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We report a study based on first-principles calculations complemented by a tight-binding approach and a k · p
model of the spin-orbit effects in epitaxially strained PbTiO3. The imposed biaxial tensile strain allows us to
rotate the electrical polarization of PbTiO3 from out-of-plane to in-plane directions through structural phase
transitions between a tetragonal, monoclinic, and orthorhombic phase. It is found that Ti d-state conduction
bands exhibit two strong Rashba-like spin-splitting parameters of (1) 0.39 eV Å at a tensile strain η = 1.55%
due to a polarization rotation in the monoclinic phase and (2) 1.08 eV Å under large tensile strain of 3.8% due
to band anticrossing in the orthorhombic phase. Remarkably, we also identified the presence of a quasipersistent
spin texture for the band with a dyz−zx character in the orthorhombic phase. We then conclude that using strain
could be an interesting way to tune the spin-orbit effects in ferroelectric materials with technological interests.

DOI: 10.1103/PhysRevB.103.024416

I. INTRODUCTION

Understanding spin-orbit effects and manipulating the spin
degree of freedom in materials is considered nowadays as one
of the most promising ways to develop a part of the next gener-
ation of low-consumption-operating electronic devices [1–6].
In 1955, spin-orbit effects have been highlighted in nonmag-
netic semiconductors lacking spatial inversion symmetry [7]:
Linked with the bulk inversion asymmetry (BIA), the now
called Dresselhaus effect relates the variation of the energy
difference �E± = E+ − E− between the two nondegenerate
bands of opposite spin projection (“+” or “−”) to third-order
polynomials in the wave vector k. This is the result of the
addition of a perturbative term to the Hamiltonian, which
can be approximated to the linear term ∼αD(kxσx − kyσy) in
the limit of quasi-two-dimensional (2D) systems [8]. In this
equation, αD is the Dresselhaus parameter which characterizes
the strength of the spin-orbit effect; σi are the Pauli matrices
and ki the components of the wave vector k, with i = x, y, z
the Cartesian space coordinates. In 1984, another spin-orbit
term, with the form αR(σykx − σxky), was proposed to de-
scribe the linear spin splitting observed in 2D systems [9]
(surfaces, interfaces, or quantum wells): The Rashba effect,
characterized by the spin-orbit parameter αR, is now more
commonly associated to a surface inversion asymmetry (SIA);
it is however a general effect which can appear in any struc-
ture lacking inversion symmetry, with an “at-least-threefold”
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symmetry axis and an invariant vector along this axis (such
as a polar vector) [9]. This effect was subsequently evidenced
and studied in several bulk or heterostructures based on semi-
conductors [10,11], heavy metals [12,13], or transition-metal
oxides [14–16]. In addition to the Dresselhaus and Rashba
effects, recent and more systematic investigations have shown
that many corrective terms can be proposed to describe the
spin-orbit interaction, the form of which will depend on
the space group of the considered material (or that of the
surface/interface orientation) [17,18]. Depending on the con-
sidered bands, higher-than-linear terms in vector k may be
necessary to describe accurately the spin splittings and spin
textures.

Besides its interest at a fundamental level, the Rashba spin-
orbit effect has recently motivated lots of research effort due
to its possibility to be used in innovative spintronic devices
with low energy consumption. The Rashba effect can indeed
be viewed as a functional property since its magnitude can
be tuned by applying an electric field. This effect can also
play a role in transport processes, enabling in particular the
creation or detection of spin current through the spin Hall
effect [19,20] or the (inverse) spin-galvanic effect, also known
as 2D Rashba-Edelstein effect [21–24]. The spin-to-charge
conversion using spin-orbit effects is very promising for the
development of current spin-orbitronic applications and de-
vices. Thanks to the so-called spin-orbit torque, this property
could allow us to manipulate efficiently the magnetization
in an adjacent magnetic electrode in magnetic random ac-
cess memories (MRAM) [6]. It could also be used in new
concepts of nonvolatile devices such as the magnetoelectric

2469-9950/2021/103(2)/024416(13) 024416-1 ©2021 American Physical Society

https://orcid.org/0000-0001-6652-0576
https://orcid.org/0000-0001-9934-3481
https://orcid.org/0000-0002-8921-2477
https://orcid.org/0000-0002-3337-2295
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.024416&domain=pdf&date_stamp=2021-01-12
https://doi.org/10.1103/PhysRevB.103.024416


J. GOSTEAU et al. PHYSICAL REVIEW B 103, 024416 (2021)

spin-orbit (MESO) device [2], proposed to challenge current
complementary-metal-oxide-semiconductor (CMOS) tech-
nology with lower operating costs or in the famous spin
field-effect transistor (spin-FET), in which the rotation of the
spins of the electrons moving in the channel can be controlled
by the applied voltage [1]. Because of their advantages to
create, manipulate, or detect the spin currents, it would be
logical to try to improve systematically the strength of the
spin-orbit effects, but one has to keep in mind that they can
also be detrimental to spin transport due to the spin dephasing
they can induce [25]. Such phenomena could be avoided by
using materials possessing persistent spin textures (PST) [18],
which can arise from a compensation of the Rashba and Dres-
selhaus term (αR = αD) or be enforced directly by symmetry
for some crystal structures [16,26,27].

In 2013, the Rashba effect has been predicted theoretically
and then confirmed experimentally in the ferroelectric Rashba
semiconductor (FERSC) GeTe, with a Rashba value αR = 4.9
eV Å [28–30]. This spin-orbit effect appears to have a strong
interplay with the electric polarization, leading to spin tex-
tures reversible by manipulating the electric polarization. This
behavior is very promising to design innovative devices based
on nonvolatile magnetoelectric states. The narrow band gap of
GeTe appears, however, to be detrimental to retain the electric
polarization and further to control the Rashba-induced spin
textures [31]. This seminal work has motivated several new
investigations to get a better understanding on the spin-orbit
effect in this class of materials and to potentially find ferro-
electrics more suitable for applications [5,15,16,32–36].

