the Data and Context Gatherer. Then, the Decision Maker mod-

ule calculates additional information such as link lifetime, distances between

devices, transmission and processing time, and whether the client and server

will be within the communication range of each other at a specific time.

With all this information, this module assigns, through a greedy algorithm530

(see Section 4.2.2), tasks for the chosen devices to execute. Subsequent, it

informs the task assignment decision to the Task Distributor module.

This module also receives other types of messages. For example, when re-

ceiving offloading requests, the Decision Maker triggers the Distributor to reply

to the requesting device agreeing to process its tasks. Upon receiving a positive535

reply for an offloading request, this module sends the tasks to the remote device

through the Distributor and WAVE or 5G module. Upon receiving a task to

be executed, it forwards it to the local Task Queue, through the Distributor

module.

4.2. Computation Offloading Process540

This Section presents the computation offloading process managed by the

proposed framework. The process consists of four main parts: 1) Resources

discovery, 2) Offloading decision, 3) Send/receive tasks, and 4) Failure recovery.

24

4.2.1. Resources Discovery

The computation offloading process starts when the Decision Maker module545

receives tasks from the Application/Partitioner. Then, through the Distributor,

WAVE and 5G modules, it triggers the resources discovery. At this time, as

shown in Figure 3, the client sends a one-hop WAVE request via broadcast to

the other vehicles and sends a 5G request via unicast to the edge server within

the respective communication ranges of each technology. These requests are550

used to gather real-time contextual information from possible servers and allow

the Decision module to provide feasible solutions to problem P1.

Figure 3: Client (red) discovering computational resources of vehicles within its WAVE com-

munication range (black dotted line) via V2V connections (blue dotted lines) and of an edge

server whose base station is within its 5G communication range (light blue background) via

V2I connection (purple dotted line). The client has three tasks to be executed, its computa-

tional capacity is low (pointer almost at least), and its task queue for execution is almost full

(bar with small red blocks).

BS

 Edge
Server

Vehicle

Task Queue
CPU Capacity

Tasks
TASKTASKTASK

After the client´s first contact, each possible server replies with a tuple

containing its location, data rate and communication range (WAVE or 5G),

CPU capacity, and task queue condition. If it is a vehicle, it also sends its555

speed, direction, and, if available, its estimated arrival time to the destination

and its complete route. This reply reaches the client via the WAVE and 5G

modules, which forwards it to the Data and Context Gatherer module, which in

turn sends it to the Decision module. Subsequent waiting ψ milliseconds, the

client discovers possible servers and proceeds to the task assignment decision.560

25

4.2.2. Offloading Decision

The decision process is the core of the framework. This step is also the

most complex because the optimal distribution of tasks for maximum reduction

in application execution time is an NP-hard problem [9]. Hence, no algorithm

provides an exact solution for this type of problem in a polynomial time. Thus,565

we propose a greedy heuristic algorithm called Greedy Task by Task (GTT),

which delivers reasonable solutions to the problem in a feasible time, although

it does not guarantee to find the optimal solution [46].

After congregating all the necessary information, the Decision Maker mod-

ule executes the GTT to decide the assignment of tasks. The GTT strategy is to570

build task assignment solutions in stages considering the problem P1 and con-

textual information. Accordingly, the algorithm tries to minimize the execution

time of each task by assigning them to the best possible server at the moment

(local or remote). With this strategy, the GTT provides feasible solutions to

the problem P1. After finding a solution, the framework allows tasks to be sent575

simultaneously to edge servers (via 5G) and neighboring vehicles (via WAVE).

We present the GTT’s pseudocode in Algorithm 1.

GTT receives as input a set M of reply messages and a set T of tasks to

be processed. In line 1, GTT initializes the sets S (servers), W (tasks to be

executed locally), Y (backup of T) and variable i (client ID). In line 2, the set580

F of feasible servers is initialized with a tuple from the client, indicating that

it can also execute tasks. Afterwards, in line 3, F receives more feasible servers

on return from the Function AddFeasibleServers (Algorithm 2).

Then, in line 4, the set F of feasible servers is sorted in increasing order

according to the distance to i, computational capacity, queue time, and the585

constants σ, ρ, and δ. These parameters are some of the most used in computa-

tion offloading processes [7]. In particular, the computational capacity and the

queue time directly influence the task execution time. Distance is also important

to avoid failures and delays due to retransmissions. In fact, the closer a server

is to the client, the less likely it is to experience failures caused by interference,590

26

Algorithm 1: GTT Algorithm

Input: M,T

Output: result

1 S ← ∅; W ← ∅; Y ← T ; i← getClientId();

2 F ← {i; dii; tqueuei ;Ci; 0; 0; ∅};

3 AddFeasibleServers(M,F, i);

4 Sort F by (d ∗ σ +
1

C
∗ ρ+ tqueue ∗ δ);

5 foreach τ ∈ T do

6 z ← getIdOfFirstElement(F);

7 if z = i then

8 AddTasksToClient(i, τ, F, T);

9 else

10 AddTasksToServer(z, τ, F, T);

11 if (T = ∅) then

12 Process(W); SendWorkloads(S);

13 return true;

14 else

15 Process(Y);

16 return false;

propagation loss, and 5G signal blocking [47, 48]. Thus, GTT prioritizes servers

with high computational capacities, low queue times, and short distances to the

client to minimize application execution time and avoid failures.

In loop of lines 5-10, T is traversed task by task so that each task τ is assigned

to a server (local or remote). The evaluation is always done by the first element595

of the sorted set F , that is, the best-evaluated server at the moment. In lines

7-10, if the first element is the client itself, the Function AddTasksToClient

is called (Algorithm 3). Otherwise, the Function AddTasksToServer is called

(Algorithm 4).

27

Finally, in lines 11-16, if there are no tasks left in T , the client processes600

tasks in W locally, and the other tasks are sent to be executed in servers in S.

If tasks remain, a problem has occurred, and the initial set of tasks (Y) is all

executed locally.

