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Abstract—Drought disasters signi�cantly a�ected human
life and water resources. Therefore, forecasting methods
like statistical models, machine learning, and deep learning
architectures help scientists to take e�ective decisions to
decrease the e�ects of natural disasters by providing decision-
making plans. Droughts can be forecasted using meteoro-
logical indices like the standardized precipitation evapotran-
spiration index (SPEI), which aid governments in taking
drought-prevention steps. In this paper, we present a big
drought architecture for drought modeling and forecasting.
The proposed architecture is composed of 5 layers: Data
collection, data preprocessing, data storage, data processing
and interpretation, and decision making. Besides, we present
a comparative study between three di�erent methods ARIMA,
PROPHET, and LSTM for drought forecasting. Three di�erent
metrics are used for the performance evaluation Root Mean
Squared Error (RMSE), coe�cient of determination (R2), and
Mean Squared Error (MAE). Experiments are carried out using
data from the province of Jiangsu. Results revealed that LSTM
outperformed the other models, and ARIMA outperformed
the PROPHET model.

Index Terms—Data analytics, Big data, Drought, Long-Short
Term Memory, ARIMA, PROPHET, SPEI

I. INTRODUCTION
Drought is an important type of natural disaster, and its

frequent occurrences cause massive socio-economic losses
worldwide. In China, almost all regions are vulnerable to
drought disasters [1]. For example, a severe drought disaster
in the Guangxi province in 2004 caused withered crops and

massive power losses, due to a complete lack of water to
produce hydropower. From Autumn of 2009 to Spring of 2010,
South China experienced severe droughts, causing the lack
of drinking water for approximately 21 million people [2]. In
2011, drought swept the Chinese territory from northeast to
southwest [3], causing a water shortage for about 2.2 million
people [4]. Overall, the regions that frequently encounter
drought disasters include the Huang-Huai-Hai plain in North
China, the Liao River Basin in Northeast China, the Yunnan
province in Southwest China, the Guangdong and Fujian
provinces in South China, and Northwest China but except
the northern part of the Xinjiang province [10]. Besides, there
are higher (shorter) durations of drought than the average
level in arid and semi-arid (humid) regions. However, the
periods of drought have a di�erence in these regions. The
droughts in Northeast China and Southwest China mainly
occurred in Spring, but they more occurred in Summer in
the lower and middle reaches of the Yangtze River Basin. In
autumn, droughts more likely occurred in the lower reach
of the Yangtze River Basin and across the Southeastern
China coast. Winter droughts mainly occurred in the upper
reaches of the Yangtze River Basin and the Yellow River
Basin, the Liao River Basin, and Southwest China [5], [6].
Timely and accurate drought monitoring/forecasting is an
important approach for the prevention and mitigation of
drought disasters [7]. However, with the rapid growth rate
of the data volume, traditional models like physical models,
for example, the geomorphology-based hydrological model
(GBHM) [8] and the Xinanjiang model [9], [10] encountered978-1-6654-1224-7/21/$31.00 ©2021 IEEE



some limitations which are mainly caused by the high
dimensionality, heterogeneity and the non-linearity of data
[11]. For solving these problems, arti�cial intelligence (i.e.,
big data technologies, machine learning, and deep learning
(DL) methods) gains growing popularity in drought mon-
itoring/forecasting studies. Especially, the DL architectures
are increasingly used recently for the issue. The DL is an
ML technique that has attracted broad attention in several
�elds. Deep neural network-based learning has lately be-
come one of the fastest-growing and most exciting �elds of
Big Data science [12]. Neural networks are a collection of
models derived from neural biological networks composed of
interconnected neurons whose associations can be modi�ed
and adapted to the inputs [13]. The DL techniques have
been widely applied in analyzing, estimating, designing,
�ltering, processing, recognition, and detection tasks [14].
It has achieved great success in many applications includ-
ing drought monitoring/forecasting. Several DL architectures
were used in the literature to monitor or forecast droughts in
China such as the Deep Neural Network (DNN) [14] (Fig.1.a),
Convolutional Neural Networks (CNN) (Fig. 1.b), Deep Belief
Networks (DBN) (Fig. 1.c), Long Short-Term Memory (Fig.
1.d), and Recurrent Neural Networks (RNN) (Fig. 1.e).