Different studies also proposed to analyze the variation of
the Rashba parameter as a function of a biaxial strain [15,37–
39]. In their theoretical work, Yamaguchi and Ishii [38] ex-
plored the effect of a tensile strain on the spin-orbit coupling
on the well-known LaAlO3/SrTiO3(001) interface: They ob-
served an increase of the Rashba effect up to 5% for a tensile
strain of 7% with the emergence of an in-plane polariza-
tion giving rise to a persistent spin helix. In 2016, Tao and
Wang [15] studied the strain-tunable ferroelectricity of nom-
inally paraelectric KTaO3. In particular, they found that the
out-of-plane electric polarization induced by a compressive
in-plane strain can be switched in-plane with a tensile strain.
Such switching leads to a change in the spin-texture orienta-
tion, since the Rashba lifting of spin degeneracy only occurs
in directions perpendicular to the electric polarization. These
two studies thus show that other crystallographic phases, with
a transition of the electric polarization from out-of-plane to
in-plane, can be stabilized by applying a tensile strain, thus
adding a supplementary degree of freedom to manipulate the
spin textures. The possibility to get a PST for an in-plane
polarization is moreover very promising. It is thus interesting
to mention the work of Djani et al. [16], who investigated
the spin-orbit effect in various phases (in particular P4mm
and Amm2) of the ferroelectric perovskite WO3 and the au-
rivilius Bi2WO6. They proposed that in perovskite structure
an orbital character perpendicular to the polarization leads
to a weak Rashba parameter, while a band orbital with a
component collinear to the polarization yields a stronger
Rashba value. They also found a persistent spin texture for the
P21ab phase of Bi2WO6, for which the electric polarization is
in-plane.

From the above review, we can conclude that the study
of the spin-orbit effects in different crystallographic phases
of PbTiO3 (PTO) could be very promising. This material
is indeed a textbook case in the ferroelectrics family and it
is now used for many applications, either in its pure form
or in alloyed compositions [40–43]. PTO holds a measured
electric polarization of about 75 μC cm−2 [44] and an exper-
imental band gap of 3.4 eV [45]. From numerical studies,
the electric polarization in PTO is expected to be robust to
electron doping [46–48], which would be required to address
the spin-splitted conduction bands, and it could persist in
thin films, in the vicinity of (001)-oriented surfaces or inter-
faces [49–54]. In addition, this compound possesses a heavy
metal, which can potentially reinforce the spin-orbit effects.
It also has a simple perovskite structure and Ti4+ cations
located in the octahedral atomic sites, which can be linked to
a band structure displaying similar properties to SrTiO3-based
heterostructures [55,56].

Recently, we conducted a numerical study focused on the
spin-orbit effects in the ferroelectric and tetragonal phase
(P4mm) of PTO [35]. Our results showed that, depending
on the symmetry of the lowest conduction band (Ti-dxy or
Pb-pz), the spin splitting could display a variation dominated
by linear or cubic terms in k. If we consider (i) the cal-
culated equilibrium in-plane lattice parameter of PTO to be
a0 = 3.881 Å and (ii) a to be the in-plane lattice parameter
resulting from epitaxial growth, we can then define the applied
biaxial tensile strain via η = (a − a0)/a0. Note that it has
been found that applying a compressive strain (η < 0%) up to
−5% only increases the tetragonality characterized by the c/a
ratio (where c is the out-of-plane lattice parameter) and the
electric polarization, but does not change the crystallographic
phase [57,58]. This quasilinear variation of the structural pa-
rameters is also accompanied by a linear decrease (increase)
of the linear(cubic) terms of the pz(dxy) bands, in correlation
with a change of the band character. If an in-plane com-
pressive strain increases the out-of-plane electric polarization
and the tetragonality of PTO [35], growing epitaxially PTO
on substrates with larger in-plane lattice parameters would
allow us to modify the crystallographic structure and induce a
rotation of the electric polarization [57–60].

We propose in the current study to complete our previous
work and to analyze the spin-orbit effects in PTO under tensile
strain by probing their variations in three crystallographic
phases with a different orientation of the electric polarization.
We will show that the spin splittings and spin textures can be
tuned as a function of the strain because of a modification of
the electric-polarization magnitude or angle. In particular, we
found that a quasipersistent spin texture can be achieved in
the Amm2 phase. To do so, we will first discuss the changes
induced in the atomic structure as a function of the applied
in-plane strain. Secondly, we will present the evolution of the
spin-splitting values calculated from first principles and we
will finally give a tight-binding and a k · p model based on
symmetry invariants to propose some explanations.

II. COMPUTATIONAL DETAILS

We performed density functional theory (DFT) calcu-
lations by using the Vienna ab initio simulation package
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TABLE I. Structural parameters of PbTiO3 for three different strain states: a and c correspond, respectively, to the fixed in-plane and
calculated out-of-plane lattice parameters; β is the angle between a and c axes. (x, y, z) are the reduced coordinates [in units of (a, a, c)] of the
Ti, O‖, and O⊥ atoms, with the Pb atom set as the origin (0,0,0) of the basis. O‖ is one of the two oxygen atoms lying in the TiO2(001) atomic
layer, parallel to the in-plane strain, and O⊥ is the oxygen atom in the PbO(001) plane.

Reduced coordinates
Ti O‖ O⊥

Phase η (%) a (Å) c (Å) β (◦) x y z x y z x y z

P4mm 0.00 3.881 4.156 90.00 0.50 0.50 0.54 0.50 0.00 0.62 0.50 0.50 0.11
Cm 1.87 3.953 3.944 90.48 0.52 0.48 0.52 0.55 −0.05 0.56 0.55 0.45 0.05
Amm2 3.60 4.021 3.862 90.00 0.52 0.48 0.50 0.57 −0.06 0.50 0.41 0.43 0.00

(VASP) [61,62] with projector-augmented wave PAW pseu-
dopotentials [63]; the following electrons were treated as
valence states: Pb (6 s25d106p2), Ti (3 s23p64s23d2), and
O(2 s22p4). A cutoff energy of 750 eV and the generalized
gradient approximation for the exchange-correlation energy
with the Perdew-Burke-Ernzerhof version revised for solids
(GGA-PBESol) [64] were used. The first Brillouin zone was
sampled by a 10 × 10 × 10 Monkhorst-Pack grid [65].