Function AddFeasibleServers. This Function checks each reply message m

received from a possible server j. This check is made to know if j is feasible605

to execute tasks for the client. In line 3 of the Algorithm 2, tj receives the

estimated time to execute the task τ ∈ T on the possible server j. This estimate,

according to Sections 3.2.3 and 3.3.2, considers several contextual parameters

such as bandwidth, computational capacity, queue time, and others. In line 4,

a check is made if tj is less than the estimated link lifetime between i and j610

(partial constraint C2 of problem P1). This estimated link lifetime is calculated

according to Section 3.2.1. This calculation considers the communication ranges

of the devices (WAVE or 5G) and that edge servers are static. Then, if the check

of line 4 returns true, F receives a tuple of the possible server j. This tuple

contains, among other things, how much it will process (hj), how much data615

it will receive and return (az), and the set of tasks that will process (Xj), all

initialized as zero or empty.

Algorithm 2: AddFeasibleServers Function

Input: M,F, i

1 foreach m ∈M do

2 j ← getServerId(m);

3 tj ← calcServerT ime(τ, ri,j , dij);

4 if (tj < ti,jlink) then

5 hj ← 0; aj ← 0; Xj ← ∅;

6 F ← F ∪ {j; dij ; tqueuej ;Cj ;hj ; aj ;Xj};

Function AddTasksToClient. It is responsible for assigning tasks to the

client. In Algorithm 3, W receives τ , that is removed from T . Then, the

28

queue of i is increased by the time to process τ , as if τ was already queued620

in i and considering the queue time and computational capacity. Finally, F is

sorted again.

Algorithm 3: AddTasksToClient Function

Input: i, τ, F, T

1 W ←W ∪ τ ;

2 T ← T − τ ;

3 tqueuei ← tqueuei +
cτ
Ci

;

4 Sort F by (d ∗ σ +
1

C
∗ ρ+ tqueue ∗ δ);

Function AddTasksToServer. It manages the task assignment to remote

servers. In Algorithm 4, line 1, as the server z will process the task τ , how much

it will process (hz) receives an addition of cτ , how much data on the server z625

will be received and returned (az) receives an addition of supτ and sdownτ . In line

2, tz receives the estimated time for server z to execute its tasks. According to

Sections 3.2.3 and 3.3.2, this estimate considers several contextual parameters

such as bandwidth, computational capacity, queue time, in addition to hz and

az. In lines 3-4, if the route of the server is known (Kz), l receives true if i and630

z are still within the communication range of each other after tz seconds. This

last check is done through Function withinRange, following the calculations in

Section 3.2.2. Function withinRange assumes that Kz is always true if z is an

edge server because it is static. In addition, the values of the WAVE and 5G

ranges are also taken into account.635

In lines 5-15, the algorithm checks whether the server can execute its assigned

tasks (constraint C2 of the problem P1). With the estimate of the execution

time of the assigned tasks, the verification is done by predicting positioning, if

the route is known, or by the estimated link lifetime (considering the WAVE

and 5G ranges of the devices and the immobility of edge servers). Suppose the640

check returns true (lines 5-11). Then, if the server is not in S, it is added. Next,

Xz receives τ , τ is removed from T , the task queue of the server is increased

29

Algorithm 4: AddTasksToServer Function

Input: z, τ, F, T

1 hz ← hz + cτ ; az ← az + supτ + sdownτ ;

2 tz ← calcServerT ime(hz, az, r
i,z, diz);

3 if (Kz = true) then

4 l← withinRange(i, z, tz);

5 if ((Kz = true and l = true) or (tz < ti,zlink)) then

6 if (z /∈ S) then

7 S ← S ∪ z;

8 Xz ← Xz ∪ τ ;

9 T ← T − τ ;

10 tqueuez ← tqueuez +
cτ
Cz

;

11 Sort F by (d ∗ σ +
1

C
∗ ρ+ tqueue ∗ δ);

12 else

13 hz ← hz − cτ ; az ← az − supτ − sdownτ ;

14 tqueuez ← tqueuez + ς;

15 Sort F by (d ∗ σ +
1

C
∗ ρ+ tqueue ∗ δ);

by the time to process τ (as if the task τ was already queued at server), and

F is sorted again. Suppose the check returns false (lines 12-15). In that case,

the procedures for executing τ are undone, the queue of the server receives a645

high value constant ς so that the server stays in the last positions of F , and F

is sorted again.

Complexity Analysis. The most critical computational complexity aspect of

the GTT algorithm is the loop of lines 5-10, which depends on the size of T .

In each iteration of the loop, the algorithm executes the Function AddTasksTo-650

Client or the Function AddTasksToClient. Each of these functions has com-

putational complexity determined mainly by the sorting of the set of feasible

servers F , which is O(F log F) on the size of the set F . Since these sortings are

30

done at each iteration of the loop of lines 5-10, the computational complexity

of the GTT algorithm is O(TF log F).655

4.2.3. Send/Receive Tasks

Later the decision, the framework puts into practice the solution proposed

by the GTT algorithm. Thus, the Decision Maker module transfers the tasks

to the Distributor module that forwards the tasks to the appropriate modules

(for local or remote execution). If the option is to send some tasks to remote660

devices, they are sent to the WAVE or 5G modules. In this way, as shown

in Figure 4, tasks are distributed to remote servers (vehicle and edge server)

to start processing. Thus, multiple servers can simultaneously collaborate to

provide computing services to the client.

Figure 4: Client (red) sends tasks to the chosen servers. Two tasks are sent to be executed

on the edge server (whose base station is within its 5G communication range - light blue

background) via V2I connection (purple dotted line). One task is sent to be executed on the

vehicle ahead (within its WAVE communication range - black dotted line) via V2V connection

(blue dotted line).

BS

 Edge
Server

Vehicle

Task Queue
CPU Capacity

Tasks
TASKTASKTASK

TASK

TASK

TASK

Following processing, each chosen server returns the processing result to the665

client. This result comes through the WAVE or 5G modules. Then, the result

passes through the Data and Context Gatherer module and finally reaches the

Application to continue its execution.