Fig. 1. Deep learning architectures for drought monitoring/forecasting.

These architectures are about learning multiple levels
of representations and abstractions that make better sense
of data such as images, time series, and texts, and thus
indicate better performances [15]. Drought data are highly
heterogeneous data. They may include remote sensing data,
climate data, biophysical data, and agricultural data. There-
fore, it is important to choose the most e�ective models to
process these data to forecast or monitor this phenomenon.
In this paper, we present a big data-based architecture
for drought forecasting, and further propose a comparative
study between three di�erent models for drought forecasting
i.e., Auto-Regressive Integrated Moving Average (ARIMA),
Prophet, and Long short-term memory (LSTM). The rest of
this paper is organized as follows: Section 2 presents a litera-
ture review for drought monitoring and forecasting in China,
and Section 3 presents the proposed methodology; in Section
4, we experimentally evaluate the proposed methodology and
give the conclusion and future works in Section 5.

II. LITERATURE REVIEW
Considering the statistical-based methods, ML-based meth-

ods, and DL-based methods that are used for drought mon-
itoring/forecasting over China, an overview of them is pre-
sented here, and their ability in processing a massive volume
of heterogeneous data is especially discussed.

A. Statistical models

Statistical models and ML-based methods are widely used
for drought monitoring/forecasting over China. [16] proposed
an approach for drought forecasting in the Sanjiang Plain.
They evaluated the performance of ARIMA, Wavelet Neural
Network (WNN), and Support Vector Machines (SVM) and
proved that ARIMA performs the best. [17] used three models
(ARIMA, ANN, and WNN) for drought forecasting in the
Hai River Basin. Their results revealed that the WANN is
the most suitable for SPI-6 and SPI-12 forecasting. [18] used
AR(1), Seasonal Autoregressive Integrated Moving Average
(SARIMA), ARIMA for drought forecasting in Guanzhong
Plain of China. They proved that the SARIMA can detect
changes better than ARIMA and AR(1), and ARIMA gave the
best results in drought forecasting. [19] proposed a study
for the evaluation and agreement analysis of the drought
forecasting results of the AR and SARIMA using the Kappa
coe�cient. The results showed that the accuracy of SARIMA
in forecasting is higher than the AR accuracy. [20] proposed
a statistical model, for 1-6 month lead drought forecasting
in China, where a statistical component refers to climate
signal weighting using support vector regression (SVR), and
dynamic modules include the Ensemble Mean (EM) and
Bayesian Model Averaging (BMA) of the North American
Multi-Model Ensemble (NMME) climatological model. The
results proved that the statistical and hybrid models are more
suitable than EM and BMA for drought forecasting.

B. Machine Learning methods

[21]developed drought forecasting models based on the
Ordinary Least Squares (OLS), penalized linear regression
(PLR), Decision Trees (DT), AdaBoost, and Random forest
(RF) to predict the SPEI at di�erent timescales of 3, 6, 12,
and 24 months in Heilongjiang Province, Liaoning Province,
Jilin Province, and the eastern part of the Inner Mongo-
lia Autonomous, Northeast China. The results showed that
the PLR model is the best in forecasting SPEI at di�er-
ent timescales. [22] used Distributed lag nonlinear model
(DLNM), ANN, XGBoost to predict SPEI based on the Oceanic
Niño Index (ONI), Southern Oscillation Index (SOI), Paci�c
Decadal Oscillation (PDO), North Atlantic Oscillation (NAO),
Atlantic Multidecadal Oscillation (AMO) and Interdecadal
Paci�c Oscillation (IPO). They proved that XGBoost is the
best for SPEI predicting. Another ML model used in drought
forecasting/monitoring across China is the Arti�cial Neural
Network (NN). In fact, [23] analyzed the spatial and temporal
patterns of drought based on model simulation. An ANN
model for drought warning was developed using monthly
temperature and precipitation data from 1949 to 2015. [24]