All the band energies are further given relatively to the
Fermi energy EF, which is arbitrarily set to the valence band
maximum (VBM). The spin-orbit interaction, as implemented
in VASP [66], has been added self-consistently for the DFT
calculations. The setup of the k · p Hamiltonians has been
made using the resources from the Bilbao crystallographic
server [67,68] and Refs. [11,69–71]. The different spin-orbit
parameters of the k · p model have been calculated by mini-
mizing the sum of least squares given by:

χ2 =
∑

k

[det(H (k) − E±(k))]2, (1)

where H is the two-band Hamiltonian representing the lift
of degeneracy undergone by the two spin states and caused
by the spin-orbit interaction. The fits have been performed
on the DFT band structures calculated around the � point,
with a maximum magnitude of the k wave vectors of 0.10
Å−1 sampled with at least 40 k vectors. We also used a tight-
binding (TB) model built from the projections onto maximally
localized Wannier functions of the conduction bands (Pb-p
and Ti-d bands) including spin-orbit coupling; the projections
have been performed using the Wannier90 code [72].

Our calculations were made using a five-atoms perovskite
unit cell;

√
2 × √

2 × 2 supercells containing 20 atoms were
also used to check the possible existence of other crystallo-
graphic phases as will be discussed in more details in the
next section. The space group of the different phases has been
identified using the FINDSYM program [73,74] with a toler-
ance of 10−2 Å. The epitaxial in-plane strain η was modeled
by fixing the in-plane lattice parameter a = b for different
space groups. The tensile biaxial strain η has been applied
from a range of 0 to 5%. In the following, the Cartesian axes
are always defined to coincide with the axes of the P4mm
phase: The x[100] and y[010] axes are the directions of the
biaxial strain. The z axis is defined as the perpendicular to
x and y ([001] direction of the P4mm phase). To simplify
the comparison of the band structures, we also chose to keep
for every structure the same notations for the high-symmetry
points as for the P4mm phase. The equivalence between our

notations and the standard notations provided by the Bil-
bao Crystallographic Server [67,68] is given in Table II of
Appendix A. The electric polarization has been calculated
using the Berry phase method [75].

III. STRUCTURAL PROPERTIES

Before discussing the electronic structure and the spin-
orbit effects in the next sections, we will describe here the
influence of the tensile biaxial strain η on the atomic struc-
ture. The calculated equilibrium crystallographic phase (η =
0%) of PTO corresponds to a tetragonal structure (a0 = b0 =
3.881 Å and c0 = 4.156 Å) with the space group P4mm (n◦99)
and an electric polarization of 91 μC cm−2, oriented along
the z[001] axis. These theoretical lattice parameters are in
agreement with the experimental values of aexp = 3.89–3.90
Å and cexp = 4.14–4.16 Å [76,77]. When varying η from 0
to 5%, we calculated a decrease of the ratio between the
out-of-plane and in-plane lattice parameters (c/a) from 1.07
to 0.94, which will have different consequences on the atomic
structure and in particular induce a change of the orientation
of the electric polarization regarding the strain directions.

Figure 1 shows the variation of the total energy E0 cal-
culated for different values of η and the induced changes
in the electric polarization orientation and magnitude. From
Fig. 1(a), we can see that the P4mm phase remains stable up
to η = 1.3%, albeit with a smaller electric polarization [see
Fig. 1(c)] of P(η = 1.3%) = 81 μC cm−2. When increasing
η above 1.3%, PTO adopts a monoclinic structure with a
space group Cm (n◦8). Within this phase, the polarization
continuously rotates in a (110) plane, from its out-of-plane
direction to the [110] in-plane direction. Above η = 2.5%,

TABLE II. Equivalence in the notations between the high-
symmetry points of the P4mm, Cm, and Amm2 crystallographic
phases according to Refs. [67,68]. The point coordinates are given
in units of the reciprocal lattice parameters a∗, b∗, and c∗.

Coordinates P4mm Cm Amm2

(0,0,0) � � �

(0,0.5,0) X V2 S
(0.5,0.5,0) M Y 	0
(0,0,0.5) Z A Z
(0,0.5,0.5) R L2 R
(0.5,0.5,0.5) A I2 A0
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FIG. 1. (a) Total energies E0 calculated for the tetragonal
(P4mm), monoclinic (Cm), and orthorhombic (Amm2) phases of
PbTiO3 as a function of the in-plane strain η. The red arrows are
a sketch of the polarization orientation in the basis {[110], [001]}.
(b) Angle θp between the electric polarization P and the z[001]
axis and (c) magnitude of the polarization calculated in PbTiO3 for
the most stable crystallographic phases depending on η. The dotted
purple lines indicate the value of strain η for which the electric
polarization vector is nearly aligned with the [111] direction.

when the polarization is in-plane, an orthorhombic structure
of space group Amm2 (n◦38) is stabilized. Following the
variation of the in-plane parameters, the magnitude of
the electric polarization will start again to increase, from
�72 μC cm−2 to � 87 μC cm−2 when increasing the strain
up to η = 5%. Finally, Table I summarizes the lattice pa-
rameters for three different strain states (η = 0, 1.87, 3.6%),
corresponding each one to one of the above-mentioned crys-
tallographic phases, respectively, with the P4mm, Cm, or
Amm2 space group; we also provide the reduced coordinates
for these structures.

In addition to the above description of the structural trans-
formations undergone by PTO, some remarks can be made:

(1) Firstly, we can distinguish particular values of the
strain of approximately η = 1.86–1.87% for which the in-
plane and out-of-plane parameters are almost equal (c/a � 1)
and the electric polarization P forms an angle of θp � 55◦ with
the z[001] axis, i.e., P is approximately in the [111] direction.
In this range of η, the structure is close to the rhombohedral
space group R3m (n◦160).

(2) Secondly, the monoclinic Cm phase corresponds to a
rotation of the electric polarization in a (110) plane. Another
slightly less stable monoclinic phase with the space group Pm
(n◦6) and corresponding to a rotation in a (100) plane has also
been predicted from first-principles calculations [60].

(3) The difference between the total energy of the Cm
phase and the P4mm and Amm2 phases is maximum near
η = 1.8%, with a value of 2.38 meV/formula unit (f.u.). Be-
cause of these small energy differences, it can be expected that
different phases coexist in real samples.

(4) The last point is that, in Refs. [58,60], the authors
found that the most stable orthorhombic phase corresponds
to the Ima2 (n◦46) space group, instead of the Amm2 one.
Using a 20-atom cell, we found that these two structures have
a total energy almost equal (within ∼10−4 eV/f.u.) in the full
range of strain we considered. The difference between these
two phases is related to slightly rotated oxygen octahedra in
the Ima2 structure, which have been calculated with angles
inferior to 0.3◦. For the sake of simplicity, we chose to neglect
this distortion and to focus our following discussion only on
the Amm2 structure, which can be described by a simpler
five-atom cell. Because we focused our study on the electronic
structure and the related spin-orbit effects around the high-
symmetry point �, the results presented in the following are
the same for both phases, Amm2 and Ima2.