31

4.2.4. Failure recovery

After the client sends the tasks to the remote servers, it triggers a function670

to monitor the connectivity between client and servers, through the Data and

Context Gatherer module. If beacon messages from a server continue to be

received by the client, connectivity still exists. If no beacon messages arrive

from a server in ξ milliseconds, and if the processing result from that server

has not yet been returned, a failure is detected. In this case, the Data and675

Context Gatherer module informs the Decision Maker module. The Decision

Maker module activates the Task Distributor module that has the tasks of the

lost server and distributes it to the Task Queue to be executed locally on the

client.

5. Experiments680

This section presents the details of the experiments performed to evaluate

the proposed framework and algorithm. All experiments follow the general net-

work structure, communication, and computation models described in Section

3. Table 4 presents a summary of the main characteristics of the experiments.

Aspects of network, mobility, scenario, vehicular density, application, and685

comparison with other algorithms are detailed below.

5.1. Network

We employ simulation-based experiments to evaluate the proposed frame-

work. For this, we used the ns-3 simulator [49] (version 3.29) running on a

computer with an Intel Xeon E5645 processor @ 2.40GHz and 32 GB RAM. All690

scenarios use common packet traffic on vehicular networks.

5.2. Scenario

To build the simulated scenarios, we use Simulation of Urban MObility

(SUMO) [50]. The first scenario, seen in Figure 5, consists of a highway in

a metropolitan area with the following characteristics: 5km long, two lanes in695

each direction, and a maximum speed of 60km/h.

32

Table 4: Main simulation parameters.

General

Scenarios Highway and Urban

of vehicles in highway 11, 55, and 120 per km

of vehicles in urban 25, 120, and 250 per km2

Simulation time 150 seconds

of simulations carried out 200 times

Mobility model Krauss

Servers offering offloading All (vehicles and edge servers)

Known Routes of Vehicles 50%

CPU Capacity of Edge Servers 1.5, 2.0, and 2.5 GHz

CPU Capacity of Vehicles 0.5 and 1.0 GHz

CPU Requirement of a Task 3.5 Gigacycles

Task size (upload) 558 KB

Result size (download) 1000 B

Workload type ALPR

Workloads 4, 6, 8, 10, and 12 tasks

Transport protocol UDP (discovery), TCP (offloading)

Others packets traffics Beacon messages

WAVE

Communication range 250 meters

Radio propagation model Two-Ray Ground

Layer 2 protocol IEEE 802.11p

Data rate 27 Mbps

5G

Communication range 220 meters

Radio propagation model 5G mmWave systems [4]

Layer 2 protocol 5G mmWave systems [4]

Data rate 450 Mbps

The second scenario, seen in Figure 6, consists of an urban area with 2km2

area and a maximum speed of 60km/h.

33

Figure 5: Highway scenario used in the experiments. An adapted stretch of a Brazilian

highway with returns at the ends. The black dotted lines highlight the smaller section showing

vehicles and a 5G base station with a coupled edge server.

BS
 Edge
Server

Figure 6: Urban scenario used in the experiments. An adapted stretch of the Manhattan

region, New York, USA. The black dotted lines highlight an intersection showing vehicles and

a 5G base station with a coupled edge server.

BS
 Edge
Server

5.3. Mobility

We consider three types of nodes with predefined quantity: vehicles, edge700

servers, and base stations. Base stations and edge servers have a fixed location

and are spatially distributed to provide complete communication coverage.

Concerning vehicles, their initial positions are spatially and randomly dis-

tributed across different points in the scenario. They follow random paths with

different starting and ending points. The vehicles move at different speeds and705

directions, according to the microscopic car-following model of Krauss. Thus,

34

the vehicle’s speed depends on the maximum speed of the road, the speed of

the vehicle ahead (if any and not to collide), the difference in vehicle positions,

and static parameters such as the driver’s reaction time [50, 51].

The simulator used to generate the mobility of the network nodes was the710

SUMO. It was chosen for having mobility models that reflect the real-world

behavior of vehicular traffic and integration mechanisms with network simu-

lators. Thus, most computation offloading experiments in vehicular scenarios

utilize simulation-generated mobility, with SUMO being one of the most used

simulators [9, 50].715

5.4. Vehicular Density

For each scenario, we use three types of vehicular density: low, medium, and

high. Vehicular density is considered low if it has approximately 11 vehicles/km

in highway scenario and 25 vehicles/km2 in urban scenario. In medium den-

sity are there are approximately 55 vehicles/km in highway scenario and 120720

vehicles/km2 in urban scenario. Finally, in high density, we have approximately

120 vehicles/km in highway scenario and 250 vehicles/km2 in urban scenario

[9].

5.5. Application

The application used was Automatic License Plate Recognition (ALPR),725

which consists of image capture, vehicle detection, plate detection, and optical

character recognition. For each captured image, we used SSD-300 with Mo-

bileNet [52] to detect vehicles and Tiny YOLOv3 [53] to identify the license

plate. Then, we used an algorithm of optical character recognition to recognize

the characters. As this application’s tasks are compute-intensive, the vehicles730

can offload them to be executed on remote servers (edge servers or other vehi-

cles) to reduce the execution time.

In our experiments, we considered an ALPR task (τ) involving independent

images with a total number of necessary CPU cycles equal to 3.5 Gigacycles

(cτ = 3.5Gc), size of the upload image equal to 558KB (supτ = 558KB) and735

35

the size of the processing results equal to 1000B (sdownτ = 1000B, representing

strings containing each recognized license plate). We also consider five different

types of ALPR workloads. Workloads 1, 2, 3, 4 and 5 have, respectively, 4, 6,

8, 10 and 12 tasks of type τ .

As it is not possible to simulate the workload processing in ns-3, we use real740

offloading experiments. In this way, we calculate the execution times of ALPR

tasks and the size of the packets transferred during the offloading process. For

edge servers, we use CPUs with capacities of 1.5, 2.0, and 2.5 GHz. For vehicles,

we use CPUs with 0.5 and 1.0 GHz.

