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This is one of two documents that are published together.

• The “HLL Language Definition” document describes the syntax and semantics of
the formal modelling language HLL.

• The “HLL Logical Foundation Document” shows how the new version of the lan-
guage has evolved from the previously published version 2.7.

RATP released HLL 2.7 Logical Foundations Document (LFD) in 2018. The intention
was to build a community with a diverse and rich environment around HLL. Since then,
tool providers and users have come together to discuss the evolution of the language,
and this was the beginning of the HLL Forum.

The HLL version pr4.0rc1 presented in this document is the result of a collaborative
effort among the members of the HLL Forum. It was based on the work of RATP,
Prover and Systerel, who have agreed to strive for merging their various HLL versions
into one common version for the benefit of the HLL community.

This document is published under the creative commons license CC BY-ND 4.0, which
means that you may distribute it in its wholeness, but not create derivative documents
from it. If you distribute this document, the terms and conditions are maintained. All
rights not expressly granted to you are reserved.

Should you find something in this document that you want to change for a future version,
please submit your opinion to HLL Forum or to Prover, Systerel or RATP, who maintain
this document together.

This document comes “as is”, with no warranties. There is no warranty that this
document will fulfill any of your particular purposes or needs.
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Legal Notice

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form or by any means, without the inclusion of the front-page, nor without
the inclusion of the present page which includes this legal notice and the history section
below.

The authors and the copyright holders of this document make no warranties, neither
expressed nor implied, regarding this document or the subject matter described herein,
including, but not limited to, warranties of merchantability or fitness for any particular
purpose.

While considerable efforts have been made to assure the accuracy of this document and
the matter it describes, the authors and the copyright holders will in no event assume
responsibility for any direct, indirect, special, incidental or consequential damages re-
sulting from any errors or omissions in the document, including loss of life. The contents
of this document may be changed without prior notice.

History

The language HLL was developed by Prover Technology (Prover) from 2008 to 2012
in collaboration with RATP. The language emerged as a successor of the TeclaTool
language, which itself was a successor of the Tecla language, both developed by Prover
before 2008.

In 2018, HLL 2.7 Logical Foundations Document (LFD) was published on the Inter-
net [1].

Prover renamed and profoundly rewrote the LFD in order to organize it in a more
modular way (all aspects of each language construct being grouped together in a single
module) with the main purpose of making it easier to ensure the completeness of the
language definition. The result was release candidates for version 3.0 of the document
with the new title “HLL Language Definition”.

In 2018 the HLL Forum initiative started as a working group of tool providers and users
of HLL. New features of HLL (compared to version 2.7) were developed jointly by the
HLL Forum.

In 2021 it was decided that we use 4.0 for the upcoming version of HLL, in order not to
confuse it with previous tentative versions 3.x.

This document is a prerelease (proposal) by Prover to HLL Forum of an upcoming
version 4.0. It has not been approved by other members of the HLL Forum, rather it is
published to enable review and feedback. When review remarks have been received and
this specification has been improved according to them, the result will be published as
a version 4.0, which will be jointly developed further by the HLL Forum.

Author

Lars Helander, Prover Technology SAS.
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Authors of previous versions

The present document has been based on previous language specifications.

• The document “Tecla LFD”, 2008, Prover Technology AB, defined the semantics
of streams and was written by Gunnar Smith and Ilya Beylin.

• The document “HLL LFD”, versions 1.0 to 2.7, 2012, Prover Technology SAS,
defined previous versions of HLL and was written by Nicolas Breton and Jean-
Louis Colaço.



HLL-LDD
Version pr4.0rc1

HLL
Language Definition

4

Revision History

In the following table, revisions marked with a star have been approved.

Version Date Reason for change
pr4.0rc1 Prerelease for review Added preamble in order to remove Prover

as an owner and prepare for handover to
HLL Forum.

3.0rc10 July 5, 2021 Removed (QuantMinMaxDomain-
NonEmpty) and added nil-behaviour
instead for these quantifiers in case the
domain is empty. Minor fix regarding
the semantics of the domain of SELECT:
it is static due to the new restriction
(SelectQuantNoItemsDomain). Spec-
ified that line-ending comments and
pragmas (//, @) are ended by the ’\n’-
character. Added (CollectionStaticFlag)
which was missing. Changed the syntax
of <quantif expr> by refactoring out the
SELECT case and accordingly removed
the restriction (QuantRestrictedDefault)
which is no longer needed, and renamed
(QuantDefault) as (QuantSelectDefault).
Added Appendix C with an overview of
restrictions. Plus some other minor fixes
and clarifications.

3.0rc9 February 15, 2021 Added authors on page 2. Marked version
3.0rc8 as approved (by the technical re-
viewers). Added Appendix ?? with contact
details. Changed the document id from
T-810712-LFD-HLL to HLL-LDD.

3.0rc8* January 20, 2021 Forbid the combination of SELECT and
$items by introduction of the restric-
tion (SelectQuantNoItemsDomain). Mod-
ified (DefDeclaredLhsAssignableRhs) and
renamed it (DefRhsTypeAssignableToLh-
sType). Minor addition to (DefCollection-
Rhs) regarding the type of collections. Also
addressed issues arising from technical re-
view 10609.
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Version Date Reason for change
3.0rc7 November 18, 2020 Removed the appendix containing the type

system. Updated the semantics of branch
variables of case expressions (they are now
static streams). This fixes issue 10587.
Make undeclared and defined variables de-
fault to type bool if they are defined us-
ing a recursion. Updated the typing of
untyped PRE expressions. Simplified the
causality restriction for definitions. Up-
dated the type of the SELECT to be the
union type of the types of the selected value
and the default value (issue 10215). Plus
some minor clarifications.

3.0rc6 February 28, 2020 Updated (QuantVarStaticFlag) due to the
introduction of $items.

3.0rc5 December 3, 2019 Provided more details for the causality re-
striction (DefCausality). Clarified the typ-
ing of untyped pre expressions. Adding a
definition of the many-sorted model. Also
added the new features agreed upon by the
HLL forum. That is:

1. Unfolding definitions.

2. SELECT operator (as a quantifier ex-
pression).

3. A <domain> is allowed to be just
"bool" or "int". (The other ex-
tensions on this point having already
been added in a previous version.)

4. Quantification (including SELECT)
over composite streams.

5. Arrays and functions as proof obliga-
tions.

6. Extended integer literals (binary and
hexadecimal, plus underscores for
readability).

7. Always definitions aligned with latch
definitions for integer streams (added
a check that the value fits in the tar-
get type).

8. A new Section 2.2: Logic of Excep-
tions.
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Version Date Reason for change
3.0rc4 January 23, 2019 Addressed issues arising from technical re-

view 9089. Redefined $or so that it does
not absorb nil.

3.0rc3 September 24, 2018 Addressed issues arising from technical re-
view 8986.

3.0rc2 September 7, 2018 Addressed issues arising from technical re-
view 8868.

3.0rc1 July 17, 2018 Included a type system in appendix.
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Version Date Reason for change
3.0a March 8, 2018 Rewritten from scratch with another doc-

ument structure. Notable changes and ad-
ditions to HLL include:

1. Added an order on the values of the
bool, enum and integer types.

2. Functions over ordered domains are
now generalized arrays, and can be
used whenever arrays can.

3. Function types are compatible and
assignable only if their parameter
types are equal (same sets of values).
(Issue 1251.)

4. Empty arrays are allowed.

5. Empty integer range types are al-
lowed.

6. Equality and non-equality operators
extended to allow any pair of objects
with finite number of scalar compo-
nents.

7. Membership/elementhood extended
to allow any scalar type as domain.

8. Added nil as an exceptional value
and defined its sources (divisions by
zero, array indexing out of bounds,
overflows, et.c.) and its propaga-
tion (can be absorbed by if-then-else,
case, and some Boolean operators
and quantifiers).

9. Streams of empty type (including in-
puts and memories) are now in prin-
ciple allowed, but such a stream will
carry nil in each time step.

10. Removed the “sized” restriction on
pre expressions.

2.8 February 21, 2014 issues: 3987. Fix definition of dependency
relation for pre. Move misplaced sentence
in same subsection. Update the rule refer-
ences in the text following the enumerated
list in the definition of the dependency re-
lation.
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Version Date Reason for change
2.7* March 13, 2012 issues: 262. Add missing case for collec-

tions in functions defined on types.

2.6 February 24, 2012 issues: 1243, 1244. Modification of the
typing rule (case) to forbid multiple occur-
rence of the same variable in a pattern. Fix
rule (c-definition), was two restrictive the
assignability condition was missing.

2.5 February 1, 2012 Add a missing check on rules for quantifiers
(no simultaneous multi-introduction of an
identifier in the scope). Revisit the other
rules that already defined this check (lhs-
iterators, lhs-parameters, lambda par func-
tion and lambda par array). Reorder items
in the definition of H in rule system. Add a
missing condition on memories and inputs
about empty sorts.

2.4 December 19, 2011 New syntax for the with (issue: 1063),
Integration of RATP remarks given in
FA 12 LFD-HLL AQL-Prover 03, reorga-
nization of the syntax, introduction of
lambda definitions, some precisions about
array projection and function application.
Issue 1127

2.3 August 23, 2011 Integration of RATP remarks given in
FA Qualif v04 LFD-HLL AQL-Prover 01

2.2 May 17, 2011 Issues: 237, 239, 241, 245, 247, 248, 249,
250, 251, 252, 254, 256, 257, 258, 259, 260,
261, 263, 264, 265, 267, 268, 271, 272, 273,
274, 275, 276, 277, 278, 280, 281

2.1 April 28, 2011 Issues: 157, 126, 125, 123, 122, 121, 120,
119, 117, 115, 114, 113, 112, 111, 103, 104,
105, 106, 107, 87, 90, 91, 93

2.0 February 28, 2011 Major extension of the language with:
quantifiers, pre, namespaces, functions,
sorts and new switch-case.

1.16 November 4, 2010 Improvement of the postfix array type no-
tation specification.

1.15 October 27, 2010 Fix BNF, the terminating ”s” was missing
for the keyword ”obligations”.

1.14 September 20, 2010 Change static flag for cast; this operator
is not consider as static anymore. Change
the semantics of memories constrained by
an implementation type, the implicit cast
is removed.

1.13 January 18, 2010 Add a comment to the typing rule of defi-
nitions, as recommended by RATP in FA-
03 LFD-HLL rqs RATP.
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Version Date Reason for change
1.12 December 30, 2009 Integration of RATP remarks in FA-

03 LFD-HLL rqs RATP. Modification of
the syntax to allow uncapitalised section
names, as raised by the parser review.

1.11 November 12, 2009 Minor spelling corrections.

1.10 October 5, 2009 Adding missing rules for type int and col-
lections. Fix the constraints in rules (int-
signed) and (int-unsigned), were shifted.

1.9 September 14, 2009 Introduction of tags for the requirements.
Fixes of issues found by the validation ac-
tivity. Revisit the typing rule (Case with
Default) to make explicit that cases val-
ues are pairwise different. Fix (array-
declaration) rule, sizes must be constant.

1.8 June 8, 2009 Introduction of tags for the requirements.
Fixes of issues found by the validation ac-
tivity.

1.7 April 17, 2009 Modification of the semantics of integer
memories, it depends now on the way it
is declared (a range or an implementation
type). Improvement of the presentation of
integer types. Integration of the feedbacks
from the approbation team (iteration 3).

1.6 April 7, 2009 change the associativity of the power oper-
ator, now it associates to the right.

1.5 April 7, 2009 Integration of the feedbacks from the ap-
probation team (iteration 2).

1.4 April 4, 2009 Integration of the feedbacks from the ap-
probation team.

1.3 March 30, 2009 Fix typos, revisit the section about other
static checks.

1.2 March 27, 2009 Fix a lot of typos found by peer review.

1.1 March 20, 2009 Remove operator ← (left implication)
Change the associativity of i →, now it
is right associative. Complete the HLL se-
mantics.

1.0 March 19, 2008 Initial Version.
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1 Introduction

This document presents the syntactical and semantical aspects of the HLL1 modelling
language.

HLL is a declarative stream-based language with a large panel of types and operators.
It is suitable for modelling discrete-time sequential behaviours and expressing temporal
properties of these behaviours.

1.1 Purpose

The purpose of the document is to provide a formal definition of all aspects of HLL in
order to be used for the implementation of tools considering this language as a source
or a target.

This document is not intended as a user’s guide or introduction to HLL.

1.2 Definitions, Terms and Abbreviations

Please refer to Appendix D.

1.3 Overview

• Section 2 introduces the basic concepts, notions and notation on which the re-
mainder of the document rests, and should be read first of all.

• Section 3 describes the lexical structure of HLL, including comments and pragmas.

• Section 4 to Section 16 describe the semantics and restrictions of the HLL language
around its EBNF syntax definition.

– Section 4 describes identifiers.

– Section 5 describes user namespaces and path identifiers.

– Section 6 describes lists.

– Section 7 describes declarators.

– Section 8 describes types.

– Section 9 describes accessors.

– Section 10 describes stream expressions.

– Section 11 describes stream declarations.

– Section 12 describes stream definitions.

– Section 13 describes constants.

– Section 14 describes constraints.

– Section 15 describes proof obligations.

– Section 16 describes sections.

1HLL stands for High Level Language
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The top-level nonterminal <HLL> that characterizes an HLL text is defined in
Section 16 (the sections above have been ordered mostly bottom-up, with the
top-level last).

• Appendix A gives the complete ENBF syntax definition in a single place, for an
overview of the language, together with the operator precedence and associativity
rules in A.1.

• Appendix B lists the reserved words of HLL.

• Appendix C gives an overview of the different restrictions that apply to each
language construct of HLL.

• Appendix D is a glossary of words, terms and abbreviations used within this
document.

• Appendix E gives an index of (external) labels exported by this document.
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2 Preliminaries

2.1 Streams

HLL is a language based on the notion of Streams. A stream s represents an infinite
sequence of values, one for each time step:

s : s0 s1 s2 s3 . . . sn sn+1 . . .

Streams are typed, and the type of a stream can be understood as just a set of values.
For example the Boolean type (written bool in HLL) is the set of values {false, true}.
The values si of the stream s are thus members of the type of s. HLL supports a large
number of different types, for example Boolean, integer, enum, struct and array.

In HLL, there are two fundamentally different types of operators:

1. combinatorial operators (which are mappings from values to values), and

2. temporal operators (which are mappings from streams to streams).

The combinatorial operators that can be applied to values of a type T can be lifted to
streams of type T by point-wise application in each time step. For example, if a and b
are integer streams:

a : a0 a1 a2 . . . an . . .
b : b0 b1 b2 . . . bn . . .

Then the expression a + b represents the stream:

a + b : a0 + b0 a1 + b1 a2 + b2 . . . an + bn . . .

Thus, assuming that a and b have the following values:

a : 2 3 5 7 11 13 . . .
b : 1 1 2 3 5 8 . . .

Then:

a + b : 3 4 7 10 16 21 . . .

It is important to note that lifting a combinatorial operator (like the example above)
to the stream level does not make it a temporal operator: in each time step the lifted
combinatorial operator has only access to the values in the current time step of its
stream operands. A temporal operator, on the other hand, is free to access the entire
stream of values of its operands. The X operator (read “next operator”) is an example
of a temporal operator which is usually thought of as returning the “next value” of its
stream operand. To be precise however, the X operator returns a stream which is shifted
one step to the left relative to its operand. To continue our example:

X(a + b) : 4 7 10 16 21 . . .
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In Section 10 the semantics of the HLL nonterminal <expr> is defined using streams
(an <expr> is a stream). Therefore we will use the term stream both for the concept
described above and for any HLL expression <expr>.

In the following sections we will introduce some concepts and aspects of streams, which
will be used to define the semantics of HLL. The most central concept is the (typed)
stream model MT which is just a mapping from a pair (stream of type T , time step)
to a value of the type T , or nil (which is an exceptional value used to model undefined
behaviour such as a division by zero). For example, Mint applied to the stream a of
type int above would return the following values:

Mint(a, 0) = 2
Mint(a, 1) = 3
Mint(a, 2) = 5

...
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2.1.1 Models

Definition 1 (stream model). A Stream Model MT of the set S of HLL stream expres-
sions (defined in Section 10) of type T is a binary function MT : S × N → T ∪ {nil},
where N is the set of non-negative integers denoting the time steps of the streams (with
0 representing the initial time step) and nil is an exceptional value defined below.

The precise rules for the computation of the stream models are defined throughout the
document (mainly in Sections 10 and 12). A general rule however, is that any stream
s which has not its value defined in time step k by one of these precise rules, is free to
take any value of its type T in time step k in any model MT , i.e. MT (s, k) ∈ T . This
general rule applies typically to input streams.

Definition 2 (many-sorted model). Letting T denote the set of all possible HLL types
(defined in Section 8), both explicit and implicit ones, we will define a Many-Sorted
Model M as the following set: M = {MT | T ∈ T }.