In summary, our calculations confirm that applying a bi-
axial in-plane tensile strain could allow us to stabilize other
crystallographic phases. Experimentally, the growth of PTO
films on substrates with higher lattice parameters has also
already been demonstrated. We can for example mention
the work of Catalan et al. [78], who reported the epitaxial
growth of PTO on DyScO3 substrates with orthorhombic
or pseudocubic structures. In the former case, the deposited
PTO films adopted also an orthorhombic structure, while in
the latter case, the author reported a coherence between the
lattice parameter of the 5-nm-thick PTO films and the sub-
strate, corresponding to an induced in-plane tensile strain of
approximately 1.5%. For these films, a rotation of the elec-
tric polarization from its out-of-plane direction is measured,
leading to a monoclinic phase. The epitaxial growth of 90-
nm-thick (100)PTO films on (001)KTaO3 has been lately
reported [79], corresponding to an averaged increase of the
in-plane lattice parameters of 2.5%; these films possessed
90◦-domain structures with reduced in-plane electric polar-
izations and orthorhombiclike structures with different a[100]
and b[010] lattice parameters. All these experimental studies
show the difficulties of growing strained PTO thin films, but
they also demonstrate the feasibility and their measurements
are in line with our calculated structures. In addition, we
can consider that it could be also possible to obtain different
crystallographic phases by using PbTiO3-derived compounds
with varying compositions [80–82] or by taking benefits from
the emergence of flexoelectricity in some thin films [83].

IV. ELECTRONIC PROPERTIES

In this section we will describe the electronic structure
of the three different crystallographic phases which can be
stabilized in PTO by varying the in-plane strain η. Figure 2
compares the band structures for these phases.
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FIG. 2. Band structures associated with the atomic structures detailed in Table I: (a) the P4mm structure calculated for an in-plane strain
of η = 0%, (b) the Cm phase at η = 1.87%, and (c) the Amm2 phase at η = 3.6%. The Ti(d)-orbital contributions are given in color.

Considering first the equilibrium P4mm structure at η =
0%, we calculated an indirect band gap with a width of 1.65
eV: The VBM is located at the X point and has a mixed
Pb-s and O-p character, while the conduction band minimum
(CBM) is at the Z point, with a Ti-dxy character and an energy
close to its value at the � point. The detailed analysis of
the visible spin splitting present around the Z point for the
dxy conduction bands of the Ti atoms and the pz band of Pb
atoms was the main object of our previous study [35]. In
the following, for an easier comparison between the different
crystallographic phases, we will mostly focus our discussion
on the spin splitting which can be observed around the � point
for the three lowest conduction bands.

From η = 1.3%, when PTO adopts the monoclinic Cm
phase, the valence bands at the Z point increase in energy
with increasing strain until they reach the Fermi energy at
η = 1.87% [see Fig. 2(b)], while the valence bands at X
remain at the Fermi level. Beyond this value of strain, the
valence bands at the X point decrease in energy while they
stay at the Fermi level for the Z point, which constitutes the
VBM for the Amm2 phase [Fig. 2(c)].

Concerning the conduction bands, from η = 0%, the low-
est d bands of the Ti atoms increase in energy at the Z
point and the CBM is then located at the � point. Figure 3
presents in more details the variations in energy of the three
first conduction bands at the � point. The change in band
energy at � is given as a function of the in-plane strain η and
of the band character (a more quantitative description of the
bands character evolution is done in Fig. 9 in Appendix B). As
mentioned previously, the CBM located at 1.64 eV has a dxy

character, when PTO is in its equilibrium structure. The two
higher conduction bands (labeled CBM + 1 and CBM + 2),
with each one a mixed dyz−zx and dyz+zx character, are located
1.07 and 1.13 eV higher in energy [84]. When increasing the
in-plane strain, the energy of these two last bands decreases.
The energy of the dxy bands, constant in the P4mm phase,
on the contrary starts to increase when PTO adopts the Cm
structure. At a value of strain of η = 1.87%, a first crossing
happens between the CBM and CBM + 1 bands, with no or-

bital intermixing. Above this crossing point, the energy of the
three sets of bands increases as a function of η, with a larger
slope in the case of the dyz−xz bands. For η = 3.6–3.7%, in the
Amm2 phase, we can thus observe an anticrossing between the
CBM + 1 and CBM + 2 bands, which is concomitant in this
case with a strong hybridization between these two bands.

The variations calculated in the band structure of PTO
when we vary η are related to the structural changes described
in the previous section. The buckling between the oxygen
and Ti atoms associated to the electric polarization tends
to increase the energy of bands linked to orbitals lying in
planes containing the direction of the electric polarization P;

0 1 2 3 4 5
η (%)

1.6

1.8

2.0

2.2

2.4

2.6
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E-
E F
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FIG. 3. Evolution of the energy of the three lowest conduction
bands located at the � point as a function of the strain η. The orbital
projections are given with colored circles with the fatness giving the
evolution of the band character n. The labels “CBM,” “CBM + 1,”
and “CBM + 2” refer respectively to the first, second, and third
conduction bands, ordered by increasing energy.
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orbitals lying in planes perpendicular to P will consequently
correspond to bands lower in energy [85]. With the P4mm
phase for which P is out-of-plane, the dxy band represents
accordingly the CBM. As seen in Fig. 1(c), the decrease of the
polarization with the strain implies a decrease of the buckling,
therefore the two sets of degenerated dyz and dzx bands tend to
get closer in energy to the dxy band. The tetragonal structure
also imposes a similar band character for these CBM + 1 and
CBM + 2 bands, corresponding to a �5 irreducible represen-
tation, if we omit the spin-orbit interaction. The rotation of the
electric polarization, which starts to become non-negligible
from η = 1.4%, increases the dxy and decreases the dyz+zx

band energies, as can be noticed in Fig. 3. A distinction be-
tween the CBM + 1 and CBM + 2 bands is then established,
one having a band character (dyz−zx) collinear to the in-plane
component of P, while the other one (dyz+zx) is perpendicular.
At η = 1.87%, when the structure of PTO is the closest from
the rhombohedral structure R3m, we observe an equivalence
between the Z and the X points and a degeneracy between the
dxy and dyz−zx bands. In the Amm2 phase, the in-plane electric
polarization, oriented along the [110] direction, stabilizes the
dyz+zx band as the CBM.