proposed the Integrated Agricultural Drought Index as a
new drought index (IDI). This index explains the relationship
between agricultural drought conditions and a multitude
of variables. The IDI is calculated using Remote Sensing
data and the BPNN. It can detect drought conditions with
a non-stationary relationship. Precipitation, Land Surface
Temperature (LST), Normalized Di�erence Vegetation Index
(NDVI), soil water power, and elevation are among the metro-
hydrological variables included in IDI. The results indicate
that the IDI based on ML algorithms can relax the assumption
used in many existing indices that the input and output data
are linearly correlated.

C. Deep Learning models

[25] proposed a drought forecast model based on Deep
Belief Network (DBN) for forecasting the Standardized Pre-
cipitation Index (SPI). Four di�erent scale SPI series were
computed at Xiqiao station in Yunnan Province. They proved
that the DBN is more suitable for drought forecasting com-
paring to BPNN and ARIMA. [26] used DBN for precipitation
forecasting. The DBN transforms the data feature represen-
tation from the original space to another new feature space,
in addition to semantic features to improve the accuracy
of the forecasting performance. The approach consists of 3
steps; Importing data (reading data from a database, data
format conversion), Building a DBN model (initialize model
parameter, pre-training model, �ne-tuning the model), and
�nally testing the DBN model. This model was compared
to other forecasting algorithms such as SVM with particle
swarm optimization (PSO-SVM), SVM with mesh optimiza-
tion, and SVM with genetic algorithm optimization. The
results showed that SVM could give e�cient results with
small datasets while DBN gives good results when dealing
with large-scale datasets. [27] proposed a big data-based
approach for precipitation forecasting based on deep belief
nets, called DBNPF (Deep Belief Network for Precipitation
Forecast). The data used for the experiments are the daily
hydrological multivariate time series data of four areas (Zun
Yi of Guizhou Province, Hezuo of Gansu Province, Jinan
of Shandong Province, and Changchun of Jilin Province)
of China from 1956 to 2015. These multivariate time series
include the 17 environmental factors such as mean site air
pressure, daily maximum pressure, daily minimum pressure,
average temperature, max wind speed, sunshine hours, max-
imum wind direction, maximum wind speed, average wind
speed, max wind direction, large-scale water evaporation,
small water evaporation, minimum relative humidity, average
relative humidity, daily maximum temperature, average water
vapor pressure, and daily minimum temperature. The results
showed that the DBNPF gave the best results compared
to other models such as ARIMA, and SVM. [28] deployed
LSTM network models for predicting the precipitation based
on meteorological data from 2008 to 2018 in Jingdezhen
City. They used di�erent climate variables such as temper-
ature, dew point temperature, minimum temperature, maxi-
mum temperature, atmospheric pressure, pressure tendency,