2.1.2 Exceptional Value

Definition 3 (nil). A stream s of type T which is not well-defined at time step k in
some model MT takes the exceptional polymorphic value nil in that time step, i.e.
MT (s, k) = nil.

2.1.3 Propositions

Definition 4 (proposition). Given a Boolean stream s, the set of possible Propositions
over s, and their meaning, are:

Proposition Meaning

I s s is true in time step 0
2s s is always true

2.1.4 Consequences

Definition 5 (consequence). A proposition q is a Consequence of a set of propositions
P iff for all many-sorted models M , the following holds:

(∀p ∈ P : M |=w p)→ (M |=s q) (1)

where |=
D

is a semantic relation between models and propositions defined as:

1. M |=
D
I s iff Mbool(s, 0) ∈ D for Mbool ∈M .

2. M |=
D
2s iff Mbool(s, n) ∈ D for Mbool ∈M and for all n.

The weak variant of |=
D

, written |=w, uses the definition above with D = {true,nil},
and the strong variant, written |=s, uses the definition above with D = {true}. We
note that if the streams underlying the propositions in P ∪ {q} are all well-defined in
all time steps of all models, then this distinction in a weak and a strong case becomes
unnecessary.
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(An alternative term for “model” is “scenario” (such as a counterexample), and the
formal definition above simply states that all those, and only those, scenarios (or models)
which do not falsify any of the propositions in P need to satisfy the proposition q in order
for the latter to be a consequence of the former. We can think of the propositions P as
the set of constraints in an HLL text H, and the proposition q as a proof obligation. The
problem of deciding whether q is a consequence of P is known as “model checking” 2, and
it amounts to checking the formula (1) above for all models. If there is no counter-model
M to (1), we say that H is a model for q (q is true in H). Admittedly, the use of the
word “model” for different purposes may be confusing, but it has historical reasons, and
for the purposes of this document it is enough to consider a “model” to be synonymous
with “scenario”.)

2.1.5 Static Flag

Definition 6 (static flag). The function SF : S → {0, 1, 2} returns the Static Flag
of a stream. A stream s which is Static takes the same value in each time step, i.e.
MT (s, n) = v for some v ∈ T ∪ {nil} and for all n. The static flag for each type
of stream expression will be given in association with the semantic description of the
expression (i.e. throughout the document). However, the informal meaning of the values
of the static flag is given in the following table (in order to provide the reader with an
intuition about these values).

Static Flag Informal Meaning

SF(s) = 0 s is not known to be static
SF(s) = 1 s is static
SF(s) = 2 s is static and a combination of only constants and literal values

The static flag is used to restrict the set of possible HLL types and stream expressions.

In Section 10.4 we extend the static flag to domains (nonterminal <domain>), which
are streams of sets of values, and in Section 12 we extend it to collections of streams
(nonterminal <collection>).

2The original formulation of the model checking problem was: Given a Kripke structure M and a
temporal formula f , check whether f is true in M , i.e. whether M is a model for f .
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2.2 Logic of Exceptions

In HLL, many operations such as division by zero, overflow, array indexing out of bounds
et.c., give rise to the exceptional value nil introduced in Section 2.1.2.

This exceptional value, nil, propagates unhindered through most HLL operations, but
are absorbed by a few, such as the if-then-else and the Boolean operations with absorbing
values (and, or, implication). In order to preserve the commutativity of the Boolean
operators, they are defined to be symmetric in the sense that nil can be absorbed on
either side of the operator3. (This means that “true or nil” and “nil or true” both mean
“true”.)

We note, however, that any implementation of HLL which lets nil propagate more freely,
and for example reduces “nil or true” to nil instead of “true”, is still safe due to the
fact that nil is accepted by |=w on the left hand side of the consequence relation defined
by formula (1) in Section 2.1.4 above, whereas it is rejected by |=s on the right hand
side. This asymmetry in the consequence relation ensures that an implementation which
propagates nil more freely will accept more models in the antecedent and less models
in the consequent making it strictly harder to satisfy formula (1).

3This semantics of three-valued logic corresponds to “Kleene’s strong logic of indeterminacy”
(Kleene’s KS

3 ).
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2.3 Namespaces and Scoping

In HLL, names (identifiers) reside in different namespaces depending on which kind of
entity they name. (This means that entities of different kind may have the same name
within the same scope, as explained below.) The different kinds of entities and their
corresponding namespaces are:

1. streams,

2. types,

3. user namespaces, and

4. struct components.

For each of the first three kinds of entities in the list above, there is a single namespace,
whereas for struct components, there is one namespace per struct type.

A namespace can (at some fixed point in an HLL text) be divided into scopes, which
are stacked downwards one upon the other. A namespace, in this document, is thus not
a single set of names, but rather a collection of sets of names, one for each scope.

Assume such a scope stack, for example [S1 S2 . . . Sn] where S1 is the top-level scope and
Sn is the bottom-most scope (the “current” scope), and some element Si with i ∈ [1, n].
We will call a scope Sj with j < i an Ascendant scope of Si, and we will call a scope
Sk with k > i a Descendant scope of Si. Note that the scopes S1 . . . Si−1 constitute all
the ascendant scopes of Si whereas the scopes Si+1 . . . Sn only constitute a subset of the
descendant scopes of Si since some of these scopes may have other descendant scopes
at other points in the HLL text.

The entities that are Visible (i.e. that can be referenced) in a given scope are those that
exist in that scope or in one above it (an ascendant scope).

Names must be unique4 within a given scope of a namespace, i.e. two different entities
existing in the same scope of a namespace cannot have the same name. However, Hiding
is allowed (but not encouraged), meaning that an entity E1 may have the same name as
another visible entity E2 that exists in an ascendant scope (one higher up in the stack).
In such a case we say that E1 Hides E2 in all scopes in which E1 is visible.

It is important not to confuse “namespace” with “user namespace”; the former is the
abstract concept described above, the latter is a concrete concept of HLL which is defined
in Section 5.

Scopes are introduced by language constructs such as user namespaces, lambda ex-
pressions (Section 10.2), case expressions (Section 10.7.9) and quantifier expressions
(Section 10.7.10). The formal descriptions of those constructs define the start and end
points of the scopes they introduce, and the namespaces the scopes operate on.

Scopes introduced by user namespaces differ slightly from the scopes introduced by the
other aforementioned language constructs, in that the entities inside the former can be
referenced from the outside by using a path identifier (Section 5.1), whereas the entities
inside the latter can be referenced only within the same scope or a descendant one.
These referencing rules are formally defined in Section 5.1.

4This general requirement is instantiated as a number of restrictions throughout the document,
typically on the form: “Some named {stream, type, . . . } E may not be defined more than once per
scope of the namespace of {streams, types, . . . }.”
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The namespaces containing struct components are not subdivided into scopes, since
each struct type introduces its own namespace for the components, as formalised in
Section 8.2.2.
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2.4 Notation

See Appendix D for a comprehensive list of words, terms and abbreviations used within
this document.

2.4.1 Syntax-Related Notation

The syntax is given using the following grammar notation (similar to EBNF).

• a nonterminal symbol is written <symbol>;

• a nonterminal definition (a production rule) is introduced by ::= with the defined
nonterminal as a left-hand side;

• a terminal symbol is given by a string separated with quotes ("terminal string");

• the pipe | separates alternative items (<item1> | <item2>);

• square brackets represent the optional items ([<may-be-used>]);

• braces represent 0 or more times repetitions ({<item>});

• braces extended with + represent 1 or more times repetitions ({<item>}+);

• parentheses are used for explicit grouping in grammar expressions.

For the terminals that are described with a regular expression, the right-hand side of
the rule starts with regexp:.

2.4.2 Semantics-Related Notation

We will use (mostly uppercase) letters in This Font to denote variables representing
nonterminals (i.e. syntactic variables). For example, V, T and E are typically used to
represent respectively the nonterminals <id> (Section 4), <type> (Section 8) and <expr>

(Section 10). However, often we simply use the nonterminal itself for the same purpose.

In a slight abuse of notation (but in an effort to ensure visual coherency), we extend the
use of these symbols to also denote semantic entities in general (even if they do not have
a concrete HLL syntax), for example the letter T is used throughout the document to
denote any type, even one which does not have an explicit HLL syntax (see Section 8.4
for examples).
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In order to have a compact definition of HLL, the semantics of the various language
constructs is often defined by translation to other, more basic or general, language
constructs.

Typically, for a language contruct C1 and a more basic language contruct C2, we will use
the following two relations to relate C1 to C2:

Relation Type Meaning

C1 is equivalent to C2 equivalence relation Either of C1 and C2 can be used in place
(reflexive, symmetric of the other, without change of meaning
transitive) or correctness, anywhere in an HLL text

in which all subexpressions have been
explicitly grouped5.

C1 is reducible to C2 preorder C2 can be used in place of C1, without
(reflexive, transitive) change of meaning or correctness,

anywhere in an HLL text in which all
subexpressions have been explicitly
grouped.

To avoid redundancy, whenever we say that C1 is equivalent or reducible to C2 this means
that all relevant restrictions that apply to C2 (directly or indirectly), also apply to C1,
even if this is not explicitly said. Furthermore, if C1 and C2 are expressions they will
have the same type even if this is not explicitly said.

As an example, the expression E1 != E2 is defined as equivalent to ~(E1 = E2). This means
that the relevant restriction that says that the operands of = be of “compatible types
with a finite number of scalar components” also applies to operator !=. By contrast,
the restriction that says that the operand of ~ be of type bool is irrelevant, and does
not apply to operator !=.

To be more precise about which restrictions are relevant, one should consider a “language
construct” as being a function from one or more explicitly grouped HLL strings to a
single explicitly grouped HLL string. For example, if we let = denote the function
EQ(<expr>, <expr>)⇒ (<expr> = <expr>), and ~ the function NOT(<expr>)⇒ ~<expr>,
then we can define != as being equivalent to the function composition NOT ◦ EQ (i.e. first
apply EQ then NOT). The restrictions that apply to the domain of definition of != are
thus those that apply to the domain of definition of NOT ◦ EQ (which is the same as the
domain of EQ).

If a language construct C1 has additional restrictions compared to another construct C2,
but they are otherwise equivalent, we will typically say that C1 is reducible to C2. As an
example, the expression E1 <-> E2 is reducible to E1 = E2 since the type bool required
of the operands of <-> satisfies the restrictions on =, but not the other way around.

Occasionally, we will use the relation “C1 is equivalent to C2 except for some property
P”. This means, naturally, that the semantics of C1 and C2 is identical except with
regards to the property P (which is of minor importance). This relation will be used
whenever neither of C1 and C2 is reducible to the other, but the semantics of the language
constructs are still closely related.

5Expressions such as “a & b & c” and “a + b * c” have to be rewritten into respectively “((a & b) & c)”
and “(a + (b * c))” in order for these substitutions to work in the general case.
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2.5 Document Structure

This document has been structured around the syntax of HLL6. The syntax, semantics
and restrictions for each set of closely related nonterminals of the language are grouped
together whenever possible and the resulting groups are sorted with the goal of minimiz-
ing forward references. Each such group is placed in its own section that may contain
a short introduction with a few examples followed by a formal definition. Please note
that the introduction and examples are only intended as a help to understand the formal
definition.

In the next section we give an example of how such a section may look like.

2.5.1 Language Construct Example

Here we may give a short informal introduction with a few examples as a help for
the reader. Below, in the blue box, follows the formal definition. The labels (Exam-
pleSyntax), (ExampleSemantics) and (ExampleRestriction) can be used for referencing
purposes either within this document or another one. An index of labels can be found
in Appendix E.

Syntax

(ExampleSyntax)

<nonterminal1> ::= <nonterminal2>

| <nonterminal3>

<nonterminal2> ::= "terminal1" <nonterminal4> "terminal2"

Forward References

1. Here we give references to the definitions of the nonterminals appearing on
the right hand side of a nonterminal definition and defined in a subsequent
section of the document. Note that nonterminals which are defined in a
subsequent subsection of the present section are not listed here.

Semantics

1. (ExampleSemantics) Here we define the semantics (meaning) of all nonter-
minals appearing on the left hand side of a nonterminal definition above.
In this case it means <nonterminal1> and <nonterminal2>.

Restrictions

1. (ExampleRestriction) Here we list all the cases of HLL strings which are
valid syntactically, but still not part of the language.

Related Notation

1. Here we will sometimes introduce notation related to the current language
construct, that is to be used elsewhere in the document.

6For an overview of the complete syntax, please refer to Appendix A.
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3 Lexical Structure

Characters in an HLL text shall be encoded in ASCII, or any 8-bit extension of it.

The following characters may be inserted freely anywhere between terminals in an HLL
text:

Character ASCII value

’\t’ (horizontal tab) 9
’\n’ (new line) 10
’\r’ (carriage return) 13
’ ’ (white space) 32

Comments and pragmas, defined below, may also be inserted freely between terminals.

3.1 Comments

Informal Description

An HLL text can contain comments of the following forms:

1. (CommentDoubleSlash) lines containing a "//" (double slash)
are ignored starting from the "//" sequence up to, and including,
the end of the line character "\n" (including "/*" and "*/");

2. (CommentSlashStar) characters present between "/*" and "*/"

are ignored (including "//"); comments of this kind can be
nested.

The tokens "//", "/*" and "*/" are considered in the order they
appear in the file.

Here are some examples that illustrate this specification:

int a; // this "/*" is not seen as a comment start

/* the one at the beginning of this line is

// The previous "//" on this line does not start a comment. */

int a; /* the present text is inside a comment

/* this one too */

this one also */
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3.2 Pragmas

Informal Description

(Pragma) All the characters after an "@" are interpreted as the text
of a pragma up to, and including, the end of the line character "\n".

Pragmas may be used by tools taking HLL as input language. The
semantics of such pragmas is outside the scope of this document.
From the point of view of this document, "@" is equivalent to "//".
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4 Identifiers

Syntax

(IdSyntax)

<id> ::= regexp: [a-zA-Z_][a-zA-Z0-9_]*

| regexp: ’[^\n’]+’

| regexp: "[^\n"]+"

Semantics

1. (Id) An identifier (<id>) identifies a named entity of an HLL text by its
name, where an entity is either either a type, a stream, a struct component
or a user namespace. An identifier may be used either to give an entity
its name (by a declaration or definition), or to refer to an existing named
entity. In a few cases a reference to a nonexisting entity may cause the
entity to exist. This is called implicit declaration by reference.

2. (IdSignificantChars) Identifiers are case sensitive and all characters (in-
cluding quotes) of an identifier are significant.

Restrictions

1. (ReservedWords) An <id> may not be a reserved word. The reserved words
are listed in Appendix B.
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5 User Namespaces

Syntax

(NamespaceSyntax)

<namespace> ::= <id> "{" <HLL> "}"

Forward References

1. <HLL> is defined in Section 16.

Semantics

1. (UserNamespace) A User namespace (<namespace>) is a named container
for names of an <HLL> text, meaning that names contained in different user
namespaces will not clash. More precisely, a user namespace N { HLL } in-
troduces local scopes in the namespaces of streams, types and user names-
paces that start at the { and ends at the }. These local scopes are called
the top-level scopes of the user namespace, and are not to be confused with
the global top-level scopes.

2. (UserNamespaceName) The <id> defines the name of the namespace and
it resides in the namespace of user namespaces.

3. (UserNamespaceScattering) Two <namespace> in the same scope and
with the same <id> refers to the same user namespace. This means
that N { HLL1 } . . . N { HLL2 } (where . . . represents anything in the text
that may come in between of the two <namespace>) is equivalent to
N { HLL1 HLL2 }.

Restrictions

(empty)
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5.1 Path Identifiers

Path identifiers allow referencing named types or streams in any user namespace (all top-
level members of a user namespace are public and can be referenced from the outside).
An example:

Namespaces:

NS1 { Inputs: x;

Outputs: NS2::x; // Refers to x inside NS2

}

NS2 { Inputs: x;

Outputs: NS1::x; // Refers to x inside NS1

}

Outputs:

NS1::x; // Refers to x inside NS1

NS2::x; // Refers to x inside NS2

Syntax

(PathIdSyntax)

<path_id> ::= <relative_path> <id>

| <absolute_path> <id>

<relative_path> ::= { <id> "::" }

<absolute_path> ::= "::" { <id> "::" }

Semantics

1. (PathId) A <path_id> refers to an entity with name <id> in some
user namespace (or on global top-level) designated by an optional pre-
fix which is either a Relative path (<relative_path>) or an Absolute path
(<absolute_path>). An empty prefix designates either the user namespace
in which the <path_id> occurs or else the global top-level (if the <path_id>
occurs there).

2. (PathRelative) A <relative_path> NS1 :: NS2 :: . . . :: NSn :: designates a
user namespace NSn that is nested inside user namespaces NS1 . . . NSn−1
where NS1 is selected by applying the following rules in order:

(a) If the <relative_path> occurs in a user namespace N and N has a
directly nested user namespace NS1, then this NS1 is selected.