V. SPIN-ORBIT EFFECTS AND SPIN SPLITTINGS

In this part we will describe and explain the spin splittings
induced in the band structure due to the spin-orbit effect.
We will first give a simple description of the evolution as
a function of the in-plane strain η of these spin splittings
and their associated spin textures, as extracted directly from
the DFT calculations. We will then analyze these spin-orbit
effects more deeply by using a TB approach and by deriving
a k · p model.

A. Analysis from the DFT calculations

1. Spin splitting in the band structures around the � point

As we mentioned in the introduction, the spin-orbit-
corrective terms added to the Hamiltonian describing our
system strongly depend on the symmetries of this system. To
provide an overview of the spin-orbit effects in the different
phases of PTO and to make possible a general comparison of
the calculated spin splittings between these different phases,
we will first describe the variation of spin-dependent band
energies difference without considering any symmetrical ar-
guments; the energy difference �E±(k) between the two spin
states (“+” and “−”) can then be fitted by a simple polynomial
composed by a linear term in k, associated to a coefficient a1,
and a cubic term with a coefficient b3:

�E±(k) = E+ − E− = a1 · k + b3 · k3. (2)

A more detailed variation of the spin-splitting parameters,
which takes into account the symmetries of the space group
Amm2 will be given in Sec. V C. As we found that the linear-
parameter (a1) variation displays qualitatively similar trends
than the cubic one (b3), with the appearance of peaks at the
same values of η, only the variation of a1(η) calculated near
the � point and along the high-symmetry lines �→M and �→Z

is presented in Figs. 4(a) and 4(b). The variation of b3(η) is
shown in Appendix C.

FIG. 4. Variation as a function of the strain (η) of the linear
coefficient of the spin splitting a1 calculated along (a) the �-M-like
directions and (b) the �-Z-like directions. The variation of a1 along
the �-M direction follows the same trend as along the �-X direction.

As shown in the tight-binding model proposed in
Refs. [16,55] for the P4mm space group, no interaction be-
tween dyz and dzx bands is possible, which is in agreement
with our calculated low spin splittings for the dyz−zx and dyz+zx

bands for η < 1.3%, both along the �→M and �→Z directions
[see Figs. 4(a) and 4(b)].

As displayed previously in Fig. 3, above 1.4%, when PTO
is in the monoclinic Cm phase, the net distinction between the
bands CBM + 1 and CBM + 2 into dyz−zx and dyz+zx bands
allows interactions between them and leads to the increase of
the spin-splitting value when the energy difference between
these two bands also decreases. As can be seen by comparing
Figs. 3 and 4(a), a first peak of the spin splitting characterized
by a1(�→M) = 0.39 eV Å is obtained at the � point when
the two bands (CBM + 1 and CBM + 2) undergo a lift of
degeneracy, at η = 1.55% in the direction toward the high-
symmetry point M for the Cm phase. For the CBM band with
a mainly dxy character, a weak spin splitting, ranging from
0.02 to 0.10 eV Å, can also be noticed for the same direction
of k and in the same range of η, because of the reduction of the
energy difference between the two interacting dxy and dyz−zx

bands above η = 1.4%.
From Fig. 4(b), we can see that when increasing the in-

plane strain further, in the Amm2 phase, the stronger interplay
between the dxy and the dyz−zx [see Fig. 3 and Figs. 9(a)
and 9(b) in Appendix B] induces the appearance of a wide
peak in the coefficient a1(�→Z) around the value of η for
which the band anticrossing is observed; this peak reaches
a maximum value of a1(�→Z) = 1.08 eV Å near η = 3.8%.
The observation of a maximum of the spin-orbit parameter at
the avoided crossing between d bands of Ti atoms is consistent
with the reported results on SrTiO3-based systems [55,86]. It
is also interesting to note that the values of the a1 coefficient
for these dxy and the dyz−zx bands are anisotropic. Indeed, in
the Amm2 phase, we can see that they are lower in the �→M

than in the �→Z direction; in the �→M direction, the variation
of a1(�→M) is strongly correlated with their character (as can
be seen by comparing Figs. 3 and 9 of Appendix B with
Fig. 4).
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In this paper, we chose to focus our study on the calculated
lowest conduction bands at the � point, which have a Ti-d
band character. Other bands, with a p character, also display
a non-negligible spin splitting, with a linear variation in k; it
is for example the case of the unoccupied p bands of the Pb
atoms. The value of this spin splitting is around 0.2–0.4 eV Å,
but in the Z→R direction, it increases from a1(Z→R) = 0.6 to
0.8 eV Å, for η varying from 0 to 1.4%. It then tends to 0 eV Å
when the electric polarization rotates. The linear increase of
the spin splitting in the Z→R direction is continuous with
the variation for PTO under compressive strain calculated in
our previous study [35] and taking into account that for this
phase, we have the relation between the spin-splitting param-
eter and the linear Rashba coefficient a1(Z→R) = 2αR(Z→R).
Concerning the O-p bands constituting the VBM, we have an
anisotropic linear spin splitting which is in general approxi-
mately of ∼0.3 eV Å along the X→M or Z→R directions and
∼1 eV Å along the X→� or Z→� directions; in the strain
range for which the electric polarization rotates, a negative
peak is however observed for the spin-orbit parameters, with
a minimum value, respectively, of 0.13 eV Å and 0.68 eV Å
when η = 1.87%.

2. Spin textures around the � point

Figure 5 presents the spin texture of the CBM + 1 band
as a function of the energy in the (�-Z-A-M) plane near the
� point. This plane orientation is perpendicular to the [110]
direction of the electric polarization of the Amm2 phase. We
will now describe how these spin textures vary for different
strain values ranging from η = 2.5% to 5%.

For 2.5 � η � 3.5%, the spins are mostly oriented along
the [110] direction [Figs. 5(a)–5(c)], which leads to a
quasipersistent spin texture near �. For larger strain, the spins
turn when they are the closest to the � point, i.e., for the
highest energies [around 2.5 to 2.6 eV in Figs. 5(d)–5(f)],
while they remain oriented along the [110] direction for the
lower energies.