5.6. Comparison with other Algorithms745

We compared the proposed decision algorithm (GTT) with four other algo-

rithms: FIFO (First In, First Out), HVC (Hybrid Vehicular edge Cloud) [32],

MDO (Multi-Decision based Offloading) [19], and GCF (Greedy for CPU Free)

[33]. All algorithms used the failure recovery mechanism described in Section

4.2.4 and were tested under the same scenarios and conditions. The FIFO algo-750

rithm was implemented to select the servers that reply first, sending a task to

each one. If the FIFO does not find enough servers, it executes all tasks locally.

The HVC, MDO, and GCF were implemented following the descriptions of their

respective papers. The HVC algorithm prioritizes sending the requests via 5G

(in our scenario, to the edge server). The MDO uses only neighboring vehicles755

as remote servers, choosing the capable ones and with the best scores (based on

the relative speeds between vehicles and waiting times). The GCF algorithm

seeks servers close to the client and with the highest free CPU availability (low

queue times) in the sequence: edge servers, client, nearby vehicles. However,

the GCF does not take into account the computational capacity of the network760

nodes. In addition, known routes of vehicles are not considered in FIFO, HVC,

MDO, and GCF.

36

6. Results Analysis

This section discusses the main results obtained from the experiments men-

tioned above.765

6.1. Impact of Known Routes of Vehicles on the Number of Recovered Tasks

As mentioned earlier, some vehicles can share their routes with other nodes

in the network. To analyze the impact of this information shared in compu-

tation offloading, we used the urban scenario for having more different route

options. Besides, we used the workload with 12 tasks and the algorithm that770

uses information about known routes (i.e., GTT). Such a number of tasks was

chosen because distributing more tasks increases the chance of failure.

In Figure 7, we can see that the more vehicles with known routes (x-axis), the

greater the reduction of failures/recovered tasks. For example, in low vehicular

density and with 50% and 100% of vehicles with known routes, GTT decreased775

by 15.1% and 50.0%, respectively, the number of tasks recovered. In medium

density, the reduction was from 31.7% and 48.8% to 50% and 100% of vehicles

with known routes, respectively. With high vehicular density, having 50% and

100% of vehicles with known routes helped GTT to reduce the number of tasks

recovered by 33.3% and 77.8%, respectively.780

6.2. Type of Occurrence per Task

This section presents the performance of the proposed algorithm and oth-

ers from the literature concerning what happens with each task of the different

workloads. Thus, in Figures 8 and 9, a task can have three types of occur-

rences: TL, TS, or TR. TL (parts of the bars with checkered lines) represents785

tasks executed locally by the client. TS (part of the bars without lines) repre-

sents tasks that were successfully offloaded, executed remotely, and the results

were returned to the client. TR (parts of the bars with simple diagonal lines)

represents tasks that were offloaded, and there was some failure in the process,

causing them to need recovery on the client, as seen in Section 4.2.4.790

37

Figure 7: Impact of known routes of vehicles on the number of failures/recovered tasks with

low, medium, and high vehicular density. The baseline is the number of recovered tasks when

the percentage of known routes is zero. Scenario: urban, 12 tasks, and GTT algorithm.

In Figures 8a to 8c, we have the percentage of tasks by type of occurrence

of the FIFO, HVC, MDO, GCF, and GTT algorithms in the highway scenarios.

We can see that the GTT has the highest percentages of TS and low percentages

of TR. With low vehicular density (Figure 8a), the percentage of TS in GTT was

on average 75.0%, while in FIFO, HVC, MDO, and GCF, it was, respectively,795

34.4%, 63.6%, 53.3%, and 71.9%. The average percentage of TR in GTT was

1.6%, while in FIFO, HVC, MDO, and GCF were, respectively, 9.4%, 16.8%,

1.5%, and 5.8%. In the medium density scenario (Figure 8b), the percentage

of TS in GTT was on average 88.6%, while in FIFO, HVC, MDO, and GCF

it was, respectively, 63.3%, 73.4%, 71.0%, and 87.1%. Regarding the average800

percentage of TR, that of GTT was 1.4%, while FIFO, HVC, MDO, and GCF

were, respectively, 17.7%, 15.6%, 0.3%, and 4.7%. With high vehicular density

(Figure 8c), the GTT had a higher average percentage of TS (89.8%) than FIFO

(62.3%), HVC (74.9%), MDO (66.0%), and GCF (88.2%). Finally, the average

percentage of TR in GTT was 1.4%, while in FIFO, HVC, MDO, and GCF, it805

was 19.1%, 14.0%, 0.3%, and 4.7%, respectively.

In Figures 9a to 9c, we present the percentage of tasks by type of occurrence

of the FIFO, HVC, MDO, GCF, and GTT algorithms in the urban scenarios.

38

(a) Low vehicular density.

(b) Medium vehicular density.

(c) High vehicular density.

Figure 8: Percentage of tasks by type of occurrence for workloads with 4, 6, 8, 10, and 12 tasks.

We can have three types of occurrences: TL - task executed locally; TS - task successfully

executed remotely; TR - task executed with recovery. For comparison, we used five algorithms:

FIFO, HVC, MDO, GCF, and GTT in highway scenarios.

39

We can also see that GTT has a higher percentage of TS and a lower percentage

of TR than other algorithms. In low density scenario (Figure 9a), GTT had,810

on average, a percentage of TS of 67.6%, while FIFO, HVC, MDO, and GCF

had, respectively, 22.9%, 66.1%, 52.5%, and 61.4%. In terms of TR, the GTT’s

average percentage was 3.2%, the FIFO was 5.2%, the HVC was 4.1%, the MDO

was 3.6%, and the GCF was 3.6%. With medium vehicular density (Figure 9b),

the average percentage of TS in GTT was 83.8%, while in FIFO, HVC, MDO,815

and GCF it was, respectively, 60.8%, 77.0%, 75.3%, and 79.2%. The average

percentage of TR in GTT was 1.0%, while in FIFO, HVC, MDO, and GCF,

it was, respectively, 9.0%, 4.0%, 2.3%, and 3.7%. With high vehicular density

(Figure 9c), GTT had an average TS percentage of 88.6%, while FIFO, HVC,

MDO, and GCF had, respectively, 66.6%, 80.3%, 81.0%, and 84.7%. Finally, on820

average, the percentage of TR for GTT was 0.8%, while for FIFO, HVC, MDO,

and GCF, it was, respectively, 11.5%, 4.5%, 1.8%, and 3.5%.