(b) Otherwise, the user namespace NS1 defined on the global top-level is
selected7.

3. (PathAbsolute) An <absolute_path> :: NS1 :: NS2 :: . . . :: NSn :: designates
a user namespace NSn that is nested inside user namespaces NS1 . . . NSn−1
where NS1 is defined on the global top-level.

7In this case, if there is no NS1 on the global top-level then the corresponding <path id> is invalid.
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4. (PathIdLookup) Given a <path_id> [PATH::]ID, the following rules are
applied to lookup the entity E with the name ID:

(a) If no PATH is given, then the scope stack to consider for the search is the
maximal one ending where the <path_id> occurs, i.e. [S1 S2 . . . Sn],
where S1 corresponds to the global top-level and Sn corresponds to the
current (bottom- or inner-most) scope.

(b) If a PATH is given, then the search for ID is made only at the top-level8

scope SPATH of the user namespace designated by PATH. The scope stack
to consider for the search is thus [SPATH].

(c) Given a scope stack [S1 S2 . . . Sk] as determined from cases 4a and
4b, the search for ID starts in Sk and then proceeds in the order
Sk−1, Sk−2, . . . S2, S1. The search stops as soon as an entity E with the
name ID is encountered in one of the Si, and it is this entity E which the
<path_id> refers to. The semantics or correctness of a <path_id> that
does not refer to any existing entity E depends on the context in which
the <path_id> is used. The general rule is that such a <path_id> is
incorrect, and the only exception to this rule are unqualified named
expressions, which implicitly declare the nonexisting stream variables
they refer to, causing them to exist (see (NamedExprImplicitDecl) of
Section 10.7.3).

Restrictions

1. (PathIdNoImplicitDecl) A qualified <path_id> (i.e. a <path_id> with at
least one occurrence of ::) shall refer to an existing entity (no implicit
declaration by reference).

8 This means that the path identifiers i and N :: i in the lambda expression below do not refer to
the same entity named i, since the first one refers to the lambda parameter and the second one to the
input variable.

Namespaces : N { Inputs : i;
Outputs : lambda(bool) : (i) := i & N :: i; }
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6 Lists

Lists are a purely syntactic concept that has no particular semantics.

Syntax

<id_list> ::= <id> {"," <id>}

<type_list> ::= <type> {"," <type>}

<expr_list> ::= <expr> {"," <expr>}

Forward References

1. <type> is defined in Section 8.

2. <expr> is defined in Section 10.

Semantics

(empty)

Restrictions

(empty)
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7 Declarators

Declarators in HLL provide a way to declare objects of array and function type that
reflects the use of the objects. For example:

Inputs:

bool A[4][3]; // A is an array of 4 arrays of 3 bool

Outputs:

A[3][2]; // The last element of A (array-indexing is 0-based)

// (This use of A reflects the declaration of A)

An equivalent notation, shown below, is the array-type notation introduced in Sec-
tion 8.2.4, and it is this rewriting from declarators to proper type notation that is
performed by the function calc_type on the next page.

Inputs:

bool^(3)^(4) A; // A is an array of 4 arrays of 3 bool

Outputs:

A[3][2]; // The use of A does not reflect

// the declaration of A anymore

An analogue example can be made using function declarators and function-type notation,
for example the declaration bool f(int) corresponds to the declaration (int -> bool) f

using the function-type notation introduced in Section 8.2.3.

Note that for multidimensional arrays the syntax bool A[4, 3] can be used instead
of bool A[4][3] above (the corresponding array-type notation is then bool^(4, 3)).
The two ways to express multidimensionality are similar but not equivalent. The same is
true of functions: in HLL we can both have a function taking several parameters (called
a multivariate function) or a function returning another function.

Declarators can be used also in type definitions, as shown in the example below, which
is an equivalent formulation of our example above:

Types:

bool T[4][3]; // T is the type bool^(3)^(4)

Inputs:

T A;

Outputs:

A[3][2];
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Syntax

(DeclaratorSyntax)

<declarator> ::= <id> {<declarator_suffix>}

<declarator_suffix> ::= "[" <expr_list> "]"

| "(" <type_list> ")"

Semantics

1. (Declarator) A Declarator (<declarator>) consists of an identifier <id>

and an optional declarator suffix (<declarator_suffix>).

2. (DeclaratorTypeCalc) The recursive function calc_type defined below
takes as input a base type T (a <type>) and a list of <declarator_suffix>
D and returns an augmented type (which is typically associated with the
identifier <id> of the corresponding <declarator>, if any). Note that the
base type T is not provided from a <declarator>. Instead it typically
comes from an enclosing syntactic rule. See for example <type_def> in
Section 8.

calc type(<type> T, {<declarator suffix>} D) {
let L be the last <declarator suffix> of D and let D \ L
denote D without L in :

if L is [E1, E2, . . . En] :

return calc type(T̂ (E1, E2, . . . En), D \ L).

else if L is (T1, T2, . . . Tn) :

return calc type((T1 ∗ T2 ∗ . . . ∗ Tn -> T), D \ L).

else (D is empty) :

return T.

}

Please note that the array type notation T̂ (E1, E2, . . . En) is defined in Sec-
tion 8.2.4 and the function type notation (T1 ∗ T2 ∗ . . . ∗ Tn -> T) in Sec-
tion 8.2.3.

Restrictions

1. (DeclArrayDimInteger) Each Ei of a declarator suffix [E1, E2, . . . En] shall
be of integer type (see Section 8.1.2).

2. (DeclArrayDimConstant) SF(Ei) = 2 for a declarator suffix [E1, E2, . . . En].

3. (DeclFunctionParamScalar) Each Ti of a declarator suffix (T1, T2, . . . Tn)
shall be scalar (see Section 8.1).
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8 Types

Types in HLL should be understood as sets of values. As an example the Boolean type
(written bool) is the set {false, true}. Types are assigned to stream variables (named
streams) either by explicit declaration (see Section 11), by inference (see (DefUnde-
claredType) of Section 12), or in rare cases by reference (see (NamedExprImplicitDecl)
of Section 10.7.3). Types are assigned to stream expressions (unnamed streams) by
type inference based on the operator and the types of operands (if the operator is over-
loaded to handle more than one type of operands). The precise typing rules are given in
connection with the definition of the expressions’ semantics (i.e. throughout Section 10).

A stream can only take values of its assigned type (regardless of how the stream was
assigned the type), or the exceptional value nil in response to an exceptional event such
as a division by zero or an overflow.

Syntax

(TypeSyntax)

<type> ::= <bool>

| <integer>

| <tuple>

| <structure>

| <function>

| <array>

| <named_type>

<type_def> ::= <type> <declarator> {"," <declarator>}

| <enum_def>

| <sort_def>

Semantics

1. (Type) A Type (<type>) is a (possibly empty9, possibly infinite) set of
values. For example, the Boolean type bool is the set false, true}.

2. (TypeDef) <type_def> is a type definition (or a definition of a named type)
that associates an identifier <id> to a type. The identifier can be used, as
part of a <path_id>, wherever a <type> is expected. If a type is defined
using a <declarator>, then it is the first <id> of that <declarator> that
is being defined.

3. (TypeIdSpace) The identifier of a type resides in the namespace of types,
and is visible everywhere in its scope, regardless of the position of the
<type_def>.

4. (TypeCalc) The resulting type associated to the identifier being defined by
a type definition (a <type_def>) involving a <type> (the base type) and a
<declarator> is calculated according to procedure calc_type in Section 7.

9We will treat nil as a truly exceptional value that does not belong to the types propers.
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5. (InlineMultTypeDef) A single type definition <type> D1, D2, . . . Dn where
each Di is a <declarator> is equivalent to n type definitions
<type> D1, <type> D2, . . . <type> Dn.

6. (TypeCompatibility) The Compatibility relation C(T1, T2) between types
is an equivalence relation (reflexive, symmetric and transitive) defined in
the remainder of the document. Two types are said to be Compatible iff
C(T1, T2) = true. In Section 10.4 we will extend this relation to include
domains (<domain>).

7. (TypeAssignability) The Assignability relation A(T1, T2) between types is a
preorder (reflexive and transitive) defined in the remainder of the document.
A type T1 is said to be Assignable to another type T2 iff A(T1, T2) = true.

Restrictions

1. (TypeDefUnicity) A named type which is defined by a <type_def> which
is not a <sort_def> may only be defined once per scope of the namespace
of types.

2. (TypeDefCausality) A named type may not be defined in terms of itself,
either directly or indirectly. This restriction also applies to sort contribu-
tions: a sort may not contribute to its own definition.
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8.1 Scalar Types

Scalar Types are the subset of HLL types that consists of scalar (or atomic) values.
These are the Boolean, integer, enum and sort types.

8.1.1 Boolean Type

Syntax

(BoolSyntax)

<bool> ::= "bool"

Semantics

1. (BoolValues) The type bool is comprised of the two values true and false.

2. (BoolCompatibility) The bool type is compatible with itself.

3. (BoolAssignability) The bool type is assignable to itself.

4. (BoolValueOrder) false < true.

Restrictions

(empty)
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8.1.2 Integer Types

HLL’s integer types can be either finite or infinite (the set Z). Finite types are restricted
by either an inclusive range (for example int [4, 9]), or an “implementation” (for
example int signed 32). Historically, the main purpose of finite integer types has
been to give bounds to inputs (free variables) and state-holding elements (latches and
pre-expressions), thus ensuring that the state-space of an HLL system is finite. However,
since HLL version 3.0, all stream variables declared with a finite integer type T will in
each time step only take values from T, except on overflow which will result in nil being
taken instead.

Syntax

(IntSyntax)

<integer> ::= "int"

| "int" <sign>

| "int" <range>

<sign> ::= "signed" <id_or_int>

| "unsigned" <id_or_int>

<id_or_int> ::= <id>

| <int_literal>

<range> ::= "[" <expr> "," <expr> "]"

Forward References

1. <expr> is defined in Section 10.

Semantics

1. (IntValues) The type int is comprised of all integers (the set Z).

2. (IntSignedValues) The type int signed E1 is comprised of the integers in
the interval [−2E1−1, 2E1−1 − 1].

3. (IntUnsignedValues) The type int unsigned E2 is comprised of the inte-
gers in the interval [0, 2E2 − 1].

4. (IdOrInt) <id_or_int> is a constant stream expression restricted to integer
constants (<id>) and integer literals (<int_literal>).

5. (IntRangeValues) The type int [E3, E4] is comprised of the integers in the
interval [E3, E4].

6. (IntCompatibility) All integer types are compatible with each other.

7. (IntAssignability) All integer types are assignable to each other.

8. (IntValueOrder) i < i + 1 for any integer i.

Restrictions

1. (IntSizeInteger) E1, E2, E3 and E4 shall be of integer type.

2. (IntSizeConstant) SF(Ei) = 2 for i ∈ [1, 4].
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3. (SignedBitsPositive) E1 > 0.

4. (UnsignedBitsNonNegative) E2 ≥ 0.

5. (IntSizeNotNil) Mint(Ei, k) 6= nil for i ∈ [1, 4] and all k.

Related Notation

1. The types int <sign> are called Integer implementation types.

2. The types int <range> are called Integer range types.
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8.1.3 Enum Types

Syntax

(EnumSyntax)

<enum_def> ::= <enumerated> <id>

<enumerated> ::= "enum" "{" <id_list> "}"

Semantics

1. (EnumDef) The enum type defined as enum {V1, V2, . . . Vn} is comprised of
the values {V1, V2, . . . Vn}.

2. (EnumValueSpace) The values of an enum type reside in the namespace of
streams.

3. (EnumValueDef) The definition of an enum type also defines its values.

4. (EnumCompatibility) An enum type is compatible with itself.

5. (EnumAssignability) An enum type is assignable to itself.

6. (EnumValueOrder) Vi < Vi+1.

Static Flag

1. (EnumValueStaticFlag) SF(V) = 2 for an enum value V.

Restrictions

1. (EnumValueUnicity) An enum value may not be defined more than once
per scope of the namespace of streams.

8.1.4 Sort Types

Syntax

(SortSyntax)

<sort_def> ::= "sort" [ <sort_contrib> "<" ] <id>

<sort_contrib> ::= <path_id_list>

| "{" <id_list> "}"

<path_id_list> ::= <path_id> {"," <path_id>}
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Semantics

1. (SortDef) A <sort_def> is a contribution to the definition of a sort type.
A <sort_def> without a <sort_contrib> is an empty contribution to the
sort type. (The name of the sort type is given by the <id> as in any type
definition.)

2. (SortContrib) A sort type is defined by one or more contributions. The
values of the sort type is the union of the values of its contributions.

3. (SortContribScope) Contributions to a sort type S can only be made within
the same scope.10

4. (SortValueSpace) The values of a sort type reside in the namespace of
streams.

5. (SortSubTypeContrib) sort S1, S2, . . . Sk < S denotes the contribution of
sort types S1, S2, . . . Sk to sort type S, and the inclusion of their values
into S (i.e. S1 ∪ S2 ∪ . . . ∪ Sk ⊆ S).

6. (SortValueContrib) sort {V1, V2, . . . Vn} < S denotes the definition of the
values V1, V2, . . . Vn, and their inclusion into the sort type S (i.e.
{V1, V2, . . . Vn} ⊆ S).

7. (SortCompatibility) All sort types are compatible with each other.

8. (SortAssignability) A sort type T1 is assignable to another sort type T2
if either T1 is the same type as T2, or T1 contributes, either directly or
indirectly, to the definition of T2.

9. (SortValueOrder) Not defined.

Static Flag

1. (SortValueStaticFlag) SF(V) = 2 for a sort value V.

Restrictions

1. (SortValueUnicity) A sort value may not be defined more than once per
scope of the namespace of streams.

2. (SortSubTypes) Si for i ∈ [1, k] of (SortSubTypeContrib) shall refer to sort
types.

10Two different sort types named S are defined in the following example. One is defined on the global
top-level and one within the user namespace N:

Types : sort {V1} < S;
Namespaces : N { Types : sort {V2} < S; }
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8.2 Composite Types

Composite Types are the subset of HLL types that are not scalar. A composite type is a
composition of HLL types, with each type of the composition said to be a Component of
the composite type. By extension, a stream of composite type is made up by components,
which are themselves streams. The composite types are tuples, structs, arrays, and
functions.

8.2.1 Tuple Types

A tuple type tuple {bool, int [0, 2]} consists of the 2 ∗ 3 = 6 values in the set
bool× int [0, 2], i.e. {(false, 0), (false, 1), (false, 2), (true, 0), (true, 1), (true, 2)}.

Syntax

(TupleSyntax)

<tuple> ::= "tuple" "{" <type_list> "}"

Semantics

1. (TupleType) A tuple is a composition of ordered unnamed components.
The components are ordered according to the order they appear in the
text.

2. (TupleValues) The type tuple {T1, T2, . . . Tn} is comprised of the val-
ues in the n-fold Cartesian product of its component types, i.e. the set
T1 × T2 × . . .× Tn.

3. (TupleCompatibility) Two tuple types are compatible iff they have the
same number of components and the types of those components are pair-
wise compatible.

4. (TupleAssignability) A tuple type T1 is assignable to another tuple type T2
iff they have the same number of components and each component of T1 is
assignable to its corresponding component in T2.

Restrictions

(empty)

Related Notation

1. Given a value VT of tuple type tuple {T1, T2, . . . Tn} and an integer literal
K with 0 ≤ K < n, we will write VT@K to denote the component of VT of
type TK+1 at the 0-based index K. Note that @ is an operation on tuple
values, and distinct from the HLL tuple accessor (.K) that operates on
tuple streams.
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8.2.2 Struct Types

From a user’s perspective, the only difference between a struct and a tuple is the way to
access the components: struct components are accessed by their names, whereas tuple
components are accessed using a 0-based integer index. The two types are nevertheless
distinct and cannot be mixed.

Syntax

(StructSyntax)

<structure> ::= "struct" "{" <member_list> "}"

<member_list> ::= <id> ":" <type> {"," <id> ":" <type>}

Semantics

1. (StructType) A struct is a composition of ordered named components. The
components are ordered according to the order they appear in the text.

2. (StructValues) The type struct {M1 : T1, M2 : T2, . . . Mn : Tn} is comprised of
the same values as the corresponding tuple type tuple {T1, T2, . . . Tn} (see
(TupleValues)).

3. (StructCompIdSpace) The identifiers of the components reside together in
their own namespace. (One can see this as the struct type introducing a
new namespace to which the named components belong. This means that
two struct types may have components with the same name without any
clash, even if one is nested within the other.)

4. (StructCompatibility) Two struct types are compatible iff they have the
same number of components and the types of those components are pair-
wise compatible and the names of those components pair-wise equal.