relative humidity, wind speed, wind direction, maximum
wind, total cloud cover, the height of the lowest cloud,
and the amount of cloud. The researchers used di�erent
numbers of neurons. The results revealed that using a large
number of hidden neurons doesn’t always lead to better
performance. [29] used convolutional- LSTM (C-LSTM) to
estimate precipitation based on well-resolved atmospheric
dynamical �elds. They compared C-LSTM against the general
circulation models (GCM) precipitation product and classical
downscaling methods such as SVM in the Xiangjiang River
Basin in South China. C-LSTM gave the best performance
comparing to SVM, CNN, and Quantile Mapping Method.
[30] deployed ANN and LSTM network models for simulating
the rainfall-runo� process based on �ood events from 1971
to 2013. The results revealed that the two architectures are
e�cient for rainfall-runo� models and better than conceptual
and physical-based models. LSTM models outperformed the
ANN models with the values of R2 and NSE beyond 0.9,
respectively. [31]proposed the use of a deep CNN (DCNN)
to identify and classify maize drought stress. The dataset
used in this study contains 656 Gray and RGB (Red Green
Blue) outdoor maize images taken from Panasonic camera;
including 219 optimum moisture images, 218 light drought
stress images, and 219 moderate droughts. The DCNN models
used are ResNet50 and ResNet152. There were three treat-
ments in the experiment: optimal moisture, light drought,
and moderate drought stress. The results demonstrated a
signi�cant performance of the proposed method. The accu-
racy of identifying and classifying drought stress was 98.14
percent and 95.95 %, respectively, for the entire dataset. The
results of the comparison experiments on the same dataset
showed that DCNN outperformed the Gradient Boosting
Decision Tree (GBDT) model. [32] proposed an automatic
detection system for drought stress in the middle growth
stage of maize based on CNN architecture. The architecture
combines the Gabor Filter and the Sppnet called G-Net.
The data was acquired from Zhengzhou, Henan province,
China. The dataset contains 1,391 samples, which involve 266
suitable moisture (in whole growth stages) images, 286 mild
drought stress images, 283 moderate drought stress images,
292 severe drought stress images, and 264 super drought
stress images. They used di�erent directions and wavelengths
of the Gabor �lter to obtain the texture feature and then
constitute a feature matrix after blocking and condensing
features. Finally, the data were fed to CNN for secondary
feature extraction and classi�cation. The average recognition
rate of the experiment is 98.84%.

D. Discussion

In the literature, various models and methodologies were
used for drought forecasting like statistical models, ML
models, and DL architecture. ARIMA was the most used
statistical model. It revealed high performance for forecast-
ing univariate and multivariate time series. For the ML
based-models, ANN-based models outperformed the other
ML algorithms. The neural networks were overtaking the



earth science applications especially drought monitoring and
forecasting. Drought data can be uncertain, and high res-
olution. Also, these kinds of data are multi-source, multi-
scale, multi-resolution, and multi-temporal .i.e. with high
complexity. As neural network-based architectures, DL ar-
chitectures gave accurate results when dealing with massive
heterogeneous data. The most used architectures in drought
monitoring/forecasting are CNNs, DBNs, DNNs, and RNNs.
CNN’s are commonly used for image processing. The RNNs,
DNNs, DBNs, and the LSTMs architectures are commonly
used for time series processing. These architectures have
several advantages such as the possibility of extracting fea-
tures on their own from a massive amount of data. The deep
neural networks can discover new, more complex features
that other machine learning algorithms. This study presents
a comparative study between ARIMA and LSTM for drought
forecasting. Besides, PROPHET, as a forecasting model that
to the best of our knowledge was never used in drought
forecasting in China, will be compared to the other models.

III. STUDY AREA

The Jiangsu province is located in the coastal area of
East China. The province is between the latitudes 30˝451 N
and 35˝201 N and the longitudes 116˝181 E and 121˝571 E,
covering around 102,600 km2 (2). Most parts of the province
lie below 50 meters above sea level. Jiangsu’s climate is a
humid subtropical climate. Jiangsu has around 80.4 million
population. This province observed the worst drought in the
last 50 years occurred in the spring of 2011 [33].

Fig. 2. Study Area.

IV. METHODOLOGY

The proposed methodology consists of 5 main steps: Data
collection, data preprocessing, data storage, data processing,
and interpretation for decision making.

A. Data collection
Data collection consists of generating and gathering data

from di�erent resources. These data are massive and het-
erogeneous. These data are remote sensing data (e.g., Nor-
malized Di�erence Vegetation Index (NDVI), Land Surface
Temperature (LST)), Climate data (.e.g. Standardized Precip-
itation Evapotranspiration Index (SPEI), Evapotranspiration
(ETP), humidity, precipitation, wind speed, pressure), bio-
physical data (e.g. Soil Moisture). These data are a range
of structured, semi-structured, or unstructured data they are
also characterized by their multidimensionality (e.g. multi-
spectral, multi-resolution, multi-temporal data). Thus, every
day, Gigabytes of data are generated from di�erent sources.
TABLE I describes the data used in this study.