6.3. Reduction in Execution Time

This section compares the performance of each algorithm concerning the

metric of reduction in execution time of different workloads. This metric is825

calculated by comparing each algorithm’s time with the baseline, which is the

time to execute all tasks locally on the client1. The error bars in the figures of

this section show the 95% confidence interval of the corresponding data based on

the standard normal distribution. Furthermore, the time taken to decide where

each task should be processed was around 10 nanoseconds for all algorithms830

considered.

Thus, in the highway scenarios (Figures 10a to 10c), we can see that the

most significant reductions in execution time, in general, are from the GTT

algorithm. For example, in the low vehicular density scenario (Figure 10a),

on average, GTT algorithm had a reduction in execution time of 59.4%. In835

contrast, FIFO, HVC, MDO, and GCF algorithms had, respectively, reductions

1A similar comparison was made with this same baseline in [32].

40

(a) Low vehicular density.

(b) Medium vehicular density.

(c) High vehicular density.

Figure 9: Percentage of tasks by type of occurrence for workloads with 4, 6, 8, 10, and 12 tasks.

We can have three types of occurrences: TL - task executed locally; TS - task successfully

executed remotely; TR - task executed with recovery. For comparison, we used five algorithms:

FIFO, HVC, MDO, GCF, and GTT in urban scenarios.

41

of 18.2%, 33.6%, 35.3%, and 52.1%. In medium density (Figure 10b), GTT

had an average reduction of 69.7%, while FIFO, HVC, MDO, and GCF had,

respectively, reductions of 37.8%, 44.2%, 50.8%, and 62.9%. With high vehicular

density (Figure 10c), GTT had an average reduction of 70.3%, while FIFO,840

HVC, MDO, and GCF had, respectively, reductions of 36.3%, 45.4%, 49.2%,

and 64.0%.

In urban scenarios (Figures 11a to 11c), we can see that the greatest reduc-

tions in execution time are also, in general, of the GTT algorithm. For example,

in the low vehicular density scenario (Figure 11a), on average, GTT algorithm845

had a 52.4% reduction in execution time. On the other hand, FIFO, HVC, MDO,

and GCF algorithms had, respectively, reductions of 9.5%, 38.8%, 32.1%, and

42.7%. In the medium density scenario (Figure 11b), the average reduction in

GTT was 64.8%, while in FIFO, HVC, MDO, and GCF, it was, respectively,

35.3%, 49.6%, 48.2%, and 53.8%. With high vehicular density (Figure 11c),850

GTT had an average reduction of 68.9%, while FIFO, HVC, MDO, and GCF

had, respectively, average reductions of 40.3%, 53.3%, 55.9%, and 59.2%.

6.3.1. Statistical Tests

As shown in Figures 10 and 11, GTT has the most significant reductions in

task execution time. However, in Figures 10a and 11a, there are overlapping855

confidence intervals between the GTT and the GCF with four and six tasks.

This type of overlapping also exists in Figure 11a between GTT and HVC with

four tasks. Then, we performed two-sample t-tests (one-tailed) to assess pairwise

whether there are significant differences in the performance of the algorithms in

these cases. The null hypothesis (H0) is that the averages of the two algorithms860

evaluated in each case are equal. However, in all tests, we obtained p-values less

than 0.05, rejecting H0. Therefore, the GTT average reductions in execution

time are significantly different from the other algorithms in all evaluated cases.

42

(a) Low vehicular density.

(b) Medium vehicular density.

(c) High vehicular density.

Figure 10: Average reduction in execution time, with 95% confidence interval, for workloads

with 4, 6, 8, 10, and 12 tasks. The baseline is the execution time when the workload is fully

executed on the client. For comparison, we used five algorithms: FIFO, HVC, MDO, GCF,

and GTT in highway scenarios.

43

(a) Low vehicular density.

(b) Medium vehicular density.

(c) High vehicular density.

Figure 11: Average reduction in execution time, with 95% confidence interval, for workloads

with 4, 6, 8, 10, and 12 tasks. The baseline is the execution time when the workload is fully

executed on the client. For comparison, we used five algorithms: FIFO, HVC, MDO, GCF,

and GTT in urban scenarios.

44

6.4. Discussion

According to Figure 7, we can see that, even with different vehicular den-865

sities, the information of known routes of vehicles reduces the number of tasks

recovered, i.e., the number of failures. This reduction occurs because this real-

time contextual information helps GTT to better predict the network nodes’

position at a given time. Consequently, GTT is able to calculate more precisely

the best server to send the tasks so that failures/recoveries do not happen.870

We also note in Figures 8 and 9 that the GTT has the highest percentages

of tasks successfully executed remotely (TS) and the lowest percentages of tasks

recovered (TR) in most cases. Having a high TS percentage is a good indicator

because it relieves the client’s processing overload and tasks can be executed

more quickly on remote servers with better computing resources. A low TR875

percentage is also an important indicator. Sending tasks to be performed re-

motely involves using bandwidth and processing on the remote server. It also

involves time to transmit, process, and wait for their results. When a failure

occurs, these times and computational resources are wasted. Also, as the result

of task processing does not arrive, it is necessary to recover the lost task. So,880

time is still needed to detect the failure and re-execute the task locally. Thus,

a low TR percentage indicates a low percentage of failures, saving time and

computational resources.