5. (StructAssignability) A struct type T1 is assignable to another struct type
T2 iff they have the same number of components and each component of T1
has the same name as, and is assignable to, its corresponding11 component
in T2.

Restrictions

1. (StructCompUnicity) Two components of the same struct type may not
have the same name.

Related Notation

1. Given a value VS of struct type struct {M1 : T1, M2 : T2, . . . Mn : Tn} and an
identifier Mi with 1 ≤ i ≤ n, we will write VS@Mi to denote the component
of VS of type Ti with the name Mi. Note that @ is an operation on struct
values, and distinct from the HLL struct accessor (.M) that operates on
struct streams.

11Corresponding means here “at the same position” (the components of struct types are ordered).
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8.2.3 Function Types

A function type (int [0, 2] -> bool) consists of the three components (of type
bool) corresponding to the inputs 0, 1 and 2. The type consists of the 23 = 8 val-
ues in the set bool|int[0,2]|, i.e. {(false, false, false), (false, false, true), (false, true, false),
(false, true, true), (true, false, false), (true, false, true), (true, true, false), (true, true, true)}.
This example of a function type adopts the point of view that the function is a composite
object (much like an array) consisting of three components. However, there is also the
alternative point of view of a function as a mapping between two sets; the domain and
the range (or image). Seeing our example above from this point of view, we will identify
the domain with the set {0, 1, 2} and the range with the set {false, true}. A function
value is thus equivalent to a mapping from a value of the function’s domain to a value
of the function’s range12. For example the function value (false, true, true) from the
example above corresponds to the mapping 0 7→ false, 1 7→ true, 2 7→ true.

We note that in the “object view” of a function type, the components have to be ordered
in a way that allows us to find the component value corresponding to a given input
value, whereas in the “mapping view” such an order is not needed. Since function
values expressed as n-tuples is a completely abstract concept and not related to any
HLL operation, it means that for the “object view” of function types, any order of the
components will work as long as it is consistently used. That being said, some concrete
HLL operations such as the definition of a function using a collection on the right hand
side, written as f := {false, true, true}; and defined in Section 12, do require
that a known order is defined for the function components. This order is defined by
(FunctionCompOrder) on the next page, and is only defined for ordered domain types
(thus excluding functions of sort domain).

Since a function value is a mapping from a value (of the function’s domain) to a value (of
the function’s range), it would be natural to assume that a stream of function values is a
mapping from a stream to a stream. This is not the case however, and may be a source
of confusion. An HLL function is a stream of combinatorial functions (i.e. mappings
from values to values) and not a function on streams, which means it is not possible to
use HLL functions to express temporal functions (i.e. functions which talk about the
past or future values of their stream parameters). HLL functions are characterized by
the following property:

for each time step k, x = y -> f(x) = f(y), regardless of the history (past or future
values) of x and y.

Expressions such as f(x) (which are introduced in Section 10.6) where both f and x are
streams, should thus be understood as the point-wise application of the value of f on
the value of x in each time step:

f : f0 f1 f2 . . . fn . . .
x : x0 x1 x2 . . . xn . . .
f(x) : f0(x0) f1(x1) f2(x2) . . . fn(xn) . . .

12A function value is thus what we call a combinatorial function.
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Syntax

(FunctionSyntax)

<function> ::= "(" <type> {"*" <type>} "->" <type> ")"

Semantics

1. (FunctionType) A function is a composition of unnamed components, which
are all of the same Return type.

2. (FunctionValues) A function type (T1 ∗ T2 ∗ . . . ∗ Tn -> T) consists of:

(a) Parameter types T1 to Tn. The set T1 × . . .× Tn is also called the
function’s Domain.

(b) A return type (or component type) T. The set T is also called the
function’s Range.

The function type is comprised of the values in the Cartesian
power T|T1×T2×...×Tn| (alternatively written as the Cartesian product∏

i∈T1×T2×...×Tn T.)

If n > 1 then the function type is said to be Multivariate.

3. (FunctionCompOrder) The components of a function are ordered iff the
parameter types are ordered, i.e. iff they each have an order defined on
their values. In that case the order of the components is the same as the
order of the parameter types’ values, where the first parameter type is the
most significant one.

4. (FunctionDomainEquality) Two function parameter types T1 and T2 are
said to be equal iff they are mutually assignable to each other and their
sets of values are equal, i.e. v ∈ T1 ↔ v ∈ T2.

13

5. (FunctionCompatibility) Two function types are compatible iff they have
the same number of parameter types and those are all pair-wise equal ac-
cording to (FunctionDomainEquality), and their return types are compat-
ible.

6. (FunctionAssignability) A function type (T1 ∗ T2 . . . ∗ Tn -> T) is assignable
to another function type (U1 ∗ U2 . . . ∗ Un -> U) iff Ti is equal to Ui (according
to (FunctionDomainEquality)) for i ∈ [1, n] and T is assignable to U.

Restrictions

1. (FunctionDomainScalar) The parameter types Ti for i ∈ [1, n] of a function
type (T1 ∗ T2 ∗ . . . ∗ Tn -> T) shall be of scalar type.

13This means that e.g. int [0, 7] is considered equal to int unsigned 3.
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Related Notation

1. Given a value VF of function type (T1 ∗ T2 ∗ . . . ∗ Tn -> T) and values Vi
with Vi ∈ Ti, we will write VF(V1, V2, . . . Vn)V to denote the component (or
output) value of VF of type T corresponding to the inputs V1, V2, . . . Vn. We
employ a subscript V on the right parenthesis ()V) in order to emphasize that
this is an operation on function values, and distinct from the HLL function
accessor that operates on function streams. Of course, the subscript V is not
strictly necessary since function values are functions in the mathematical
sense (mappings from values to values) and the operation ()v corresponds
thus to the usual function application in the mathematical sense.
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8.2.4 Array Types

An array type bool^(3) (an array of 3 bool) is equivalent to the function type
(int [0, 2] -> bool), except for the way to access the components (A[0] vs A(0)).

Syntax

(ArraySyntax)

<array> ::= <type> "^" "(" <expr_list> ")"

Semantics

1. (ArrayType) An array is a composition of ordered unnamed components,
which are all of the same Base type.

2. (ArrayValues) The type T̂ (E1, E2, . . . En) is equivalent to14 the function type
(int [0, E1 − 1] ∗ int [0, E2 − 1] ∗ . . . ∗ int [0, En − 1] -> T), except for the
way to access the components. T is the base type (the component type) of
the array and the Ei are called the Dimensions of the array and if n > 1

then the array type is said to be Multidimensional.

3. (ArrayCompatibility) An array type T1 (̂D1, D2, . . . Dn) is compatible with
another array type T2 (̂E1, E2, . . . En) if each Di = Ei and T1 is compatible
with T2.

4. (ArrayAssignability) An array type T1 (̂D1, D2, . . . Dn) is assignable to an-
other array type T2 (̂E1, E2, . . . En) if each Di = Ei and T1 is assignable to
T2.

Restrictions

1. (ArrayDimConstant) SF(Ei) = 2 for i ∈ [1, n].

2. (ArrayDimNotNil) Mint(Ei, k) 6= nil for i ∈ [1, n] and all k.

Related Notation

1. Given a value VA of array type T̂ (E1, E2, . . . En), and values Vi with
0 ≤ Vi < Ei of integer type, we will write VA[V1, V2, . . . Vn]V to denote the
component of VA of type T at index V1, V2, . . . Vn. We employ a subscript
V on the right square bracket (]V) in order to emphasize that this is an
operation on array values, and distinct from the HLL array accessor that
operates on array streams.

14This means that it is possible to consistently replace all array types by equivalent function types
(while changing all accesses from [i1, . . . in] to (i1, . . . in)) in an HLL text. However, array and function
types are still not compatible with or assignable to each other as specified by (ArrayCompatibility) and
(ArrayAssignability).
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8.3 Named Types

Syntax

(NamedTypeSyntax)

<named_type> ::= <path_id>

Semantics

1. (NamedType) A named type (<named_type>) is the type that it refers to.

2. (NamedTypeCompatibility) A named type is compatible with the type it
refers to.

3. (NamedTypeAssignability) A named type is mutually assignable with the
type it refers to.

Restrictions

1. (NamedTypeRef) The <path_id> of a <named_type> shall refer to an ex-
isting type (in the namespace of types).
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8.4 Implicit Types

Implicit types have no explicit syntax, but can appear implicitly as a result of some
other syntactic construct of the language. For example a <collection> {false, 0}

has a collection type, and an <ite_expr> if E1 then E2 else E3 has a type which is
the union of the types of E2 and E3.
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8.4.1 Collection Types

A collection {false, 0} (a <collection>, defined in Section 12) is assignable to a vari-
able declared with, for example, type tuple {bool, int} or struct {b: bool, i:int}.
A collection {false, true, false} is assignable to a variable V declared, for example,
using one of the following declarations:

tuple {bool, bool, bool} V; // Tuple of 3 bool

bool V[3]; // Array of 3 bool

bool V(int [1, 3]); // Function with 3 bool outputs

bool V(int [4, 6]); // Same, but different indexing

bool V(ExEnum); // + Types: enum {one, two, three} ExEnum;

Syntax

(empty)

Semantics

1. (CollectionReason) A collection type is the type associated with collections
(<collection>, see Section 12).

2. (CollectionType) The type of {R1, R2, . . . Rn} where Ri is of type Ti is the
collection type {T1, T2, . . . Tn}, composed of n ordered components. We will
count the collection types among the composite types of HLL.

3. (CollTupleCompatibility) A collection type T1 is compatible with a tuple
type T2 iff they have the same number of components and each component
of T1 is compatible to its corresponding component in T2.

4. (CollTupleStructAssignability) A collection type T1 is assignable to a tuple
or struct type T2 iff they have the same number of components and each
component of T1 is assignable to its corresponding component in T2.

5. (CollArrayAssignability) A collection type T1 is assignable to an array type
T2 (̂E) iff T1 has E components and each one is assignable to T2.

6. (CollMultiDimArrayAssignability) A collection type T1 is assignable to a
multidimensional array type T2 (̂E1, E2, . . . En) (n > 1) iff T1 has E1 compo-
nents and each one is assignable to T2 (̂E2, . . . En).

7. (CollFuncAssignability) A collection type T1 is assignable to a function
type (T2 -> T3) iff T2 is an ordered type and T1 has |T2| components and
each one is assignable to T3.

8. (CollMultiVarFuncAssignability) A collection type T1 is assignable to a
multivariate function type (T2 ∗ T3 ∗ . . . ∗ Tn−1 -> Tn) (n > 3) iff T2 is an
ordered type and T1 has |T2| components and each one is assignable to
(T3 ∗ . . . ∗ Tn−1 -> Tn).

Restrictions

(empty)
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8.4.2 Unsized Types

In HLL, it is possible to restrict the set of values of integer inputs and memories, as well
as other declared stream variables, either by using a “range” (e.g. int [0, 7]) or an
“implementation” (e.g. int unsigned 3). However, for arbitrary integer expressions,
the only type used is int without restriction. The Unsized copy of a type (defined below)
is used to remove its size restriction in certain cases, for example when computing the
union type of the two branches of an if-then-else (see Sections 8.4.3 and 10.1).

Syntax

(empty)

Semantics

1. (UnsizedInteger) The unsized copy of an integer type T is the type int.

2. (UnsizedScalar) The unsized copy of a non-integer scalar type T is T.

3. (UnsizedComposite) The unsized copy of a composite type T is a type T’,
in all respects the same as T, but with each component type replaced by
its unsized copy.15

Restrictions

(empty)

15To give two examples, the unsized copy of tuple {int signed E1, int [E2, E3]} is tuple {int, int},
and the unsized copy of (int [E1, E2] -> int [E3, E4]) is (int [E1, E2] -> int).
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8.4.3 Union Types

Syntax

(empty)

Semantics

1. (UnionScalar) The union type of n compatible non-sort scalar types T1 . . . Tn
is the unsized copy of T1.

2. (UnionSort) The union type of n sort or sort union types T1 . . . Tn (i.e. each
Ti may be either a sort type or another sort union type) is a special “sort
union type” Tu. We will count the sort union type among the scalar types
of HLL.

3. (UnionComposite) The union type of n compatible composite types
T1 . . . Tn, which are not collection types, is a type Tr, in all respects the
same as any of the Ti, but where each component type of Tr is the union
type of the n corresponding component types of T1 . . . Tn.

4. (UnionTupleCollection) The union type of a tuple type T1 and a compati-
ble collection type T2 is a tuple type Tr, in all respects the same as T1, but
where each component type of Tr is the union type of the corresponding
component types of T1 and T2. This union is needed to represent the type
of SELECT expressions where the default value is a collection, see (QuantS-
electType).

5. (SortUnionCompatibility) A sort union type is compatible with both sort
types and other sort union types.

6. (SortUnionAssignability) A sort union type Tu of the types T1 . . . Tn is
assignable to a sort type Ts iff each Ti for i ∈ [1, n] is assignable to Ts.

16

Restrictions

(empty)

16Note that this definition relies on a recursion, since the Ti may themselves be sort unions. The
recursion is well-founded since at the base case level we only have sort types.
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9 Accessors

Accessors are used to designate components of streams of composite type.

Syntax

(AccessorSyntax)

<accessor> ::= "." <id>

| "." <int_literal>

| "[" <expr_list> "]"

| "(" [<expr_list>] ")"

Forward References

1. <int_literal> is defined in Section 10.7.2.

Semantics

1. (AccStruct) .M (an <id>) designates a struct component named M.

2. (AccTuple) .N (an <int_literal>) designates the (N+1):th component of
a tuple (the indexing is 0-based).

3. (AccArray) At time step k and relative to an array type T̂ (D1, D2, . . . Dn),
[E1, E2, . . . En] designates the array component of type T at the index given
by [Mint(E1, k),Mint(E2, k), . . .Mint(En, k)]V, or if there is no such compo-
nent (the index is out of bounds or nil), it designates nil.

4. (AccFunction) At time step k and relative to a function type
(T1 ∗ T2 ∗ . . . ∗ Tn -> Tr), (E1, E2, . . . En) designates the function output of
type Tr corresponding to the inputs (MT1(E1, k),MT2(E2, k), . . .MTn(En, k))V,
or if there is no such output (some input is out of the function domain or
nil), it designates nil.

Restrictions

1. (ArrayIndexInteger) Each Ei of an accessor [E1, E2, . . . En] shall be of integer
type.

2. (FunctionInputScalar) Each Ei of an accessor (E1, E2, . . . En) shall be of
scalar type.
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10 Expressions

Syntax

(ExprSyntax)

<expr> ::= <ite_expr>

| <lambda_expr>

| <binop_expr>

| <membership_expr>

| <unop_expr>

| <proj_expr>

Semantics

1. (Expr) An Expression E (an <expr>) is a stream (of values) of some type T.

2. (EmptyScalarTypeNil) If some scalar component of T (or T itself) is an
empty scalar type, then the corresponding component of a stream expres-
sion E (or E itself) of type T will carry the value nil in each time step.

3. (ExprPrecedence) The precedence of expressions is given below in order
from lowest to highest (same line means same precedence):

(a) <ite_expr>, <lambda_expr>

(b) <binop_expr>, <membership_expr>

(c) <unop_expr>

(d) <proj_expr>

Restrictions

(empty)

Related Notation

1. We will write E<V1 := R1, V2 := R2, . . . Vn := Rn> to denote substitution, i.e.
the process of replacing all free occurrences of the variables V1, V2, . . . Vn in
the expression E with expressions R1, R2, . . . Rn.

As an example (x + y = z)<z := 5> is equivalent to x + y = 5. By con-
trast, (SOME z : [0, 4] (x + y = z))<z := 5> is equivalent to SOME z : [0, 4]
(x + y = z) (no substitution performed) since the quantifier variable z is
not free in this case (it is bound by the quantification).
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10.1 If-Then-Else Expressions

Syntax

(IteExprSyntax)

<ite_expr> ::= "if" <expr> "then" <expr>

{"elif" <expr> "then" <expr>}

"else" <expr>

Semantics

1. (Elif) elif is equivalent to else if.

2. (IfThenElse) In each time step, if E1 then E2 else E3 evaluates to 1) nil
if E1 is nil, 2) E2 if E1 is true and 3) E3, otherwise (E1 is false). The type T

of the expression is the union type of the type T2 of E2 and the type T3 of
E3. Formally:

MT(if E1 then E2 else E3, k) =

=

 nil if Mbool(E1, k) = nil
MT2(E2, k) if Mbool(E1, k) = true
MT3(E3, k) otherwise (Mbool(E1, k) = false)

Static Flag

1. (IteExprStaticFlag)
SF(if E1 then E2 else E3) = min(SF(E1),SF(E2),SF(E3)).

Restrictions

1. (IteCondBool) The type of E1 shall be bool.