From the above discussion, it appears clearly that the
CBM + 1 band for the Amm2 phase presents interesting prop-
erties such as an enhancement of its spin splitting at the �

point for η = 3.8% and an associated quasipersistent spin
texture for lower strain. Using a tight-binding approach and a
k · p model, we will now try to get a deeper insight into these
properties.

B. Tight-binding approach

The DFT calculations allowed us to present the general
evolution of the spin-orbit effects on the electronic structure.
As expected, different variations as a function of the strain
are observed, depending on the crystallographic phases. These
evolutions could be partly explained by considering a second-
order perturbation theory as proposed in the work of Bahramy
et al. [87]. In the framework of a k · p perturbative theory,
the authors indeed indicate that the magnitude of the spin
splitting is dependent on three parameters: (1) The atomic
spin-orbit strength, (2) the energy difference between neigh-
boring electronic states, and (3) the symmetry compatibility
between these neighboring states. We then used a TB model
to confirm which interactions play a significant role in the
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FIG. 5. Spin textures of the CBM + 1 band as a function of the
energy in the (�-Z-A-M) plane near the � point, perpendicular to the
electric polarization ([110]) of the Amm2 phase for different strain
values: η = (a) 2.5%, (b) 3%, (c) 3.5%, (d) 4%, (e) 4.5%, and (f)
5%. The spins do not have any [110] component.

considered spin-orbit effects. The TB model was built from
Wannier functions of the unoccupied d bands of the Ti atoms
and p bands of the Pb atoms.

As it can be seen by comparing Fig. 4(b) and the black
curve of Fig. 6, by considering the interactions between these
bands, it is possible to recover the same spin splitting value
a1(�→Z ) as calculated from the DFT. An advantage of the TB
approach is that it is possible to switch off easily the interac-
tion coming from a specific band, as proposed in Ref. [16].
With this method, we hence found that, in addition to the
interaction between the CBM + 1 and CBM + 2 bands, which
increases near the anticrossing point, the interactions between
the CBM + 1 and the Pb-p bands (and more particularly the
Pb-px−y bands) are also important. Indeed, if we remove these
interactions (red curve), we observe a decrease of the spin-
splitting maximum by 31% and a shift of the peak position
from η = 3.8% to 3.6% corresponding to the band anticross-
ing; in other words, it also explains why the maximum of
the spin splitting (η = 3.8%) is not exactly located at the
same value of η than the d band anticrossing (η � 3.6%). The
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FIG. 6. Evolution of the spin-splitting parameter a1(�→Z ) cal-
culated with the TB model for the band “CBM + 1.” The black
curve has been obtained by taking into account the interaction be-
tween all unoccupied Ti-d and Pb-p bands; this curve matches well
with the DFT calculations (magenta dashed line). The solid red and
green curves have been calculated, respectively, by removing all
the interactions involving the Pb-p or Ti-dx2−y2 bands. The dashed
green curve corresponds to a calculation without the Ti-dx2−y2 band
interactions and in which the dxy band energy has been shifted by
applying a potential of −0.17 eV.

interaction between the dxy and dx2−y2 bands is also important
because it stabilizes the dxy bands by decreasing its energy:
If we cancel this interaction, the dxy band is located higher in
energy and consequently the anticrossing point is set at the �

point for a higher value of the strain (>5%). If we artificially
shift this dxy band by applying a potential of −0.17 eV, we find
again the same maximum value of the a1(�→Z ) parameter as
the case when all interactions are taken into account.

We also used the TB model to confirm the interactions
responsible for the peak of the a1(�→M ) parameter in the Cm
phase (at η = 1.55%): a1(�→M ) first increases because of the
increase of the hopping term between the dyz−zx and dyz+zx

and then decreases due to an increase of the energy difference
between these two bands.

C. k · p model

Using the theory of invariants (see Appendix D), we de-
rived a k · p model in order to explain the variations of the spin
textures calculated as a function of the strain. In particular, we
will show why the Amm2 space group allows the appearance
of a persistent spin texture at the � point. As previously
found [35], we confirm in this study that it is mandatory to
use a development of this model up to the third order in k
near the � point to reproduce the spin-splitting behavior of
the unoccupied d bands of the Ti atoms. We chose to focus
our study on the Amm2 structure because this phase presents
the stronger spin-splitting values and the most interesting spin
textures.

For the Amm2 space group, the high-symmetry point � is
associated to the little group of symmetry C2v , which leads to
the following two-bands Hamiltonian:

HC2v
(k) = H0(k) + Hx+y(k) + Hz(k) + Hx−y(k) (3)

with H0(k) being the Hamiltonian part describing the band
dispersions and depending on the parameters ωi (i = 1, 2, or

3) inversely proportional to the effective masses:

H0(k) = E0 + ω1(kx + ky)2 + ω2(kx − ky)2 + ω3k2
z (4)

and the terms Hx+y(k), Hz(k), and Hx−y(k), which describe the
SOC perturbation:

Hx+y(k) = (
α1 + β1k2

z + γ1(kx + ky)2

+δ1(kx − ky)2
)
kz(σx + σy) (5a)

Hz(k) = (
α2 + β2(kx + ky)2 + γ2k2

z

+δ2(kx − ky)2
)
(kx + ky)σz (5b)

Hx−y(k) = ξ (kx − ky)(kx + ky)kz(σx − σy) (5c)

in which α1/2 are the spin-orbit parameters linked to the terms
linear in k and the β1/2, γ1/2, and δ1/2 parameters to cubic
terms. Solving the Hx+y Hamiltonian leads to a spin splitting
mainly in the �→Z direction (some anisotropy is given by
the terms proportional to γ1 and δ1) and with spins along the
[110] directions, for which the sign depends on the sign of
kz. Similarly, the Hz Hamiltonian [Eq. (5b)] is associated to
a spin splitting mainly in the �→M direction and with spins
along the [001] directions. The last Hamiltonian [Eq. (5c)]
adds a contribution which tends to align the spins along the
[110] direction, parallel to the electric polarization.