In Figures 10 and 11, with the most significant reductions in execution time

compared to other algorithms, GTT can help an application to execute its tasks885

more quickly. These reductions are very important in environments as dy-

namic as vehicular networks. In this sense, the GTT’s best time performance

is confirmed by Section 6.3.1. In it, we can see that GTT has execution times

significantly different from all other algorithms, including GCF (algorithm with

performance closer to GTT) in all scenarios. Another interesting point is that890

the algorithms spent negligible time deciding where tasks should be processed.

Hence, this time did not influence the workloads’ execution times.

Therefore, the results show that computation offloading processes can reduce

an application’s total execution time in vehicular systems. We have also seen

45

that GTT has the greatest reductions in execution times of tasks, the highest895

rates of tasks successfully offloaded, and the lowest failure rates (with fewer

recovered tasks in most cases) compared to other algorithms.

Some factors can explain the better performance of the GTT. First, as a

greedy algorithm, GTT periodically updates the best possible server (including

the client itself) to execute each task, taking advantage of the computational900

resources available from all nodes in the network. This evaluation of the best

server is done through various real-time contextual information parameters. In

this way, with more contextual information, evaluations become more accurate.

Consequently, GTT is able to make better offloading decisions, choosing the best

servers with feasible link lifetimes, shorter distances, and good CPU availability905

and capacity. With this, servers can execute tasks faster and the results can be

returned to the client before they lose connectivity, avoiding failures.

Second, if available, information about known routes of vehicles contributes

to reducing the offloading processes’ failures and, consequently, reducing task

recoveries. With fewer recoveries, the reduction in the total execution time of910

the workload is greater. The other algorithms, with more recoveries, end up

delaying more their total execution time. In the case of the MDO, although

it has low percentages of TR, it does not take advantage of the computational

resources of edge servers and has more tasks executed locally (TL), overloading

client vehicles.915

Third, the simultaneous use of the WAVE and 5G networks also contributes

to GTT’s good performance. This use allows the GTT to take advantage of both

the vehicular clouds (with V2V) and the edge servers (with V2I). It also allows

to increase the transmission capacity of tasks and reduce latencies. Besides, it

combines the independence of infrastructure and direct communications from920

WAVE networks and the large data rates and increased band spectrum avail-

ability of 5G networks.

In this way, GTT makes more accurate contextual evaluations, better server

choices, better task assignment, and takes advantage of technological advantages

with the simultaneous use of WAVE, 5G, and the vehicular edge computing925

46

system. Through extensive simulations and diverse vehicular environments, we

show that GTT achieves the greatest reductions in the total execution times of

tasks and the lowest rates of offloading failures in most cases, providing good

and feasible solutions to problem P1.

7. Conclusion930

This work presented a context-oriented framework for computation offload-

ing in vehicular edge computing systems with the objective of reliably improving

the performance of the application. The framework modules support discover-

ing computational resources, gathering real-time contextual data, distributing

computation tasks, and providing failure recovery. Then, the core of the frame-935

work, a greedy algorithm called GTT, can focus on task assignment, deciding

where each application task should be executed. For this decision, GTT tak-

ing contextual information into account and taking advantage of WAVE and

5G networks and the computing resources of vehicular clouds and edge servers.

Through extensive experiments in different vehicular environments and work-940

loads, we evaluated the proposed framework’s efficiency and the GTT algorithm

compared to other solutions in the literature. As seen in the results, on average,

GTT achieved to offload up to 89.4% of all tasks and needed to recover only

0.8% of them. Besides, on average, GTT has reduced up to 70.3% of tasks

execution time compared to entirely local execution and up to 42.9% if com-945

pared to other algorithms. Thus, our solution showed good adaptation to the

challenges encountered, such as fast vehicular mobility, contextual information

gathering, and NP-hardness of the task distribution decision. Our solution also

performed better than other solutions in terms of reducing total execution time

and failure rates. Some characteristics of the GTT contributed to obtaining the950

best performance. For example, the use of diverse real-time contextual infor-

mation parameters contributed to finding the best possible servers for each task

of the application, executing the tasks more quickly, and minimizing failures.

The special information about known routes of vehicles made it possible to pre-

47

dict vehicle positioning more accurately and avoid offloading failures. In fact,955

this information can reduce the number of failures/recoveries by up to 77.8%.

Finally, the WAVE and 5G networks’ simultaneous use increased the task trans-

mission capacities, decreasing communication delays and remote task execution

time. In future works, we intend to improve our solution by considering the

task order and new information and techniques in the computation offloading960

processes.

References

[1] K. Wevers, M. Lu, V2x communication for its-from ieee 802.11 p towards

5g, IEEE 5G Tech Focus 1 (2) (2017) 5–10.

[2] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, H. Zedan, A comprehensive965

survey on vehicular ad hoc network, J. Netw. Comput. Appl. 37 (2014)

380–392.

[3] D. Jiang, L. Delgrossi, Ieee 802.11 p: Towards an international standard

for wireless access in vehicular environments, in: Vehicular Technology

Conference, 2008. VTC Spring 2008. IEEE, IEEE, 2008, pp. 2036–2040.970

[4] M. Mezzavilla, M. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan,

M. Zorzi, End-to-end simulation of 5g mmwave networks, IEEE Commun.

Surv. Tutor. 20 (3) (2018) 2237–2263.

[5] C. R. Storck, F. Duarte-Figueiredo, A 5g v2x ecosystem providing internet

of vehicles, Sens. 19 (3) (2019) 550.975

[6] J. Zhang, K. B. Letaief, Mobile edge intelligence and computing for the

internet of vehicles, Proc. IEEE 108 (2) (2019) 246–261.

[7] A. Boukerche, V. Soto, Computation offloading and retrieval for vehicular

edge computing: Algorithms, models, and classification, ACM Comput.

Surv. (CSUR) 53 (4) (2020) 1–35.980

48

[8] Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, F. Yang, Dependency-

aware task scheduling in vehicular edge computing, IEEE Internet Things

J. 7 (6) (2020) 4961–4971. doi:10.1109/JIOT.2020.2972041.

[9] A. B. Souza, P. A. Rego, T. Carneiro, J. C. Rodrigues, P. P. Rebouças Filho,

J. N. Souza, V. Chamola, V. H. C. Albuquerque, B. Sikdar, Computation985

offloading for vehicular environments: A survey, IEEE Access 8 (2020)

198214–198243. doi:10.1109/ACCESS.2020.3033828.