2. (IteBranchesCompatible) The types of E2 and E3 shall be compatible.
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10.2 Lambda Expressions

Lambda expressions can be used to build unnamed streams of array or function type.
For example “lambda[3]:[i] := i = 1” is an array of the 3 Boolean constants false
(at index 0), true (at index 1), false (at index 2).

Lambda expressions can, together with a definition, be used to build recursive array or
function definitions. As an example, the Fibonacci numbers are calculated by a recursion
below (all proof obligations are valid).

Declarations:

int fibonacci(int);

Definitions:

fibonacci := lambda(int): (i) := if i <= 2 then 1

else fibonacci(i - 1) +

fibonacci(i - 2);

Proof Obligations:

fibonacci(1) = 1;

fibonacci(2) = 1;

fibonacci(3) = 2;

fibonacci(4) = 3;

fibonacci(5) = 5;

Allowing recursion in this manner provides HLL with a powerful tool, but unfortunately
it also means that it becomes possible to express undecidable problems in HLL, since
it is possible to build recursions that do not terminate. Whether or not a recursion
will terminate depends on the reasoning power of tools implementing HLL, and is thus
outside the scope of this document.

A specificity of lambda expressions is how their type is computed. Two lambda expres-
sions which at a glance may look as if of different type, may in fact be of the same type.
The type of a lambda expression is computed according to (LambdaType) on the next
page. In the following example, the two lambda expressions that are being compared
are of the same type (the type int̂ (3)̂ (4)), and the proof obligation is valid.

Proof Obligations:

(lambda[4][3]:[i] := (lambda[3]:[j] := 0)) =

(lambda[4]: [i] := (lambda[3]:[j] := 0)); // Valid PO

Lambda expressions are – just as any HLL function (or array) as discussed in Sec-
tion 8.2.3 – streams of combinatorial functions (mappings from values to values). The
formal definition of lambda arrays and functions (in (LambdaArray) and (Lambda-
Function) below) defines, for a given time step k, one such combinatorial function. The
combinatorial function takes as inputs the values V1 to Vn and returns:

1. The value of the right hand side expression at time step k with the formal pa-
rameters substituted with their corresponding values, if the latter are within the
domain of the array or function, or

2. nil otherwise.
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Syntax

(LambdaExprSyntax)

<lambda_expr> ::= "lambda" {<declarator_suffix>}+ ":"

{<formal_param>}+ ":=" <expr>

<formal_param> ::= "[" <id_list> "]"

| "(" <id_list> ")"

Semantics

1. (LambdaScope) A <lambda_expr> introduces a local scope in the names-
pace of streams, called a Lambda scope that starts at the "lambda" keyword
and continues to the end of the expression. Parameters (<formal_param>)
declared within the scope must be unique, but can hide other variables or
parameters above it.

2. (LambdaType) The type T of a lambda expression lambda DS : FP := E

where E is an expression of type T1 is equal to calc type(T2, DS),
where the type T2 is calculated by solving the following equation:
T1 = calc type(T2, DS suffix) where DS_suffix is the N last elements of
the list DS where N is the difference in length of the list DS and the list FP,
i.e. N = |DS| − |FP|. The function calc_type is defined in Section 7.

Note that if the length of the lists DS and FP is the same (i.e. N = 0), then
DS suffix = {} (the empty list) and T1 = T2.

3. (LambdaMultFormalParam) lambda D1 . . . Dn : P1 . . . Pn:= E is reducible17

to lambda D1 . . . Dn−1 : P1 . . . Pn−1:= (lambda Dn : Pn:= E).

4. (LambdaDeclSuffixOverhang) lambda D1 . . . Dn : P1 . . . Pk:= E with n > k is
(if well-typed) equivalent to lambda D1 . . . Dk : P1 . . . Pk:= E.

5. (LambdaArray) lambda[E1, . . . En] : [i1, . . . in]:= E, where E is of type TE,
and ij for j ∈ [1, n] is, by definition, of type int, is an expression of type
TE (̂E1, . . . En) such that:

MTE^(E1,...En)(lambda[E1, . . . En] : [i1, . . . in]:= E, k)[V1, . . . Vn]V =

=

{
MTE(E<i1:= V1, . . . in:= Vn>, k) if ∀j ∈ [1, n] : 0 ≤ Vj < Ej
nil otherwise

(Note that the values V1 to Vn are implicitly converted to constant streams
before they are substituted for the formal parameters i1 to in.)

17lambda[1] : [i] := (lambda[1] : [i] := i) is not reducible to lambda[1][1] : [i][i] := i (since the latter
expression is not legal), so the two are not equivalent.
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6. (LambdaFunction) lambda(T1, . . . Tn) : (i1, . . . in):= E, where E is of type
TE, and ij for j ∈ [1, n] is, by definition, of type Tj, is an expression of type
(T1 ∗ . . . ∗ Tn -> TE) such that:

M(T1∗...∗Tn -> TE)(lambda(T1, . . . Tn) : (i1, . . . in):= E, k)(V1, . . . Vn)V =

=

{
MTE(E<i1:= V1, . . . in:= Vn>, k) if ∀j ∈ [1, n] : Vj ∈ Tj
nil otherwise

(Note that the values V1 to Vn are implicitly converted to constant streams
before they are substituted for the formal parameters i1 to in.)

Static Flag

1. (LambdaStaticFlag) SF(<lambda expr>) = 0.

2. (FormalParamStaticFlag) SF(i) = 1 for a lambda parameter i (e.g.
lambda[1] : [i] := <expr>).

Restrictions

1. (LambdaParamUnicity) Two parameters of a lambda expression may not
have the same name.

2. (LambdaParamsBound) |DS| ≥ |FP| (the number of elements of the list DS

shall be greater than or equal to the number of elements of the list FP) for
an expression lambda DS : FP := E.

3. (LambdaParamsMatch) Each element F (a <formal_param>) of the list
FP in an expression lambda DS : FP := E, where F itself is a list (an
<id_list>), shall contain the same number of elements (of form <id>)
as the element D (a <declarator_suffix> and itself a list; either an
<expr_list> or a <type_list) of the corresponding position in the list
DS.

Furthermore, if D is on the form "[" <expr_list> "]" then F

shall be on the form "[" <id_list> "]", and if D is on the form
"(" <type_list> ")" then F shall be on the form "(" <id_list> ")".

4. (LambdaTypeCheck) There shall be exactly one solution to the equation
T1 = calc type(T2, DS suffix) of (LambdaType).
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10.3 Binop Expressions

Syntax

(BinopSyntax)

<binop_expr> ::= <expr> <binop> <expr>

<binop> ::= "#" | "&" | "#!" | "->" | "<->"

| ">" | ">=" | "<" | "<="

| "=" | "==" | "!=" | "<>"

| "+" | "-" | "*" | "^" | "<<" | ">>"

| "/" | "/>" | "/<" | "%"

Semantics

1. (BoolAnd) E1 & E2 (Boolean and) is equivalent to ~(~E1 # ~E2) (De Mor-
gan’s law).

2. (BoolXor) E1 #! E2 (Boolean exclusive or) is equivalent to ~(E1 <-> E2).

3. (BoolImpl) E1 -> E2 (Boolean implication) is equivalent to ~E1 # E2.

4. (BoolEquiv) E1 <-> E2 (Boolean equivalence) is reducible to E1 = E2.

5. (IntGt) E1 > E2 (greater than) is equivalent to E2 < E1.

6. (IntGte) E1 >= E2 (greater than or equal to) is equivalent to ~(E1 < E2).

7. (IntLte) E1 <= E2 (less than or equal to) is equivalent to E2 >= E1.

8. (OpNeq) E1 != E2 and E1 <> E2 are both equivalent to ~(E1 = E2).

9. (OpEqEq) == is equivalent to =.

10. (IntSub) E1 - E2 (subtraction) is equivalent to E1 + (-E2).

11. (IntLeftShift) E1 << E2 (left shift) is reducible to E1 * (2 ^ E2).

12. (IntRightShift) E1 >> E2 (right shift) is reducible to E1 /> (2 ^ E2).

13. (IntFloorDiv) E1 /> E2 (floor division) represents the biggest integer smaller
than or equal to the rational E1/E2. Formally, it is equivalent to:

if (E1 < 0) = (E2 < 0) # E1 % E2 = 0

then E1 / E2

else E1 / E2 - 1

14. (IntCeilDiv) E1 /< E2 (ceiling division) represents the smallest integer big-
ger than or equal to the rational E1/E2. Formally, it is equivalent to:

if (E1 < 0) = (E2 < 0) & E1 % E2 != 0

then E1 / E2 + 1

else E1 / E2
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15. (IntRem) E1 % E2 (remainder) is equivalent to E1 - (E1 / E2) * E2.

Core Constructs:

16. (BoolOr) E1 # E2 (Boolean or) is a stream of type bool for which
Mbool(E1 # E2, n) = Mbool(E1, n) ∨nil Mbool(E2, n) holds. The operator
∨nil is the usual Boolean OR operator extended to three-valued logic ac-
cording to the following table:

A ∨nil B
B

false nil true

false false nil true
A nil nil nil true

true true true true

17. (IntLt) E1 < E2 (less than) is a stream of type bool for which
Mbool(E1 < E2, n) = Mint(E1, n) <nil Mint(E2, n) holds. The operator <nil

is the usual “strictly less than” comparison operator defined on integers,
and extended for the nil case according to the following table:

A <nil B
B

nil Y

A
nil nil nil
X nil X < Y

18. (IntAdd) E1 + E2 (addition) is a stream of type int for which
Mint(E1 + E2, n) = Mint(E1, n) +nil Mint(E2, n) holds. The operator +nil

is the usual integer addition operator extended for the nil case according
to the following table:

A +nil B
B

nil Y

A
nil nil nil
X nil X + Y

19. (IntMul) E1 * E2 (multiplication) is a stream of type int for which
Mint(E1 * E2, n) = Mint(E1, n) ∗nil Mint(E2, n) holds. The operator ∗nil
is the usual integer multiplication operator extended for the nil case ac-
cording to the following table:

A ∗nil B
B

nil Y

A
nil nil nil
X nil X ∗ Y

20. (IntDiv) E1 / E2 (integer division) is a stream of type int for which
Mint(E1 / E2, n) = Mint(E1, n)/nilMint(E2, n) holds. The operator /nil is
the usual integer division operator (this means a truncating division; i.e. di-
vision with the fractional part omitted) extended for the nil case according
to the following table:
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A/nilB
B

0 nil Y

A
nil nil nil nil
X nil nil X/Y

21. (IntExp) E1 ^ E2 (exponentiation) is a stream of type int for which
Mint(E1 ^ E2, n) = Mint(E1, n) ˆnil Mint(E2, n) holds. The operator ˆnil
is defined in the following table:

A ˆnil B
B

< 0 0 nil Y

0 nil 1 nil 0
A nil nil nil nil nil

X 1
X|B|

1 nil XY

Note: The division operation 1
X|B|

refers to integer division, which means
that this expression can only take the values −1, 0 or 1.

22. (OpEqScalar) E1 = E2 (scalar equality), where E1 and E2 are of scalar
compatible types T1 and T2, is a stream of type bool for which
Mbool(E1 = E2, n) = (MT1(E1, n) =nil MT2(E2, n)) holds. The operator =nil

is the usual equality operator extended for the nil case according to the
following table:

A =nil B
B

nil Y

A
nil nil nil
X nil X = Y

23. (OpEqCompositeUniDim) E1 = E2 (composite unidimensional equality),
where E1 and E2 are of composite compatible types TE1 and TE2 , which
are neither multidimensional array types nor multivariate function types,
is equivalent to:

E1A0 = E2A0 & E1A1 = E2A1 & . . . & E1An−1 = E2An−1

where:

Ai =


.i if TE1 is tuple {T0, . . . Tn−1}
.Mi if TE1 is struct {M0 : T0, . . . Mn−1 : Tn−1}
[i] if TE1 is T̂ (n)
(Vi) if TE1 is (Td -> T) and Td is {V0, . . . Vn−1}
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24. (OpEqCompositeMultiDim) E1 = E2 (composite multidimensional equal-
ity), where E1 and E2 are of composite compatible types TE1 and TE2 , which
are either multidimensional array types or multivariate function types, is
equivalent to:

E1A0...00 = E2A0...00 & . . . & E1A0...0mk = E2A0...0mk &

E1A0...10 = E2A0...10 & . . . & E1A0...1mk = E2A0...1mk &

...
...

. . .
...

...

E1A0...mk−10 = E2A0...mk−10 & . . . & E1A0...mk−1mk = E2A0...mk−1mk &

...
...

. . .
...

...

E1Am1m2...0 = E2Am1m2...0 & . . . & E1Am1m2...mk = E2Am1m2...mk

where:

Ai1...ik =

=

{
[i1, . . . ik] if TE1 is T̂ (m1 + 1, . . . mk + 1)
(Vi1 , . . . Vik) if TE1 is (T1 ∗ . . . Tk -> T) and Tj∈[1,k] is {V0, . . . Vmj}

Precedence and Associativity:

25. (BinopGrouping) The precedence of the operators is given below in order
from lowest to highest, together with their associativity. Same line means
same precedence.

Precedence Associativity

<-> #! left
-> right
# left
& left
> >= < <= = == != <> left
<< >> left
+ - left
* / /< /> % left
^ right

Static Flag

1. (BinopStaticFlag) SF(E1 <binop> E2) = min(SF(E1),SF(E2)).

Restrictions

1. (BoolOrEquivOperandsBool) The operands of # <-> shall be of type bool.

2. (EqOperandsFiniteCompatible) The operands of = shall be either of com-
patible scalar types or of compatible composite types with finite numbers
of scalar components (either directly or indirectly via other composite com-
ponents).
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3. (IntCoreBinopOperandsInt) The operands of < + * / ^ shall be of integer
type.

4. (SecondShiftOperandStatic) SF(E2) ≥ 1 for an expression E1 ◦ E2 with
◦ ∈ {<<, >>}.

5. (SecondShiftOperandNonNegative) E2 ≥ 0 for an expression E1 ◦ E2 with
◦ ∈ {<<, >>}.
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10.4 Membership Expressions

Membership (or elementhood) expressions can be used to test whether the value of some
stream expression belongs to a domain, where a domain is a stream of sets of values.

Syntax

(MembershipSyntax)

<membership_expr> ::= <expr> ":" <domain>

<domain> ::= <range>

| <type_domain>

<type_domain> ::= <named_type>

| "bool"

| "int"

Semantics

1. (Domain) A Domain D (<domain>) is a stream of (possibly different) sets
of values. We will write Dk to denote the set of values of D at time step k.

2. (DomainAsType) A <domain> which is a <type_domain> consists in each
time step of the set of values of the type T which the <type_domain> refers
to. Such a <domain> D is type compatible with the type T.

3. (DomainAsRange) A <domain> which is a <range> [E1, E2] is in each time
step k the set of values given by the range [Mint(E1, k),Mint(E2, k)]. Such
a <domain> is type compatible with the type int.

4. (Membership) E : D, where E is of type TE, is an expression of type bool

such that:

Mbool(E : D, k) =

 nil if MTE(E, k) = nil
true if MTE(E, k) ∈ Dk
false otherwise

5. (MembershipPrecedence) The operator : has the same precedence as the
operator =.

Static Flag

1. (MembershipStaticFlag) SF(<membership expr>) = 0.

2. (RangeDomainStaticFlag) SF([E1, E2]) = min(SF(E1),SF(E2)).

3. (TypeDomainStaticFlag) The static flag of a <domain> which refers to a
type is 2.

Restrictions

1. (DomainScalar) A <domain> D shall be type compatible with a scalar type.

2. (MembershipDomainCompatible) The <domain> D of an expression E : D

shall be type compatible with the type of E.
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10.5 Unop Expressions

Syntax

(UnopSyntax)

<unop_expr> ::= <unop> <expr>

<unop> ::= "~" | "-"

Semantics

1. (BoolNeg) ~E (Boolean negation) is nil, true, or false in time step n if E is
respectively nil, false or true in time step n. The type of the expression is
bool.

2. (IntNeg) -E (integer negation) is the additive inverse of E (meaning that
E + (-E) = 0 holds). The expression is nil in time step n if E is nil in
time step n. The type of the expression is int.

Static Flag

1. (UnopStaticFlag) SF(<unop> E) = SF(E).

Restrictions

1. (BoolNegOperandBool) The operand of ~ shall be of type bool.

2. (IntNegOperandInt) The operand of - shall be of integer type.
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10.6 Projection Expressions

Projection expressions can be used to select components of streams of composite type.
For example A[4] selects the array component at index 4, f(true) selects the function
component (or output) that corresponds to input true, and so on. An important thing
to note is that f(x), where x is an arbitrary stream expression, selects, in time step k,
the function output that corresponds to the value of x at time step k, i.e. M(x, k). This
means that functions are characterized by the following property:

for each time step k, x = y -> f(x) = f(y), regardless of the history (past or future
values) of x and y.