TABLE I
DATA DESCRIPTION

Data Temporal resolution Spatial Resolution
NDVI 16 days 1-km
LST 8 days 1-km
SPEI Monthly
ETP Daily

Soil Moisture Monthly 0.25°x0.25°
Climate Variable Daily

B. Data preprocessing
The used data are collected from di�erent sources and

at di�erent time scales, so the pre-processing step is very
important to guarantee e�ective results.
Raw-data retrieving process in which object data will be
transformed to raw-data. For example, NDVI and LST data
are extracted from satellite images. This step must be well
thought out.
Identifying and �ltering missing values. Every raw data
should be checked and any missed value must be veri�ed
or corrected.
Data correction: Here, all the records must be veri�ed. For
example, the SPEI must be numerical values, so any character
represents an anomaly. For satellite images, mosaicking,
atmospheric and geometric correction are performed.

C. Data storage
The data were stored in a Hadoop-based data warehouse

(DWH). Apache Hive is used for the conception of the DWH.
A snow�ake schema was adopted for data modeling. This
schema is composed of one Fact table named OperationFact
and 13 dimensional tables named (Product_Dimension,
Sensor_Dimension, Image_Dimension, Product_Dimension,
SatelliteFeature_Dimension, Drought_Index_Dimension,
ClimateStation_Dimension, Date_Dimension, Climate-
Feature_Dimension, BiophysicalFeature_Dimension,
BiophysicalStation_Dimension, Location_Dimension,
Country, and Province). To mine the stored data, HiveQL
(HQL) was used. HQL is a SQL-like language for DWH
mining using Apache Hive.
As an example of query, here we would extract SPEI-1



data from 1990 to 2019 of the Jiangsu province to forecast
drought in the next step. Example:
SELECT ID.IndexValue FROM OperationFact OF,
Date_Dimension D, Index_Dimension ID, Province Pr
WHERE D.ID_Date=OF.ID_Date
and OF.ID_Index= ID.ID_Index
and D.Y ear >= 1990 and D.Y ear <= 2019
and ID.IndexName= “SPEI-1”
and Pr.Name= “Jiangsu”;

D. Drought Forecasting

After extracting SPEI data, in the previous step, drought
will be forecasted using three di�erent methodologies
ARIMA, PROPHET, and LSTM. We aim to give an accu-
rate prediction of SPEI for the year 2019 using a 1-month
timescale.

1) ARIMA: ARIMA is considered to be one of the most
e�ective prediction methods for univariate time series
models. ARIMA models are generally applied where time
series show non-stationarity in their data. To remove
the non-stationarity, an initial di�erencing step must be
performed one or more times. The evolving variable of
interest is regressed on its own lagged (prior) values,
which is referred to as AR. The regression error is a linear
combination of error values that occurred at the same
time, as shown by the moving average (MA). Given a
time series of data X(t) where t is an integer index and
the X(t) are real numbers, an ARMA (p’, q) model is given by:

(1−
p′∑
i=1

αLi)Xt = (1 +

q∑
i=1

ΘLi)εt

where L is the lag operator, the αi are the parameters
of the autoregressive part of the model, the hi are the
parameters of the moving average part and εt are error terms.
The error terms εt are usually considered to be indepen-
dently distributed, identically distributed variables measured
from a normal distribution with zero means. Seasonal and
nonseasonal ARIMA models have variant parameters. Three
parameters are available for describing the seasonal ARIMA
model:

- P = number of seasonal autoregressive terms
- D = number of seasonal di�erences
- Q = number of seasonal moving-average terms
The following three parameters can be used to de�ne a

nonseasonal ARIMA model:
- p = number of autoregressive terms
- d = number of nonseasonal di�erences
- q = number of moving-average terms
2) PROPHET: PROPHET is open source software for fore-

casting time series data that is available in Python and R.
PROPHET has a high sensitivity to missing data, catching
pattern changes, and signi�cant outliers. Furthermore, it
obtains a fair estimation of the mixed data without requiring
manual intervention. PROPHET has its unique data frame

that makes it simple to manage time series and seasonality.
Two simple columns are required in the data frame. The “ds”
column is one of these columns, and it stores the date-time
series. The corresponding values of the time series in the data
frame are stored in the “y” column. As a result, the system
works well with seasonal time series and o�ers some choices
for dealing with seasonality in the dataset. Seasonality may
be set on an annual, weekly, or regular basis. A data analyst
should select the available time granularity for the forecast
model on the dataset since these options are available [34].