[10] P. A. Rego, P. B. Costa, E. F. Coutinho, L. S. Rocha, F. A. Trinta, J. N.

de Souza, Performing computation offloading on multiple platforms, Com-

put. Commun. 105 (2017) 1–13.990

[11] D. Xu, Y. Li, X. Chen, J. Li, P. Hui, S. Chen, J. Crowcroft, A survey of

opportunistic offloading, IEEE Commun. Surv. Tutor. 20 (3) (2018) 2198–

2236.

[12] H. Vahdat-Nejad, A. Ramazani, T. Mohammadi, W. Mansoor, A survey

on context-aware vehicular network applications, Veh. Commun. 3 (2016)995

43–57.

[13] Y. Shin, H. Choi, Y. Nam, E. Lee, Data delivery protocol using the tra-

jectory information on a road map in vanets, Ad Hoc Netw. 107 (2020)

102260.

[14] S. Wang, C. Ding, N. Zhang, X. Liu, A. Zhou, J. Cao, X. S. Shen, A1000

cloud-guided feature extraction approach for image retrieval in mobile edge

computing, IEEE Trans. on Mob. Comput.

[15] M. Tang, L. Gao, J. Huang, Enabling edge cooperation in tactile internet

via 3c resource sharing, IEEE J. on Sel. Areas in Commun. 36 (11) (2018)

2444–2454.1005

[16] Y. Li, X. Wang, X. Gan, H. Jin, L. Fu, X. Wang, Learning-aided com-

putation offloading for trusted collaborative mobile edge computing, IEEE

Trans. on Mob. Comput. 19 (12) (2019) 2833–2849.

49

http://dx.doi.org/10.1109/JIOT.2020.2972041
http://dx.doi.org/10.1109/ACCESS.2020.3033828

[17] L. Liu, C. Chen, Q. Pei, S. Maharjan, Y. Zhang, Vehicular edge computing

and networking: A survey, Mob. Netw. and Appl. (2020) 1–24.1010

[18] G. Fan, H. Jin, Q. Liu, W. Qin, X. Gan, H. Long, L. Fu, X. Wang, Joint

scheduling and incentive mechanism for spatio-temporal vehicular crowd

sensing, IEEE Trans. on Mob. Comput.

[19] A. U. Rahman, A. W. Malik, V. Sati, A. Chopra, S. D. Ravana, Context-

aware opportunistic computing in vehicle-to-vehicle networks, Veh. Com-1015

mun. 24 (2020) 100236.

[20] M. Liwang, J. Wang, Z. Gao, X. Du, M. Guizani, Game theory based

opportunistic computation offloading in cloud-enabled iov, IEEE Access 7

(2019) 32551–32561.

[21] M. Charitos, G. Kalivas, Mimo hetnet ieee 802.11 p–lte deployment in a1020

vehicular urban environment, Veh. Commun. 9 (2017) 222–232.

[22] N. Dreyer, A. Moller, Z. H. Mir, F. Filali, T. Kurner, A data traffic steering

algorithm for ieee 802.11 p/lte hybrid vehicular networks, in: 2016 IEEE

84th Vehicular Technology Conference (VTC-Fall), IEEE, 2016, pp. 1–6.

[23] S. Ucar, S. C. Ergen, O. Ozkasap, Multihop-cluster-based ieee 802.11 p1025

and lte hybrid architecture for vanet safety message dissemination, IEEE

Trans. Veh. Technol. 65 (4) (2015) 2621–2636.

[24] Z. Ning, X. Wang, J. J. Rodrigues, F. Xia, Joint computation offloading,

power allocation, and channel assignment for 5g-enabled traffic manage-

ment systems, IEEE Trans. Ind. Inform. 15 (5) (2019) 3058–3067.1030

[25] G. Qiao, S. Leng, K. Zhang, Y. He, Collaborative task offloading in ve-

hicular edge multi-access networks, IEEE Commun. Mag. 56 (8) (2018)

48–54.

[26] H. Wang, X. Li, H. Ji, H. Zhang, Federated offloading scheme to mini-

mize latency in mec-enabled vehicular networks, in: 2018 IEEE Globecom1035

Workshops (GC Wkshps), IEEE, 2018, pp. 1–6.

50

[27] X. Fan, T. Cui, C. Cao, Q. Chen, K. S. Kwak, Minimum-cost offloading for

collaborative task execution of mec-assisted platooning, Sens. 19 (4) (2019)

847.

[28] S. Raza, W. Liu, M. Ahmed, M. R. Anwar, M. A. Mirza, Q. Sun, S. Wang,1040

An efficient task offloading scheme in vehicular edge computing, J. Cloud

Comput. 9 (2020) 1–14.

[29] G. Barb, M. Otesteanu, 4g/5g: A comparative study and overview on what

to expect from 5g, in: 2020 43rd International Conference on Telecommu-

nications and Signal Processing (TSP), IEEE, 2020, pp. 37–40.1045

[30] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios,

J. Zhang, Overview of millimeter wave communications for fifth-generation

(5g) wireless networks—with a focus on propagation models, IEEE Trans.

Antennas Propag. 65 (12) (2017) 6213–6230. doi:10.1109/TAP.2017.

2734243.1050

[31] M. Tehrani-Moayyed, F. Restuccia, S. Basagni, Comparative performance

evaluation of mmwave 5g nr and lte in a campus scenario, Proceedings of

IEEE VTC 2020 Fall.

[32] J. Feng, Z. Liu, C. Wu, Y. Ji, Mobile edge computing for the internet of

vehicles: Offloading framework and job scheduling, IEEE Veh. Technol.1055

Mag. 14 (1) (2018) 28–36.