Hence, streams of function type shall be understood as streams of combinatorial func-
tions, and not as functions on streams.

Syntax

(ProjExprSyntax)

<proj_expr> ::= <closed_expr> { <accessor> }

Forward References

1. <closed_expr> is defined in Section 10.7.

Semantics

1. (ProjMultipleAcc) A projection expression E A1 A2 . . . An is equivalent to
(. . . ((E A1) A2) . . .) An.

2. (Projection) A projection expression E A where E is a <closed_expr> of
composite type T and A an <accessor> compatible with T is equivalent
to the component of E designated by A. If A does not designate a valid
component18 of E in time step n, then the expression is equivalent to nil in
time step n. Note that the semantics of accessors is detailed in Section 9.

3. (ProjArrayFunc) This follows directly from Semantic item 4 of Sec-
tion 9 but is stated again here as a reminder due to its importance:
MT(E(E1, E2, . . . En), k) = M(T1∗T2∗...∗Tn -> T)(E, k)(MT1(E1, k),MT2(E2, k), . . .
MTn(En, k))V for all time steps k and types T. (The analogue for array
accessors naturally also holds and follows from Semantic item 3 of Sec-
tion 9.)

18This is only possible for array and function accessors.
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To clarify what this entails, then as an example, assume for simplicity that
n = 1 and the type of E1 is comprised of the values in the set {V1, V2, . . . Vn}.
Then the expression E(E1) is equivalent to19:

if E1=V1 then E(V1) else

if E1=V2 then E(V2) else

...

if E1=Vn−1 then E(Vn−1) else E(Vn)

4. (ProjExprNil) A projection expression E A where E is nil in time step n is
also nil in time step n.

Static Flag

1. (ProjExprStaticFlag) SF(<proj expr>) = 0.

Restrictions

1. (ProjAccCompatible) The accessor A of an expression E A must be compat-
ible with the type T of the expression E, according to the following table:

A Compatible type T

.K (an <int_literal>) Tuple with > K components

.M (an <id>) Struct with a component named M

[E1, E2, . . . En] Array with n dimensions
(E1, E2, . . . En) Function (T1 ∗ T2 ∗ . . . ∗ Tn -> T) where

the type of Ei is assignable to Ti

19To concretise the example, assume that E is defined with E(i) := ~i & X(i);, then we can use this
equivalence to see that E(input) = (if input = true then E(true) else E(false)) = false, and not
~input & X(input).
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10.7 Closed Expressions

Closed expressions are a purely syntactic concept, and consist of the explicitly grouped
expressions.

Syntax

(ClosedExprSyntax)

<closed_expr> ::= <bool_literal>

| <int_literal>

| <named_expr>

| <next_expr>

| <pre_expr>

| <fun_expr>

| <cast_expr>

| <with_expr>

| <case_expr>

| <quantif_expr>

| "(" <expr> ")"

Semantics

1. (GroupedExpr) M((E), n) = M(E, n) for any model M and time step n.
(E) has the same type as E. Explicit grouping can be used to override the
implicit grouping performed by the parsing of an <expr>. For example
(a + b) * c is not equivalent to a + b * c since operator * has a higher
precedence than operator +.

Static Flag

1. (GroupedExprStaticFlag) SF((E)) = SF(E).

Restrictions

(empty)
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10.7.1 Boolean Literals

Syntax

(BoolLitSyntax)

<bool_literal> ::= <true> | <false>

<true> ::= "true" | "TRUE" | "True"

<false> ::= "false" | "FALSE" | "False"

Semantics

1. (BoolLitTrue) <true> is a stream of type bool such that
Mbool(<true>, n) = true for all time steps n.

2. (BoolLitFalse) <false> is a stream of type bool such that
Mbool(<false>, n) = false for all time steps n.

Static Flag

1. (BoolLitStaticFlag) SF(<bool literal>) = 2.

Restrictions

(empty)
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10.7.2 Integer Literals

Syntax

(IntLitSyntax)

<dec_literal> ::= [0-9](_?[0-9])*

<bin_literal> ::= 0[Bb][0-1][_?[0-1])*

<hex_literal> ::= 0[Xx][0-9A-Fa-f](_?[0-9A-Fa-f])*

<int_literal> ::= <dec_literal>

| <hex_literal>

| <bin_literal>

Semantics

1. (IntLitUnderscores) Underscores (_) may be put freely inside integer lit-
erals with the purpose of improving readability (for example 1_000_000

or 0xFFFF_FFFF). They can be removed completely without changing the
meaning of the literals they appear in, and will not be considered in the
following.

2. (IntLitDecimal) A <dec_literal> shall be intepreted as an integer in base
10 in the standard way (most significant digit first and least significant digit
last).

3. (IntLitBinary) A <bin_literal> starts with the prefix 0B or 0b and is
followed by the significant bits. The significant bits shall be interpreted
as an unsigned integer in base 2 in the standard way (MSB first and LSB
last).

4. (IntLitHexadecimal) A <hex_literal> starts with the prefix 0X or 0x and
is followed by the significant digits. The significant digits shall be inter-
preted as an unsigned integer in base 16 in the standard way (most signif-
icant digit first and least significant digit last).

5. (IntLiteral) An integer literal <int_literal> with the interpreted
value K, as specified above, is a stream of type int such that
Mint(<int literal>, n) = K for all time steps n.

Static Flag

1. (IntLitStaticFlag) SF(<int literal>) = 2.

Restrictions

(empty)
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10.7.3 Named Expressions

Named expressions are references to stream variables.

Syntax

(NamedExprSyntax)

<named_expr> ::= <path_id>

Semantics

1. (NamedExpr) If the <path_id> of a <named_expr> refers to an existing
stream (in the namespace of streams), then the <named_expr> is that
stream.

2. (NamedExprImplicitDecl) Otherwise, the <named_expr> (which must be
unqualified as according to (PathIdNoImplicitDecl)) refers to a unique im-
plicit input stream of type bool. The input stream is implicitly declared by
the <named_expr>. The declaration is made in the top-level scope (of the
namespace of streams) of the user namespace in which the <named_expr>

occurs, or else on the global top-level (if the <named_expr> does not occur
inside a user namespace).

Static Flag

1. (NamedExprStaticFlag) The static flag of a <named_expr> is equal to the
static flag of the stream it refers to.

2. (NamedExprUndefinedStaticFlag) The static flag of an undefined stream
variable is 0.

Restrictions

(empty)
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10.7.4 Next Expressions

Syntax

(NextExprSyntax)

<next_expr> ::= "X" "(" <expr> ")"

Semantics

1. (NextExpr) M(X(E), n) = M(E, n + 1) for any model M and time step n.
X(E) has the same type as E.

Static Flag

1. (NextExprStaticFlag) SF(<next expr>) = 0.

Restrictions

(empty)
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10.7.5 Pre Expressions

Syntax

(PreExprSyntax)

<pre_expr> ::= ("pre" | "PRE") ["<" <type> ">"]

"(" <expr> ["," <expr>] ")"

Semantics

1. (PreUppercase) PRE is equivalent to pre.

2. (PreTypedWithInit) pre<T>(E1, E2) is an initialized memory stream of type
T, where E2 is the initial value for the initial time step and E1 is the mem-
orized value for all other time steps. Formally, if T1 and T2 correspond
respectively to the types of the expressions E1 and E2, then the value of the
expression at time step k is defined as follows:

MT(pre<T>(E1, E2), k) =


MT2(E2, 0) if value ∈ T

nil otherwise
k = 0

MT1(E1, k − 1) if value ∈ T

nil otherwise
k > 0

3. (PreTyped) pre<T>(E) is an uninitialized memory stream of type T which
takes the value nil in the initial time step. Formally, if T1 corresponds to
the type of the expression E, then the value of the expression at time step
k is defined as follows:

MT(pre<T>(E), k) =


nil k = 0

MT1(E, k − 1) if value ∈ T

nil otherwise
k > 0

4. (PreUntyped) pre(E) is equivalent to pre<T>(E) where T is the unsized
copy (see 8.4.2) of the type of E.

5. (PreUntypedWithInit) pre(E1, E2) is equivalent to pre<T>(E1, E2) where T

is the union type (see 8.4.3) of the types of E1 and E2.

Static Flag

1. (PreExprStaticFlag) SF(<pre expr>) = 0.

Restrictions

1. (PreOperandsAssignable) The types of the operands E1 and E2 of pre<T>
(E1, E2) and the type of the operand E of pre<T>(E), shall be assignable to
T.
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10.7.6 Function-Style Expressions

Syntax

(FunopSyntax)

<fun_expr> ::= <fop> "(" <expr_list> ")"

<fop> ::= "$min"

| "$max"

| "$abs"

| "$or"

| "$and"

| "$xor"

| "$not"

| "bin2u"

| "u2bin"

| "bin2s"

| "s2bin"

| "population_count_lt"

| "population_count_gt"

| "population_count_eq"

Semantics

1. (IntMin) $min(E1, E2) (minimum) is equivalent to:
(if E1 < E2 then E1 else E2).

2. (IntMax) $max(E1, E2) (maximum) is equivalent to:
(if E1 > E2 then E1 else E2).

3. (IntAbs) $abs(E) (absolute value) is equivalent to:
(if E < 0 then -E else E).

4. (OpBin2u) bin2u(E1, E2) interprets the E2 first bits of an array E1 of bool
as an unsigned binary number and is equivalent to:
SUM i : [0, E2-1] (2 ^ i * (if E1[i] then 1 else 0)) for a fresh i.

5. (OpBin2s) bin2s(E1, E2) interprets the E2 first bits of an array E1 of bool
as a signed binary number encoded in the two’s complement notation and
is equivalent to:
-(if E1[E2-1] then 1 else 0) * 2 ^ (E2-1) + bin2u(E1, E2-1).

6. (OpU2bin) u2bin(E1, E2) converts an integer E1 into an array of type
bool̂ (E2) and is equivalent to:

(lambda[E2] : [i] := bit is one(E1, i))
for a fresh i, together with the following declaration and definition (we do
not use bitwise and (operator $and) in the definition of bit_is_one since
that operator is defined in terms of u2bin):

Declarations:
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bool bit_is_one(int, int);

Definitions:

bit_is_one(E, i) := ((E >> i) - ((E >> (i + 1)) << 1)) == 1;

7. (OpS2bin) s2bin(E1, E2) is equivalent to u2bin(E1, E2).

8. (OpPopCountLt) population count lt(E1, E2, . . . En, K) of n Boolean
streams Ei and an integer stream K is true exactly when less than K of
the Boolean streams are true. The expression is reducible to:

((if E1 then 1 else 0) +

(if E2 then 1 else 0) +

...

(if En then 1 else 0)) < K

9. (OpPopCountGt) population count gt(E1, E2, . . . En, K) is equivalent to
~population count lt(E1, E2, . . . En, K + 1).

10. (OpPopCountEq) population count eq(E1, E2, . . . En, K) is equivalent to
~population count lt(E1, E2, . . . En, K) &
~population count gt(E1, E2, . . . En, K)

11. (OpBitwiseOr) $or(E1, E2) (bitwise or) is nil in time step k if either of
E1 or E2 is nil in time step k. Otherwise the expression is equivalent to
bin2s((lambda[C] : [i] := s2bin(E1, C)[i] # s2bin(E2, C)[i]), C)
for a fresh i and a constant C. C must be big enough to represent all
significant bits of E1 and E2, i.e.

C ≥ log2(max(ub(E1) + 1,ub(E2) + 1, |lb(E1)|, |lb(E2)|)) + 1

where ub(E) and lb(E) denote, respectively, the maximum and minimum
values the integer expression E may take in any model.

12. (OpBitwiseXor) $xor(E1, E2) (bitwise xor) is equivalent to
bin2s((lambda[C] : [i] := s2bin(E1, C)[i] #! s2bin(E2, C)[i]), C)
for a fresh i and a constant C. C must be big enough to represent all
significant bits of E1 and E2, i.e.

C ≥ log2(max(ub(E1) + 1,ub(E2) + 1, |lb(E1)|, |lb(E2)|)) + 1

where ub(E) and lb(E) denote, respectively, the maximum and minimum
values the integer expression E may take in any model.

13. (OpBitwiseNot) $not(E) (bitwise not) is equivalent to
bin2s((lambda[C] : [i] := ~s2bin(E, C)[i]), C)
for a fresh i and a constant C. C must be big enough to represent all
significant bits of E, i.e.

C ≥ log2(max(ub(E) + 1, |lb(E)|)) + 1

where ub(E) and lb(E) denote, respectively, the maximum and minimum
values the integer expression E may take in any model.
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14. (OpBitwiseAnd) $and(E1, E2) (bitwise and) is equivalent to
$not($or($not(E1), $not(E2))).

Static Flag

1. (FunopUnaryStaticFlag) SF(◦(E1)) = SF(E1) for ◦ ∈ {$abs, $not}.

2. (FunopBinaryStaticFlag) SF(◦(E1, E2)) = min(SF(E1),SF(E2)) for
◦ ∈ {$min, $max, $and, $xor, $or}.

3. (FunopNaryStaticFlag) SF(◦(E1, . . . En)) = 0 for ◦ ∈ {bin2u, bin2s,
u2bin, s2bin, population count lt, population count gt,
population count eq}.

Restrictions

1. (FunopUnaryCard) The cardinality of the <expr_list> shall be 1 for the
following operators: $abs, $not.

2. (FunopBinaryCard) The cardinality of the <expr_list> shall be 2 for the
following operators:
$min, $max, bin2u, bin2s, u2bin, s2bin, $and, $xor, $or.

3. (PopCountNumberStatic) SF(K) ≥ 1 for an expression ◦(E1, . . . En, K) with
◦ ∈ {population count lt, population count gt, population count eq}.
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10.7.7 Cast Expressions

Syntax

(CastExprSyntax)

<cast_expr> ::= "cast" "<" <type> ">" "(" <expr> ")"

Semantics

1. (CastExpr) A Cast expression cast<T>(E), of type int, is an (unchecked)
conversion of an integer expression E into the target type T.

2. (CastSigned) cast<int signed C>(E) is equivalent to:
bin2s(s2bin(E, C), C).

3. (CastUnsigned) cast<int unsigned C>(E) is equivalent to:
bin2u(s2bin(E, C), C).

Static Flag

1. (CastStaticFlag) SF(<cast expr>) = 0.

Restrictions

1. (CastTargetIntImpl) The target type of a cast shall be an integer imple-
mentation type, or a named type that is defined, directly or indirectly, as
an integer implementation type.
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10.7.8 With Expressions

With expressions can be understood as an operation that creates a modified copy of a
composite stream, where a single component has been arbitrarily modified. For example
“(A with [0] := ~A[0])” is equivalent to the Boolean array A for all components
except the one at index 0, which has been negated. With expressions are particularly
useful when translating assignments of an imperative language into HLL.

With expressions can be written with collections on the right hand side (see the defi-
nition of <rhs> in Section 12). In order to explain the semantics of with expressions
with collections on the right hand side, we expand them into a chain of with expres-
sions, each with a single element of the collection on the right hand side (this ex-
pansion would have to be repeated if such an element is in turn another collection).
For example: “(A with [0] := {1, 2, 3})” is expanded, assuming the projection
expression A[0] is of array type (i.e. A is an array of arrays), into the equivalent for-
mula “(((A with [0][0] := 1) with [0][1] := 2) with [0][2] := 3)”. This ex-
pansion is formalised in (WithCollectionRhsUniDim) below.

The multidimensional case, e.g. when A[0] is a multidimensional array (or multivari-
ate function), is a bit trickier and formalised in (WithCollectionRhsMultiDim) below.
However, the basic idea is the same.



HLL-LDD
Version pr4.0rc1

HLL
Language Definition

77

Syntax

(WithExprSyntax)

<with_expr> ::= "(" <expr> "with" {<accessor>}+ ":=" <rhs> ")"

Forward References

1. <rhs> is defined in Section 12.

Semantics

1. (WithCollectionRhsUniDim) (E with A := {R0, R1, . . . Rn−1}) where E A is
of type TEA , which is neither a multidimensional array type nor a multivari-
ate function type, is equivalent to:

(. . . ((E with A A0 := R0) with A A1 := R1) . . . with A An−1 := Rn−1) where:

Ai =


.i if TEA is tuple {T0, . . . Tn−1}
.Mi if TEA is struct {M0 : T0, . . . Mn−1 : Tn−1}
[i] if TEA is T̂ (n)
(Vi) if TEA is (T1 -> T) and T1 is {V0, . . . Vn−1} with Vi < Vi+1

2. (WithCollectionRhsMultiDim) (E with A := {R0, R1, . . . Rm1}) where E A is
of type TEA , which is either a multidimensional array type or a multivariate
function type, is equivalent to:

(. . . (. . . ((E with A A0...00 := R0...00) . . . with A A0...0mk := R0...0mk)
with A A0...10 := R0...10) . . . with A A0...1mk := R0...1mk)

...
...