E. LSTM

LSTM is an RNN architecture. The LSTM network is
well-�tting if there are unknown time lags and connec-
tions between important events to draw from experience to
classi�cation processes and to prediction time series. LSTM
uses a memory unit called cell state to model long-term
dependencies. It has a chain-like structure, having three
gates that are implemented using the logistic function. The
structure of LSTM is shown in Fig. 3 . There are three types
of gates that determine the cell state, which include an input,
forget gate, and output gate. The gates analyze and control
the quantity of information. The working mechanism of the
gates and their information �ow is expressed using these
equations:

ft = σ(Wf .[ht−1, xt] + bf )

it = σ(Wi.[ht−1, xt] + bi)

C
′

t = tanh(WC .[ht−1, xt] + bC)

Ct = ft.Ct−1 + it.C
′

t

ot = σ(Wo.[ht−1, xt] + bo

ht = σt.tanh(Ct)

For LSTM tuning, Adam Optimizer is used, the learning rate

Fig. 3. LSTM architecture.

is 0.001, and the batch size is 50.



F. Interpretation and decision making

Due to the danger of drought phenomena and its impact
on di�erent �elds, decision-makers need to take precautions.
Therefore, they need to use big data to further develop the
traditional decision-making process. Therefore, this step aims
to present the �nal results in form of representations that
help them to understand and deduce potential insights using
curves or maps.

V. EXPERIMENTATION AND VALIDATION
A. Data

Drought indices have a valuable role in analyzing drought.
The SPEI is used in multiple studies. SPEI is therefore capable
of ful�lling the requirements of a drought index as it is
�exible enough to be implemented in di�erent scienti�c
disciplines. This index could measure drought severity by
correlating time and space. A major advantage of this index
is the inclusion of potential evapotranspiration (PET) in its
calculation. Therefore, it would be able to re�ect the e�ect
of PET on drought. TABLE II represents di�erent classes of
drought based on SPEI values.

TABLE II
SPEI CLASSIFICATION

Class Value
Extreme wet SPEI >= 2.0
Severe wet 1.5 <= SPEI < 2.0

Moderete wet 1 <= SPEI < 1.5
Normal −1 <= SPEI < 1

Moderate dry −1.5 < SPEI <= −1.0
Severe dry −2.0 < SPEI <= −1.5

Extreme dry SPEI <= −2.0

TABLE III represents the statistical evaluation of the SPEI-1
values for each station.

TABLE III
STATISTICAL EVALUATION OF THE SPEI-1 VALUES OF THE NINE

STATIONS

Station Max Min Avg STD
Station 1 2.58 -2.89 0.00 0.995
Station 2 3.07 -2.91 0.00 1.00
Station 3 2.81 -3.20 0.00 0.991
Station 4 2.76 -2.90 0.00 0.993
Station 5 2.64 -2.90 0.00 0.989
Station 6 2.84 -2.84 0.00 0.993
Station 7 2.36 -2.90 0.00 0.988
Station 8 3.24 -2.90 0.00 0.992
Station 9 3.12 -2.89 0.00 0.990

B. Performance metrics

The performance of the used forecasting models for each
of the 9 stations was calculated using statistical indices like
R2, RMSE, and MAE. These metrics express the degree of
the models’ certainty. The R2 quanti�es the level of the
linear correlation between the forecast and observed data.

The deviation of the total and absolute error is evaluated
using the RMSE and the MAE indices, respectively.

The Coe�cient of determination (R2):

R2 = (

∑N
i=1[(Y0 − Ȳ0).(Yp − (Ȳp)]√∑N
i=1(Y0 − Ȳ0)2).