[33] A. B. Souza, P. A. L. Rego, P. H. G. Rocha, T. C. Pessoa, J. N. d. Souza, A

task offloading scheme for wave vehicular clouds and 5g mobile edge com-

puting, in: 2020 IEEE Global Communications Conference (Globecom),

IEEE, 2020, pp. 1–6.1060

[34] A. B. Souza, J. Celestino, F. A. Xavier, F. D. Oliveira, A. Patel, M. Latifi,

Stable multicast trees based on ant colony optimization for vehicular ad

hoc networks, in: The International Conference on Information Networking

2013 (ICOIN), IEEE, 2013, pp. 101–106.

51

http://dx.doi.org/10.1109/TAP.2017.2734243
http://dx.doi.org/10.1109/TAP.2017.2734243
http://dx.doi.org/10.1109/TAP.2017.2734243

[35] J. Härri, C. Bonnet, F. Filali, Kinetic mobility management applied to1065

vehicular ad hoc network protocols, Comput. Commun. 31 (12) (2008)

2907–2924.

[36] H. Menouar, M. Lenardi, F. Filali, Movement prediction-based routing

(mopr) concept for position-based routing in vehicular networks, in: Vehic-

ular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th, IEEE,1070

2007, pp. 2101–2105.

[37] V. Namboodiri, L. Gao, Prediction-based routing for vehicular ad hoc net-

works, IEEE Trans. Veh. Technol. 56 (4) (2007) 2332–2345.

[38] J. Zhang, H. Guo, J. Liu, Y. Zhang, Task offloading in vehicular edge

computing networks: A load-balancing solution, IEEE Trans. Veh. Technol.1075

69 (2) (2019) 2092–2104.

[39] Y. Sun, J. Song, S. Zhou, X. Guo, Z. Niu, Task replication for vehicular edge

computing: A combinatorial multi-armed bandit based approach, in: 2018

IEEE Global Communications Conference (GLOBECOM), IEEE, 2018, pp.

1–7.1080

[40] C. Chen, L. Chen, L. Liu, S. He, X. Yuan, D. Lan, Z. Chen, Delay-optimized

v2v-based computation offloading in urban vehicular edge computing and

networks, IEEE Access 8 (2020) 18863–18873.

[41] S. Shaham, M. Ding, M. Kokshoorn, Z. Lin, S. Dang, R. Abbas, Fast

channel estimation and beam tracking for millimeter wave vehicular com-1085

munications, IEEE Access 7 (2019) 141104–141118.

[42] M. Giordani, A. Zanella, T. Higuchi, O. Altintas, M. Zorzi, Performance

study of lte and mmwave in vehicle-to-network communications, in: 2018

17th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net),

IEEE, 2018, pp. 1–7.1090

52

[43] T. Cui, Y. Hu, B. Shen, Q. Chen, Task offloading based on lyapunov op-

timization for mec-assisted vehicular platooning networks, Sens. 19 (22)

(2019) 4974.

[44] S. Midya, A. Roy, K. Majumder, S. Phadikar, Multi-objective optimization

technique for resource allocation and task scheduling in vehicular cloud ar-1095

chitecture: A hybrid adaptive nature inspired approach, J. Netw. Comput.

Appl. 103 (2018) 58–84.

[45] M. Chen, Y. Hao, M. Qiu, J. Song, D. Wu, I. Humar, Mobility-aware

caching and computation offloading in 5g ultra-dense cellular networks,

Sens. 16 (7) (2016) 974.1100

[46] G. Zobolas, C. D. Tarantilis, G. Ioannou, Exact, heuristic and meta-

heuristic algorithms for solving shop scheduling problems, in: Metaheuris-

tics for scheduling in industrial and manufacturing applications, Springer,

2008, pp. 1–40.

[47] I. F. Akyildiz, C. Han, S. Nie, Combating the distance problem in the mil-1105

limeter wave and terahertz frequency bands, IEEE Commun. Mag. 56 (6)

(2018) 102–108.

[48] F. A. Teixeira, V. F. e Silva, J. L. Leoni, D. F. Macedo, J. M. Nogueira,

Vehicular networks using the ieee 802.11 p standard: An experimental

analysis, Veh. Commun. 1 (2) (2014) 91–96.1110

[49] G. F. Riley, T. R. Henderson, The ns-3 network simulator, in: Modeling

and tools for network simulation, Springer, 2010, pp. 15–34.

[50] D. Krajzewicz, Traffic simulation with sumo–simulation of urban mobility,

in: Fundamentals of traffic simulation, Springer, 2010, pp. 269–293.

[51] J. Song, Y. Wu, Z. Xu, X. Lin, Research on car-following model based on1115

sumo, in: The 7th IEEE/International Conference on Advanced Infocomm

Technology, IEEE, 2014, pp. 47–55.

53

[52] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural net-

works for mobile vision applications, arXiv preprint arXiv:1704.048611120

(2017) eprint.

[53] J. Redmon, A. Farhadi, Yolov3: An incremental improvement, arXiv

preprint arXiv:1804.02767 (2018) eprint.

54

	Introduction
	Challenging Issues
	Contributions
	Organization

	Related Works
	System Model and Problem Formulation
	Network General Structure
	Communication Model
	Link Lifetime
	Position Prediction Based on Known Routes of Vehicles
	Data Transmission Rate

	Computation Model
	Local Computation
	Remote Server Computation
	Total Execution Time

	Problem Formulation

	Proposed Framework
	Framework Architecture
	Sensors
	Task Queue
	Local Execution
	WAVE and 5G
	Task Distributor
	Data and Context Gatherer
	Decision Maker

	Computation Offloading Process
	Resources Discovery
	Offloading Decision
	Send/Receive Tasks
	Failure recovery

	Experiments
	Network
	Scenario
	Mobility
	Vehicular Density
	Application
	Comparison with other Algorithms

	Results Analysis
	Impact of Known Routes of Vehicles on the Number of Recovered Tasks
	Type of Occurrence per Task
	Reduction in Execution Time
	Statistical Tests

	Discussion

	Conclusion