. . .
...

...

with A A0...mk−10 := R0...mk−10) . . . with A A0...mk−1mk := R0...mk−1mk)

...
...

. . .
...

...

with A Am1m2...0 := Rm1m2...0) . . . with A Am1m2...mk := Rm1m2...mk)

where:

Ai1...ik =

=

{
[i1, . . . ik] if TEA is T̂ (m1 + 1, . . . mk + 1)
(Vi1 , . . . Vik) if TEA is (T1 ∗ . . . Tk -> T), Tj∈[1,k] is {V0, . . . Vmj}, Vi < Vi+1

and Ri1...ik are constructed inductively:

(base) Ri1 for i1 ∈ [0, m1] are given above (as the elements of the collection).

(step) Ri1...ij =

=



R′ij if Ri1...ij−1
is {R′0, . . . R′mj}

Ri1...ip [ip+1, . . . ik] if j = k and Ri1...ip−1
is <collection> and

Ri1...ip is <expr> of type T̂ (mp+1 + 1, . . . mk + 1)

Ri1...ip(Vip+1
, . . . Vik) if j = k and Ri1...ip−1

is <collection> and
Ri1...ip is <expr> of type (Tp+1 ∗ . . . Tk -> T)

undefined otherwise



HLL-LDD
Version pr4.0rc1

HLL
Language Definition

78

3. (WithMultipleAcc) (E1 with A1 A2 . . . An := E2) is equivalent to
(E1 with A1 A2 . . . An−1 := (E1 A1 A2 . . . An−1 with An := E2)).

4. (WithArrayAcc) (E1 with [E3, E4, . . . En] := E2) where E1 is of type
T̂ (C3, C4, . . . Cn) is equivalent to:
(lambda[C3, C4, . . . Cn] : [i3, i4, . . . in] :=
if i3 = E3 & i4 = E4 & . . . & in = En then E2 else E1[i3, i4, . . . in])

where ij with 3 ≤ j ≤ n are fresh variables.

5. (WithFunctionAcc) (E1 with (E3, E4, . . . En) := E2) where E1 is of type
(T3 ∗ T4 ∗ . . . ∗ Tn -> T) is equivalent to:
(lambda(T3, T4, . . . Tn) : (i3, i4, . . . in) :=
if i3 = E3 & i4 = E4 & . . . & in = En then E2 else E1(i3, i4, . . . in))

where ij with 3 ≤ j ≤ n are fresh variables.

6. (WithTupleStructAcc) (E1 with .M := E2) where E1 is of tuple or struct type
T, and E2 is of type TM is identical to E1 for all components except the one
designated by M, which is equal to E2. A formal definition uses the following
equation (with an overloading of operator @):

MT((E1 with .M:= E2), k)@K =

{
MTM(E2, k) if K = M

MT(E1, k)@K otherwise

Static Flag

1. (WithExprStaticFlag) SF(<with expr>) = 0.

Restrictions

1. (WithAccCompatible) The accessor A in the expression (E with A := R)
must be a compatible accessor w.r.t. the type of E, meaning that the
projection expression E A must be a valid expression.

2. (WithRhsAssignable) The type of the <rhs> R of an expression
(E with A := R) shall be assignable to the type of the projection expres-
sion E A.
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10.7.9 Case Expressions

Syntax

(CaseExprSyntax)

<case_expr> ::= "(" <expr_list> {<case_item>}+ ")"

<case_item> ::= "|" <pattern_list> "=>" <expr>

<pattern> ::= <expr>

| <named_type> ( <id> | "_" )

| "_"

<pattern_list> ::= <pattern> { "," <pattern> }

Semantics

1. (CaseExpr) In each time step, a case expression

(E1, E2, . . . En

|P11, P12, . . . P1n => R1

|P21, P22, . . . P2n => R2

...
. . .

...

|Pm1, Pm2, . . . Pmn => Rm)

evaluates to the first branch Ri for which all the <pattern> items Pi1 to
Pin match the switch expressions E1 to En. Each Pij is matched against,
and only against, the corresponding Ej. The type of the expression is the
union of the types of the Ri.

2. (CasePatternExpr) A <pattern> item Ep which is an <expr> matches a
switch expression Es in time step k iff Mbool(Ep = Es, k) = true.

3. (CasePatternType) A <pattern> item T x which is a <named_type> (fol-
lowed by either an identifier or a wildcard) matches a switch expression Es
in time step k iff Mbool(Es : T, k) = true.

4. (CasePatternWildcard) The <pattern> item _ (a wildcard) matches any
switch expression Es (in any time step).

5. (CaseCapturingVariable) Each <case_item> of a case expression opens a
local scope in the namespace of streams, called a Branch scope, that starts
at the => and continues to the end of the <case_item>. Given a <pattern>

Pij on the form <named_type> <id> of the <case_item>, the identifier
<id> resides in the branch scope, and if the <case_item> is a match in
time step k, the <id> refers to a local static stream x of type T (similar
to a lambda parameter of Section 10.2), called a Capturing variable, whose
value in each time step is equal to MT(Ej, k), i.e. MT(x, n) = MTEj

(Ej, k)
for all time steps n. In other words, the capturing variable x refers to a
different static stream in each matching time step, and applying a temporal
operator such as X or PRE to such a variable has thus no effect.
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6. (CaseExprNil) A case expression propagates nil in a similar manner
to an equivalent sequence of if-then-else expressions (see Section 10.1).
Furthermore, a case expression evaluates to nil in a time step k if
there is no <pattern_list> matching the switch expressions in that
time step (the case expression is not exhaustive). In order to formalize
this, we will first define the binary function “match”, with signature
match : <expr list>× <pattern list>→ <expr>, as follows:

match({E1, . . . En}, {P1, . . . Pn}) =

=



match({E1}, {P1}) & . . . & if n > 1, else
match({En}, {Pn})
E1 = P1 if P1 is on the form <expr>, else
E1 : T if P1 is on the form T x where T

is a <named type>, else
true (P1 is on the form " ")

Now, given the case expression of (CaseExpr) above, it will evaluate to nil
in time step k if one of the following conditions is true:

(a) There is no matching <pattern_list> Pi1, . . . Pin, i.e. one for which
Mbool(match({E1, . . . En}, {Pi1 . . . Pin}), k) = true, or

(b) There is a <pattern_list> Pj1, . . . Pjn above the first matching
<pattern_list> Pi1, . . . Pin (i.e. with j < i) such that Mbool(match(
{E1, . . . En}, {Pj1 . . . Pjn}), k) = nil.

(Note that the case expression will of course also evaluate to nil in time
step k in case the matching branch Ri evaluates to nil in time step k.)

Static Flag

1. (CaseExprStaticFlag) SF(<case expr>) = 0.

2. (CaseCapturingVarStaticFlag) SF(x) = 1 for a capturing variable x corre-
sponding to the <id> of a <pattern> on the form <named_type> <id>.

Restrictions

1. (CaseSwitchesScalar) The switches in the <expr_list> of a case expression
shall be of scalar type.

2. (CasePatternsCompatible) The number of pattern items (<pattern>) in
each <case_item> shall match the number of switches in the <expr_list>,
and their types shall be pair-wise compatible, except for wildcards (_).

3. (CaseBranchesCompatible) The types of the branches (Ri) shall be com-
patible.

4. (CasePatternExprConstant) SF(E) = 2 for a <pattern> E which is an
<expr>.

5. (CasePatternTypeSort) A pattern item <pattern> which is a <named_type>

shall refer to a valid sort type.

6. (CaseCapturingVarUnicity) Two capturing variables of the same branch
may not have the same name.
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10.7.10 Quantifier Expressions

Quantifiers in HLL usually operate on static domains (sets of values – much like types)
to create properties over populations of streams. For example, if we have an array A of
3 integers, declared as int A[3], with the components taking the following values:

A[0] : 0, 1, 2, 3, ...

A[1] : 0, 0, nil, 1, ...

A[2] : 0, 4, 4, 3, ...

Then the following HLL quantifiers over A take the following values:

ALL i:[0,2] (A[i] < 4): true, false, false, true, ...

SOME i:[0,2] (A[i] = 0): true, true, nil, false, ...

SUM i:[0,2] (A[i]) : 0, 5, nil, 7, ...

PROD i:[0,2] (A[i]) : 0, 0, nil, 9, ...

$min i:[0,2] (A[i]) : 0, 0, nil, 1, ...

$max i:[0,2] (A[i]) : 0, 4, nil, 3, ...

The SELECT operator selects the unique value from the domain that satisfies the given
predicate. If zero or two (or more) values from the domain satisfy the predicate, then
nil is selected instead:

SELECT i:[0,2] (A[i] = 1): nil, 0, nil, 1, ...

Quantification is extended to several domains in the natural way. For example:

ALL i:[0,2], j:[0,2] (i=j # A[i] != A[j]): false, true, nil, false, ...

Quantifiers can also be nested, and the domains of nested quantifiers may depend on
the quantifier variables of the enclosing ones. So the previous formulation could be
optimized to reduce the number of iterations:

ALL i:[0,2] ALL j:[0, i-1] (A[i] != A[j]): false, true, nil, false, ...

Quantification was extended in HLL version 3.0 to allow quantification over (the com-
ponents of) array and function streams, using the new operator $items. As an example,
ALL a:$items(A) (a < 4) is equivalent to ALL i:[0,2] (A[i] < 4) above. As two
components of an array or function may be equal, this corresponds to quantification over
a domain which is a multiset of streams (of values). To fit easier with the historical
quantifiers in the formal definition below, we will use an alternative (but equivalent)
point of view and instead define the domain as a stream of multisets (of values).
To connect this with our running example, it means that the domain $items(A) corre-
sponds to the following stream of multisets:

$items(A): {0, 0, 0}, {1, 0, 4}, {2, nil, 4}, {3, 1, 3}, ...

The use of multisets instead of sets is important only when considering the SUM and
PROD quantifers. For example:

SUM a:$items(A) (1) : 3, 3, 3, 3, ...
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Note that the SELECT operator is not allowed in the combination with a domain on the
form $items(A).

Syntax

(QuantExprSyntax)

<quantif_expr> ::= <quantifier> <quantif_vars>

( "(" <expr> ")" | <quantif_expr> )

| "SELECT" <quantif_vars>

( "(" <expr> ["," <rhs>] ")" |

<quantif_expr> )

<quantif_vars> ::= <quantif_var> {"," <quantif_var>}

<quantif_var> ::= <id> ":" <quantif_domain>

<quantif_domain> ::= <domain>

| "$items" "(" <expr> ")"

<quantifier> ::= "SOME" | "ALL" | "SUM" | "PROD"

| "CONJ" | "DISJ" | "$min" | "$max"

Semantics

1. (QuantScope) A Quantifier expression (<quantif_expr>) introduces a lo-
cal scope in the namespace of streams, called a Quantifier scope that starts
right after the last <quantif_var> and continues to the end of the ex-
pression. The quantifier variables (<quantif_var>) exist, and only exist,
within this scope.20

2. (QuantDomainDomain) A quantifier domain D which is a <domain> corre-
sponds for each time step k to the set of values Dk (see Section 10.4). Due
to restriction (QuantDomainStatic), such a quantifier domain is guaranteed
to be static and not to change from one time step to another.

20This means that upper bound i of the domain of j in the expression
ALL i : [0, 10], j : [0, i] (i >= j) does not refer to the quantifier variable i introduced just be-
fore j. On the other hand, in the expression ALL i : [0, 10] ALL j : [0, i] (i >= j), the upper bound of
j does refer to the quantifier variable i in the enclosing quantifier expression.
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3. (QuantDomainItems) A quantifer domain $items(E) where E is of array
or function type TE with component type T corresponds for each time step
k to the following multiset of values:

{MT(E A0...00, k), MT(E A0...01, k), . . . MT(E A0...0mn , k),
MT(E A0...10, k), MT(E A0...11, k), . . . MT(E A0...1mn , k),

...
...

. . .
...

MT(E A0...mn−10, k),MT(E A0...mn−11, k), . . . MT(E A0...mn−1mn , k),
...

...
. . .

...
MT(E Am1m2...0, k), MT(E Am1m2...1, k), . . . MT(E Am1m2...mn , k) }

where:

Ai1...in =

=

{
[i1, . . . in] if TE is T̂ (m1 + 1, . . . mn + 1)
(Vi1 , . . . Vin) if TE is (T1 ∗ . . . Tn -> T), Tj∈[1,n] is {V0, . . . Vmj}

4. (QuantVarType) The type of a quantifer variable i : D is:

(a) The type compatible with D if D is a <domain>, as according to (Do-
mainAsType) and (DomainAsRange).

(b) The component type of the array or function type of E, if D is on the
form $items(E).

5. (QuantMultVar) QTF i1 : D1, i2 : D2, . . . in : Dn (E), where QTF is a
<quantifier> other than SELECT and the ii : Di are <quantif_var>, is
reducible to QTF j1 : D1 (QTF j2 : D2 . . . (QTF jn : Dn (E<i1 := j1, i2 := j2,
. . . in := jn>)) . . .) where j1 to jn are fresh identifiers.

6. (QuantDisj) DISJ is equivalent to SOME.

7. (QuantConj) CONJ is equivalent to ALL.

8. (QuantSome) SOME i:D (E), of type bool, evaluates to true in time step
k iff there exists some value j in D such that E, with all occurrences of i
replaced by j, evaluates to true. Formally:

Mbool(SOME i : D (E), k) =

 true if ∃j ∈ Dk Mbool(E<i := j>, k) = true
nil if ∃j ∈ Dk Mbool(E<i := j>, k) = nil
false otherwise

(Where the cases on the right hand side should be considered in order from
top to bottom.)

9. (QuantAll) ALL i:D (E), of type bool, evaluates to true in time step k iff
for all values j in D, E, with all occurrences of i replaced by j, evaluates to
true. Formally:

Mbool(ALL i : D (E), k) =

 false if ∃j ∈ Dk Mbool(E<i := j>, k) = false
nil if ∃j ∈ Dk Mbool(E<i := j>, k) = nil
true otherwise

(Where the cases on the right hand side should be considered in order from
top to bottom.)
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10. (QuantSum) SUM i:D (E), of type int, evaluates to the sum of all Ei.
Formally:

Mint(SUM i : D (E), k) =

=


0 if Dk = ∅
nil if ∃j ∈ Dk Mint(E<i := j>, k) = nil∑

j∈DMint(E<i := j>, k) otherwise

(Where Dk = ∅ means that the domain D is empty at time step k.)

11. (QuantProd) PROD i:D (E), of type int, evaluates to the product of all
Ei. Formally:

Mint(PROD i : D (E), k) =

=


1 if Dk = ∅
nil if ∃j ∈ Dk Mint(E<i := j>, k) = nil∏

j∈DMint(E<i := j>, k) otherwise

(Where Dk = ∅ means that the domain D is empty at time step k.)

12. (QuantMin) $min i:D (E), of type int, selects the minimum of all Ei.
Formally:

Mint($min i : D (E), k) =

=

 nil if Dk = ∅
nil if ∃j ∈ Dk Mint(E<i := j>, k) = nil
minj∈Dk Mint(E<i := j>, k) otherwise

(Where Dk = ∅ means that the domain D is empty at time step k.)

13. (QuantMax) $max i:D (E), of type int, selects the maximum of all Ei.
Formally:

Mint($max i : D (E), k) =

=

 nil if Dk = ∅
nil if ∃j ∈ Dk Mint(E<i := j>, k) = nil
maxj∈Dk Mint(E<i := j>, k) otherwise

(Where Dk = ∅ means that the domain D is empty at time step k.)
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14. (QuantSelectDefault) The optional <rhs>, separated by a comma from the
<expr>, of a <quantif_expr> with the SELECT operator, denotes the de-
fault value, of scalar, tuple or collection type, to select.

15. (QuantSelectType) The type Tval of the selected value of
SELECT i1 : D1, i2 : D2, . . . in : Dn (E [, R]) is defined as follows:

Tval =

{
T1 if n = 1

tuple {T1, . . . Tn} otherwise (n > 1)

where:

Ti =

{
unsized copy of Di if Di is a <type domain>

int if Di is a <range>

The type T of the SELECT expression itself is equal to Tval if there is no
default value R. Otherwise, it is defined as the union type (see 8.4.3) of Tval
and the type of R

16. (QuantSelectDomain) The domain D of SELECT i1 : D1, i2 : D2, . . . in : Dn
(E [, R]) is the n-fold Cartesian product D = D1 × D2 × . . .× Dn.

Note that the domain of a selection is a static subset of the type Tval defined
by (QuantSelectType) above.