By solving the Hamiltonian of Eq. (3) for k vectors along
the high-symmetry lines �→X, �→M, �→Z, and �→A2 [with
A2 = (0.5,−0.5, 0.5)], it is possible to express the energy
difference �E± as a function of the parameters α1/2, β1/2, and
δ1/2:

�E�→X (k) = 2α2k + 2(β2 + δ2)k3 (6a)

�E�→M (k) = 2
√

2α2k + 4
√

2β2k3 (6b)

�E�→Z (k) = 2
√

2α1k + 4
√

2β1k3 (6c)

�E�→A2 (k) = 2
√

6

3
α1k + 2

√
6

9
(β1 + 4δ1)k3. (6d)

By making an analogy between Eqs. (6b) and (6c) and
the parameters a1 and b3 from Eq. (2), calculated along the
directions �→Z and �→M, we obtain directly the coefficients
α1/2 and β1/2. The coefficients δ1/2 are then trivially deduced
from the fits of the band structure using Eqs. (6a) and (6d).
The remaining parameters γ1/2 and ξ are calculated by mini-
mizing the sum of the least squares residuals in Eq. (1). The
evolution of these parameters as a function of η is given for
the band CBM + 1 in Fig. 7. A comparison between the spin
textures calculated using this model and the DFT is given in
Appendix E to confirm the validity of the model and of our
fitted parameters.

The variations of the linear SOC parameters α1 and α2

as a function of the strain are presented in Fig. 7(a). Be-
cause we have α1 = a1(�→Z)/

√
2, α1 and a1(�→Z) follow

the same variation and display a similar peak for η � 3.8%.
Similarly, we also have the identity α2 = a1(�→M)/

√
2; if the

value of the α2 parameter remains low, it however undergoes
an increase by a factor 30 from η = 2.5% to η = 5%. The
α1 term is superior to α2 by a factor varying from 100 for
η = 2.5%, when α2 is almost 0 eV Å, to 6 for η = 5%, when
α2 � 3 × 10−2 eV Å.
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FIG. 7. Variation of the parameters (a) α1/2, (b) β1/2, (c) γ1/2, and
(d) δ1/2 as a function of the strain η for the CBM + 1 band and with
orbital projection on dxy (red) and dyz−zx (green). The ξ term has been
found to be 0 for each strain.

Regarding the cubic terms, the β1 parameter [Fig. 7(b)]
presents a similar variation to α1, with a peak of −52.7 eV Å3

at η = 3.8%. As in the case of α1/2, β1 is superior to β2, in
particular around the band anticrossing, at η = 3.8%, where
the β1/β2 ratio is nearly equal to 100. γ1 and γ2 [Fig. 7(c)]
display weak variations until the band crossing at η = 3.6%,
where we observe a strong variation of each term for higher
strain; these values increase up to 46.4 eV Å3 at η = 4% for γ2

and up to −15.8 eV Å3 at η = 4.1% for γ1. Finally, the ξ term
has been found to be nearly 0 in our calculation, implying that
we can neglect the Hx−y Hamiltonian (which is even strictly 0
along the high-symmetry lines of Eqs. 6(a) and 6(d)].

To summarize, for an in-plane strain η inferior to 3.6%,
the set of coefficients (α1, β1, γ1, δ1) associated with the
Hamiltonian Hx+y(k) for the band CBM + 1 gives a dominant
contribution to the spin splitting in comparison with the set
of coefficients (α2, β2, γ2, δ2) of the Hamiltonian Hz(k). This
statement remains true below the bands anticrossing, while
the band CBM + 1 possesses a mainly dyz−zx character, and
it leads to the observed alignment of the spins along a [110]
direction, near the � point. Above the band anticrossing at
η = 3.6–3.7%, the quasipersistent spin texture behavior is
transferred to the band CBM + 2 (as can be seen in Fig. 13
of Appendix F), while the band CBM + 1 becomes mainly
dxy. The Hamiltonian Hz, which tends to align the spins along
the [001] direction, is then non-negligible for the CBM + 1
band because of (i) the increase of the α2 parameter, which
becomes non-negligible in comparison to α1, and (ii) the
strong increase of γ2. We observe in consequences a rotation
of the spins near the � point.

The above-mentioned variations of each coefficient is con-
sistent with previous reports in the literature [18,26], which
state that a persistent spin texture can be achieved when the
linear Rashba and Dresselhaus parameters are equal. It is
indeed always possible to be as near as possible from the

� point, so that the cubic terms in k will be negligible. By
changing our basis such as x ≡ [

√
2

2 ,
√

2
2 , 1], y ≡ [

√
2

2 ,
√

2
2 , 1],

and z ≡ [110], it is possible to show that we can express
our coefficients α1 and α2 as a function of linear Dressel-
haus and Rashba-like terms: αD = − 1√

2
(α1 + α2) and αR =

1√
2
(α2 − α1). For 2.5 � η � 3.6%, when α2 � 0 eV Å, we

then indeed have αR ∼ αD, which is in agreement with the
obtained persistent spin texture. At η = 3.8%, when the spin
splitting is maximum, the values of the linear Rashba and
Dresselhaus parameters are, respectively, αD = −0.29 eV Å
and αR = −0.25 eV Å.

VI. CONCLUSION

In summary, by using first-principles calculations, we stud-
ied the effect of an applied in-plane tensile strain η on the
structural and electronic properties of the well-known ferro-
electric oxide PbTiO3. Our results confirm that this tensile
strain induces a rotation of the electric polarization from an
out-of-plane to an in-plane direction, changing then the space
group of the material, which varies from a tetragonal, to a
monoclinic, and finally an orthorhombic structure.

We predicted that the calculated structural changes result in
variations of the electronic structure and the spin textures orig-
inating from the spin-orbit interaction. We focused our study
on the conduction bands, the lowest in energy at the high-
symmetry point �. We have shown that the spin splittings of
the bands can be increased in the Cm phase, for a value of η for
which the electric polarization starts to rotate and the energy
differences between the bands CBM + 1 and CBM + 2 is still
low. A second peak in the spin-splitting energy difference is
observed for η = 3.8%, when the avoided crossing between
the strongly hybridized dxy and dyz−zx bands is located near the
� point. For this value of η, the largest spin-orbit coefficients
near � and in the �-Z direction are obtained, i.e., a1 = 1.08
eV Å and b3 = −75.2 eV Å3. We demonstrated that the max-
imum of the linear term a1 corresponds to a combination of
a linear Rashba and a linear Dresselhaus parameters of αD =
−0.29 eV Å and αR = −0.25 eV Å. This phenomenon is rem-
iniscent of the spin-orbit effects increase, both predicted and
measured, at the band anticrossing of Ti-d bands in SrTiO3-
based systems [55,86]. In addition to the large spin splitting
linked to Amm2 structure, the C2v little group of � allows the
stabilization of a quasipersistent spin texture associated with
the dyz−zx band. The combination of these two properties is
highly desirable to preserve spin-dependent information and
guarantee large spin-to-charge current conversions.