∑N
i=1(Yp−p)2

)2

Root Mean Square Error (RMSE):

RMSE =

√∑N
i=1(Y0 − Yp)2

N

Mean Absolute Error (MAE):

MAE =

∑N
i=1 |Yo − Yp|

N

Where Yo represents the observed value; Yp represents the
predicted value and N is the number of data points.

C. Results and discussion
Based on the observed and forecasted SPEI values from

ARIMA, PROPHET, and LSTM models, drought severity maps
for the month of August 2019 were created for the Jiangsu
Province. Fig. 4 illustrates the results of drought’s spatial
distribution over Jiangsu Province.

Fig. 4. Drought severity maps based on SPEI-1 of 6-month lead forecasting.

The maps provide a spatial distribution of drought classes
over the study area. While most parts of the province showed
moderate drought, the LSTM and ARIMA maps showed
slightly wet conditions.

The results of ARIMA, PROPHET and LSTM performance
are shown in TABLE IV, TABLE V, and TABLE VI, respec-
tively.

For LSTM tuning, Adam Optimizer is used, the learning
rate is 0.001, and the batch size is 50. Besides, the data were
split 60% for the learning, 20% for the test, and 20% for the
validation. The results revealed that LSTM gave the best
performance for almost all the stations. However, ARIMA
and PROPHET showed lower performance in predicting the
SPEI-1 series. For example, for the �rst station, the RMSE
value was 0.49 for the LSTM, and 0.79 for ARIMA and



TABLE IV
ARIMA PERFORMANCE

Station R2 RMSE MAE
Station 1 0.63 0.76 0.6
Station 2 0.67 0.53 0.48
Station 3 0.68 0.44 0.35
Station 4 0.79 0.59 0.46
Station 5 0.66 0.57 0.37
Station 6 0.74 0.58 0.42
Station 7 0.62 0.70 0.58
Station 8 0.60 0.70 0.57
Station 9 0.65 0.59 0.44

TABLE V
PROPHET PERFOEMANCE

Station R2 RMSE MAE
Station 1 0.54 0.79 0.6
Station 2 0.64 0.53 0.42
Station 3 0.7 0.43 0.35
Station 4 0.7 0.58 0.36
Station 5 0.74 0.51 0.34
Station 6 0.73 0.55 0.37
Station 7 0.60 0.68 0.57
Station 8 0.6 0.75 0.45
Station 9 0.66 0.58 0.37

PROPHET. Similarly, for the MAE metric LSTM gave 0.38
in contrast ARIMA and prophet both gave 0.6. Contrariwise,
the R2 measure revealed that Prophet was the less performing
model having 0.54 with 0.63, and 0.83 for ARIMA and LSTM,
respectively.

VI. CONCLUSION
The Chinese Territory is highly threatened by the

droughts. This is due to both climatic causes and anthro-
pogenic causes. The repetitive droughts impacted many �elds
in China such as agriculture, water resources, and human
being. Consequently, drought monitoring and forecasting
are very important to take precautions against this natural
disaster. This paper presents an overview of the drought
in China; the causes, the impacts, and a review of drought
monitoring/forecasting approaches using the statistical, DL
models is presented. A big data architecture for drought is
presented. The architecture is composed of �ve layers; data
collection, data preprocessing, data storage, data processing,

TABLE VI
LSTM PERFOEMANCE

Station R2 RMSE MAE
Station 1 0.83 0.49 0.38
Station 2 0.83 0.4 0.33
Station 3 0.84 0.30 0.23
Station 4 0.91 0.35 0.27
Station 5 0.81 0.44 0.33
Station 6 0.84 0.47 0.36
Station 7 0.80 0.46 0.38
Station 8 0.79 0.55 0.39
Station 9 0.82 0.47 0.32

and interpretation and decision making. A comparative study
was provided between three models (ARIMA, PROPHET, and
LSTM). Results revealed that LSTM outperformed the two
other models. The evaluation is done using three di�erent
metrics R2, RMSE, MAE. For future works, a tool will be de-
veloped based on big data frameworks and DL architectures
for drought monitoring and forecasting.
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