An interesting perspective for this work would be to ex-
tend the study to other k points than �, for which the band
anticrossing may be also present for other values of strain and
also to calculate what would be the influence of the spin-orbit
effects on transport properties. We also expect that our results
obtained on a pristine and simple material could be extended
to other more complex Ti(d0)-based systems.
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APPENDIX A: DETAILS ABOUT THE BAND STRUCTURES

As mentioned in the section of the computational details
(Sec. II), in order to simplify our discussion about the varia-
tion of each calculated parameter, we kept the same notations
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FIG. 9. Evolution of the band character n obtained by projecting
the wave functions onto spherical harmonics, at the � point, and
as a function of the strain η, for the three first conduction bands
(a) CBM + 2, (b) CBM + 1, and (c) CBM.

to label the high-symmetry points. The equivalences between
our notations and the standard notations provided by the
Bilbao Crystallographic Server [67,68] is given in Table II;
these equivalences can be found by suitably choosing the
reference axes and omitting the distortions which differentiate
the P4mm, Cm, and Amm2 phases.

In addition, Fig. 8 provides the complete band structures
for the Cm and Amm2 phases. Theses band structures display
some high-symmetry points omitted in Fig. 2, either because
they are very similar to other high-symmetry points or because
the conduction bands are much higher in energy than the
CBM.

FIG. 10. Cubic coefficients of the spin splitting b3 as a function
of the in-plane strain η, with orbital projection and along (a) the
�→M and (b) the �→Z direction. The results calculated for the �→M

direction are the same as those for the �→X direction.
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FIG. 11. Sketch of the symmetry rotation axis and mirror planes
of the C2v point group.

APPENDIX B: Ti(d)-BANDS HYBRIDIZATION

Figure 9 shows the variation as a function of η of the
orbital projections for the three first conduction bands. This
figure is intended to help the reader for the interpretation of
Figs. 3, 4, and 7, in which the band character is represented
by the fatness of the curves.

APPENDIX C: VARIATION OF THE PARAMETER b3(η)

Figure 10 presents the evolution of the cubic part of re-
gression of the spin energy difference as a function of the
strain along the �→M and the �→Z directions. In the �→M

direction, three peaks can be observed, two for the Cm phase
and one for the Amm2 phase: The first peak of −5.2 eV Å3

appears at η = 1.45%, the second one of 2.07 eV Å3 is present
at η = 1.55% and finally, the last peak with a magnitude of
5.5 eV Å3 at η = 3.30% displays opposite signs for the dyz−zx

and dxy bands. In the �→Z direction, as the a1 parameter, the
variation of b3(η) presents only a wide peak with a maximum
value of −75.2 eV Å3 at η = 3.8%.

APPENDIX D: SYMMETRIES OF THE Amm2 SPACE
GROUP

The k · p model of Eqs. (3), (4), and (5) has been de-
rived using the theory of invariants. The Amm2 space group

TABLE III. Symmetry table of the C2v point group. The twofold
rotation axis 2110 and the mirror planes m110 and m001 are shown in
Fig. 11.

C2v 2110 m110 m001 T

kx −ky −ky kx −kx

ky −kx −kx ky −ky

kz −kz kz −kz −kz

σx −σy σy −σx −σx

σy −σx σx −σy −σy

σz −σz −σz σz −σz

−0.05

0.00

0.05

2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35

DFT k.p Model

(a)

(b)

(c)

η = 3.0 %

E − E
F  (eV

)

2.40

2.42

2.44

2.46

2.48

2.50

2.54

2.55

2.56
2.57

2.58

2.59
2.60

−0.05

0.00

0.05

−0.05

0.00

0.05

η = 4.0 %

η = 5.0 %

E− E
F  (eV

)
E −E

F  (eV
)

kz (Å-1)kz (Å-1)
−0.05 0.00 0.05 −0.05 0.00 0.05

k x
+
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Å

-1
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k x
+
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Å

-1
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k x
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-1
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(

−

FIG. 12. Spin textures for the CBM + 1 band, as calculated from
DFT (left) or from the k · p model (right) described in Sec. V C. The
color scale gives the energy of the considered band. The spin textures
are plotted in a (�-Z-A-M) plane that is perpendicular to the electric
polarization.

describes a orthorhombic structure with the electric polar-
ization oriented along the [110] direction. The little group
corresponding to the high-symmetry point � is C2v , which

−0.1 0.0 0.1

−0.1

0.0

0.1

kz (Å)

2.9
E−EF (eV)

[110]

[001]
[110]

η = 2.5 % η = 5.0 %

2.82.72.62.52.42.3
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k x
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y (
Å

)

Z

AM

Γ

FIG. 13. Spin textures calculated with the DFT for the third
conduction band (CBM + 2) for an in-plane strain of η = 2.5% (left)
and η = 5.0% (right).
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possesses a twofold axis of rotation denoted as 2110 and two
mirror planes m110 and m001 (see Fig. 11). The time symmetry
is labeled T . The symmetry transformations of the vector
components of the wave vector k and the Pauli matrices σ are
given in Table III.

APPENDIX E: COMPARISON BETWEEN THE DFT
CALCULATIONS AND THE k · p MODEL

Figure 12 shows that the k · p model proposed in Sec. V C
for the CBM + 1 band and the fitted spin-orbit parameters
allow us to recover the spin textures obtained directly from
the DFT calculations: The model is in agreement with the
DFT calculations both for the band energy and the spin ori-
entations.

APPENDIX F: SPIN TEXTURE OF THE THIRD
CONDUCTION BAND (CBM + 2)

Figure 13 shows the spin texture corresponding to the
conduction band labeled CBM + 2 for two strain states of the
Amm2 structural phase of PTO. The in-plane strain values are
η = 2.5% and η = 5.0%, i.e., respectively below and above
the value of η = 3.8% for which the band anticrossing is
observed at the � point. When compared with Fig. 5, which
displays the spin texture associated with the conduction band
CBM + 1, we can see that the CBM + 2 band has an opposite
behavior, with a quasipersistent spin texture appearing above
the anticrossing point. At this anticrossing point, the band
character of the CBM + 2 band switches from mostly dxy to
dyz−zx , which confirms that the latter is intimately linked with
the alignment of the spins parallel to the [110] direction.
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