17. (QuantSelectWithoutDefault) At each time step, the selection expression
SELECT i1 : D1, i2 : D2, . . . in : Dn (E) of type T and domain D as given
according to (QuantSelectType) and (QuantSelectDomain) respectively,
selects the unique value (if n = 1) or tuple value (if n > 1) from the
domain D for which the Boolean predicate E is true. To simplify the
formal definition below, we will extend the tuple notation to scalar values
so that V@0 will mean the same thing as V if the value V is scalar. Formally:

MT(SELECT i1 : D1, i2 : D2, . . . in : Dn (E), k) =

=



if V ∈ D and
V Mbool(E<i1:= V@0, . . . , in:= V@(n− 1)>, k) = true and

¬∃(V′ ∈ D) : V′ 6= V ∧
Mbool(E<i1:= V′@0, . . . , in:= V′@(n− 1)>, k) 6= false

nil otherwise
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18. (QuantSelectWithDefault) The selection expression with a default value is
similar to the selection without default (see (QuantSelectWithoutDefault)),
except in the case where no value in the domain D makes the predicate
true at time step k. In that case the default value is selected for time step
k. A default value which is a <collection> is then interpreted as a tuple
value. Formally:

MT(SELECT i1 : D1, i2 : D2, . . . in : Dn (E, R), k) =

=



if V ∈ D and
V Mbool(E<i1:= V@0, . . . , in:= V@(n− 1)>, k) = true and

¬∃(V′ ∈ D) : V′ 6= V ∧
Mbool(E<i1:= V′@0, . . . , in:= V′@(n− 1)>, k) 6= false

MT(R, k) if ∀(V ∈ D) :
Mbool(E<i1:= V@0, . . . , in:= V@(n− 1)>, k) = false

nil otherwise

(Where the cases should be considered in order from top to bottom.)

Static Flag

1. (QuantExprStaticFlag) SF(<quantif expr>) = 0.

2. (QuantVarStaticFlag) The static flag of a quantifier variable i : D (the
<id> of a <quantif_var>) is:

SF(i) =

{
1 if D is a <domain>

0 otherwise (D is $items(E))

Restrictions

1. (QuantVarUnicity) Two quantifier variables of a quantifier expression may
not have the same name.

2. (QuantDomainFinite) Quantification is not allowed over an infinite domain.

3. (QuantDomainStatic) SF(D) ≥ 1 for a <quantif_var> i : D, where D is
a <domain>.

4. (ItemsOperandArrayOrFunction) The operand E of $items(E) must be
either of array type, or of function type (with a finite domain).

5. (BoolQuantOperandBool) The operand E of QTF V (E) where
QTF ∈ {SOME, ALL} shall be of type bool.

6. (IntQuantOperandInt) The operand E of QTF V (E) where
QTF ∈ {SUM, PROD, $min, $max} shall be of integer type.

7. (SelectQuantOperandBool) The operand E of SELECT V1, . . . Vn (E [, R])
shall be of type bool.
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8. (SelectQuantDefaultCompatible) The operand R of
SELECT V1, . . . Vn (E [, R]) shall be of a type compatible to the type
Tval of the selected value as defined by (QuantSelectType).

9. (SelectQuantDefaultGround) The operand R of SELECT V1, . . . Vn (E, R)
shall not make reference to any of the quantifier variables V1 to Vn. (The
following is not allowed: SELECT i:[0,10] (false, i).)

10. (SelectQuantNoItemsDomain) A quantifier expression with operator
SELECT is not allowed in combination with a domain on the
form $items(E). In other words, the quantifier variables Vi of
SELECT V1, . . . Vn (E [, R]) may not be on the form i : $items(E).
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11 Declarations

Declarations declare streams with a name and a type. The declared stream is visible
everywhere (except where it is hidden) in the scope where the declaration appears,
regardless of the position of the declaration within the scope. An example, where all
occurrences of x refer to the same variable:

Outputs:

x;

Definitions:

x := true;

Declarations:

bool x; // declares x of type bool in the global top-level scope

Another, more elaborate, example, which illustrates the hiding mechanism:

Outputs:

x;

Definitions:

x := true;

Declarations:

bool x;

Namespaces:

NS1 {

Outputs:

x; // Refers to the local x

Declarations:

bool x; // Hides the global x in the scope of NS1

}

NS2 {

Outputs:

x; // Refers to the global x

}
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Syntax

(DeclarationSyntax)

<declaration> ::= [<type>] <declarator> {"," <declarator>}

<input> ::= [<type>] <input_declarator>

{"," <input_declarator>}

<input_declarator> ::= <declarator>

| "I" "(" <declarator> ")"

Semantics

1. (Declaration) A Declaration (<declaration> or21 <input>) declares a
stream with name and type and makes it visible everywhere in its scope (of
the namespace of streams), regardless of the position of the declaration.

2. (DeclMultInline) T D1, D2, . . . Dn is equivalent to the n declarations T D1,
T D2, . . . T Dn, regardless of whether the Di denote <declarator> or
<input_declarator>.

3. (DeclNormal) A <declaration> [T] D declares a (normal) stream vari-
able. The name of the variable corresponds to the first <id> of the declara-
tor D and the Declared Type is calculated according to procedure calc_type
in Section 7 using the base type T if given and the declarator D. If no base
type T is given, the base type used to calculate the declared type is the
type bool.

4. (DeclInput) An Input declaration (<input>) on the form [T] D (i.e. not
an initial input declaration as defined in (DeclInitialInput)) is reducible to
a normal declaration (<declaration>) [T] D. (Note the extra restrictions
(InputsFinite) and (InputsUndefined) which apply to input declarations.)

5. (DeclInitialInput) An input declaration (<input>) on the form [T] I(D)

is called an Initial input declaration and is reducible to the normal decla-
ration (<declaration>) [T] D. (Note the extra restriction (DeclInitialIn-
putDefNext) which applies to initial input declarations in addition to those
for ordinary input declarations.)

Restrictions

1. (DeclUnicity) A stream variable may not be declared more than once per
scope of the namespace of streams.

2. (InputsFinite) The resulting type (as calculated by calc_type from the
base type and the declarator) of an input declaration shall be either scalar or
composite with a finite number of components (either directly or indirectly
via other composite components).

3. (InputsUndefined) A stream declared using an input declaration may
not be defined, except for initial inputs as specified in (DeclInitialInput-
DefNext).

21Whether the text is parsed as a <declaration> or as an <input> depends on the context, i.e. whether
it occurs in a “declarations section” (<decl section>) or in an “inputs section” (<inputs section>) (see
Section 16).
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4. (DeclInitialInputDefNext) A stream variable declared using an initial input
declaration shall be defined with, and only with, a next definition (see
Section 12).

5. (UndefinedSized) A stream declared (using a normal or an input decla-
ration) but not defined shall be declared using a type that is neither int

(without a size restriction), nor a composite type with a component of type
int (either directly or indirectly via other composite components).
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12 Definitions

Definitions define one or several stream variables on the left hand side of the definition
symbol := using an expression or a collection on the right hand side. If the stream
variables are undeclared they become implicitly declared by the definition, but only if
the type of the right hand side is scalar.

Multiple definitions and circular (non-causal) definitions are not allowed. For example:

Definitions:

z := x + y;

x := z - y; // Not allowed to define x or z in terms of themselves

y := 10;

y := 4; // Not allowed to define y more than once

X(w) := w; // Allowed: w keeps its value in the next cycle

If the definition is paired with a declaration, the pair must appear in the same scope.
An example:

Declarations:

bool x; // Global and undefined x

Namespaces: N {

Definitions: x := true; // Implicitly declares and defines a local x

}

Proof Obligations:

x; // The PO is falsifiable
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Syntax

(DefinitionSyntax)

<definition> ::= <lhs> ":=" <rhs>

| "I" "(" <lhs> ")" ":=" <rhs>

| "X" "(" <lhs> ")" ":=" <rhs>

| <lhs> ":=" <rhs> "," <rhs>

<lhs> ::= <unfolding>

| <id> {<formal_param>}+

<rhs> ::= <expr>

| <collection>

<collection> ::= "{" <rhs> {"," <rhs>} "}"

<unfold_lhs> ::= <id> | "_"

<unfolding> ::= <unfold_lhs> {"," <unfold_lhs>}

Semantics

1. (Definition) A Definition (<definition>) defines one or several stream
variables on the Left hand side (<lhs>) using an expression or collection on
the Right hand side (<rhs>).

2. (DefUndeclared) If a stream variable on the left hand side of a
<definition> is undeclared in the scope (excluding ascendant and descen-
dant scopes) of the definition, then it is implicitly declared by the definition
and becomes visible everywhere in the scope (of the namespace of streams)
of the definition, regardless of the position of the definition. The type of
the variable is inferred according to (DefUndeclaredType) below.

3. (DefUndeclaredType) A stream variable V which is implicitly declared by
a definition according to (DefUndeclared) above is assigned the type T

according to the following table. TE denotes the type of the right hand side
E.

Definition Condition T

X(V) := E (none) bool

V := E1, E2 (none) bool

V := E

V is defined (directly or indirectly) bool

in terms of itself (recursive definition)
otherwise TE

4. (DefAlways) V := E (always definition) where E is a stream expression of
type TE and V is a stream variable of type T, defines the value of V in all
time steps, using the expression E. Formally, for all time steps k:

MT(V, k) =

{
MTE(E, k) if MTE(E, k) ∈ T

nil otherwise

5. (DefInit) I(V) := E (initial definition) defines the value of V of type T, in
the first time step only, using the expression E of type TE. Formally:

MT(V, 0) =

{
MTE(E, 0) if MTE(E, 0) ∈ T

nil otherwise
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6. (DefNext) X(V) := E (next definition) defines the value of V of type T, in
the next time step, using the expression E of type TE. Formally, for all time
steps k:

MT(V, k + 1) =

{
MTE(E, k) if MTE(E, k) ∈ T

nil otherwise

7. (DefLatch) <lhs> := E1, E2 (latch definition) is equivalent to the two defi-
nitions I(<lhs>) := E1 and X(<lhs>) := E2.

8. (DefFunctionInit) I(V FP):= E is equivalent to the two definitions:
I(V):= V′ and V′ FP:= E where V′ is a fresh variable of same type as V.

9. (DefFunctionNext) X(V FP):= E is equivalent to the two definitions:
X(V):= V′ and V′ FP:= E where V′ is a fresh variable of same type as V.

10. (DefArrayFunction) An Array or Function definition V FP := E is equiv-
alent to V := lambda DS : FP := E where DS is obtained by solving the
equation TV = calc type(TE, DS) where TV is the declared type of V and TE
is the type of E.

11. (DefCollectionRhs) A <lhs> of ordered composite type may be de-
fined using a collection (<collection>) on the right hand side. In
such a case component number k of <lhs> is defined by the <rhs>

number k of the collection. Such components may themselves be
recursively defined by collections, if they are of ordered compos-
ite type. Formally, a definition V := {R1, . . . Rn} is equivalent to
V := ((lambda[1] : [i] := V′) with [0] := {R1, . . . Rn})[0] where V′ is a fresh
variable with the same type as V.

The type of a <rhs> which is a <collection> is a collection type as defined
in Section 8.4.1.

12. (DefUnfolding) An Unfolding definition is a definitions where several vari-
ables or wildcards ("_") occur comma-separatedly on the left hand side
(using an <unfolding>). If the right hand side is of composite type (in-
cluding collections) with n ordered components then such a definition with
k variables and l wildcards, with n = k+l on the left hand side is equivalent
to k ordinary definitions (i.e. with a single variable on the left hand side)
of the appropriate kind (“always”, “initial” or “next”) where the variable
at index i (with 1 ≤ i ≤ n) on the left hand side is defined using the
component (or collection element) number i on the right hand side.

Static Flag

1. (CollectionStaticFlag) SF(<collection>) = 0.

2. (DefAlwaysStaticFlag) SF(V) = min(1,SF(E)) for V := E.

3. (DefLatchStaticFlag) SF(V) = 0 for X(V) := E or V := E1, E2.

Restrictions
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1. (DefCausality) A scalar stream variable or component may not have its
value in time step n be defined, directly or indirectly, in terms of its own
value in any time step k ≥ n.

The cyclicity criterion, i.e. the precise criterion for when such a variable or
component is considered defined in terms of its own value will depend on
the reasoning power of tools implementing HLL – especially when it comes
to recursive array and function definitions – and is thus outside the scope
of this document.

2. (DefUnicity) A stream variable may not have its value in time step n be
defined more than once.

3. (DefCompleteness) A stream variable with an initial definition shall also
have a next definition. (The converse is not required however, i.e. the initial
value may be left undefined/free.)

4. (DefUndeclaredLhsScalarRhs) If the variable on the <lhs> is undeclared,
then there shall be no <formal_param> and the type of the <rhs> shall be
scalar.

5. (DefRhsTypeAssignableToLhsType) The type of the <rhs> shall be
assignable to the type of the <lhs>. For this purpose, the type of an <lhs>

on the form V FP (where FP corresponds to the {<formal_param>}+) is
derived in the same way as for the corresponding projection expression (see
Section 10.6).

6. (LatchesSized) A stream defined with a latch or next definition shall not
be declared with a type that is either int (without a size restriction), or a
composite type with a component of type int (either directly or indirectly
via other composite components).

7. (DefUnfoldingCompatibleRhs) When the left hand side (<lhs>) of a defi-
nition is on the form of an <unfolding>, then the right hand side (<rhs>)
shall be of ordered composite type, but shall not be of multidimensional
array type nor of multivariate function type, and the number of variables
plus the number of wildcards on the left hand side shall equal the number
of components of the type of the right hand side.
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13 Constants

Syntax

(ConstantSyntax)

<constant> ::= "bool" <id> ":=" <expr>

| "int" <id> ":=" <expr>

Semantics

1. (ConstantDef) A Constant definition (<constant>) declares and defines a
named constant stream.

2. (ConstantDefIsaDeclDef) Semantically, T C := E is equivalent to:

Declarations:

T C;

Definitions:

C := E;

Furthermore, all restrictions that apply to the latter language construct also
apply to the former (as according to (ConstantDefInheritedRestrictions)).
However, there are two minor differences between the language constructs:

(a) The static flag of C as defined by the former construct is 2 (as accord-
ing to (ConstantStaticFlag)), whereas it is at most 1 for the C defined
by the latter construct (as according to (DefAlwaysStaticFlag) of Sec-
tion 12).

(b) The additional restriction (ConstantDefRhsConstant) applies only to
the former construct.

Static Flag

1. (ConstantStaticFlag) SF(C) = 2 for a <constant> T C := E.

Restrictions

1. (ConstantDefRhsConstant) SF(E) = 2 for a <constant> T C := E.

2. (ConstantDefInheritedRestrictions) All restrictions that apply to the lan-
guage construct:

Declarations:

T C;

Definitions:

C := E;

also apply to a <constant> T C := E.
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14 Constraints

Syntax

(ConstraintSyntax)

<constraint> ::= <expr>

| "I" "(" <expr> ")"

Semantics

1. (ConstraintAlways) An Always constraint E (an <expr>) corresponds to
the proposition 2E.

2. (ConstraintInitial) An Initial constraint I(E) corresponds to the proposi-
tion I E.

Restrictions

1. (ConstraintBool) Constraints shall be expressions of type bool.
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15 Proof Obligations

Syntax

(PoSyntax)

<po> ::= <expr>

Semantics

1. (PoBool) A Proof obligation (PO) E (an <expr>) of type bool corresponds
to the proposition 2E.

2. (PoComposite) A proof obligation E of type T, which is an array or func-
tion type with bool as component type, corresponds to the proposition
2( ALL e : $items(E) (e) ).

3. (PoValid) A proof obligation is Valid iff it is a consequence of all the con-
straints within the same (global) HLL text (regardless of whether the con-
straints appear in the same user namespace or not). Note that if there
is no model M which does not falsify the constraints (for example if the
constraints are contradictory), then any proof obligation is trivially valid.

4. (PoFalsifiable) A proof obligation which is not valid takes the value nil or
the value false at some time step k in some model M which does not
falsify the constraints. If the proof obligation takes the value nil we say
that the proof obligation is not well-defined. Otherwise, if it takes the value
false, we say that the proof obligation is Falsifiable.

Restrictions

1. (PoType) Proof obligations shall be expressions of type bool, or of array or
function type with bool as component type. (This means that the types
bool^(N) or bool^(N, M) are accepted but not the type bool^(N)^(M).)
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16 Sections

Syntax

(SectionSyntax)

<HLL> ::= {<section>}

<section> ::= <constants_section>

| <types_section>

| <inputs_section>

| <decl_section>

| <def_section>

| <outputs_section>

| <constr_section>

| <po_section>

| <namespaces_section>

<constants_section> ::= <constants> ":" {<constant> ";"}

<types_section> ::= <types> ":" {<type_def> ";"}

<inputs_section> ::= <inputs> ":" {<input> ";"}

<decl_section> ::= <declarations> ":" {<declaration> ";"}

<def_section> ::= <definitions> ":" {<definition> ";"}

<outputs_section> ::= <outputs> ":" {<expr> ";"}

<constr_section> ::= <constraints> ":" {<constraint> ";"}

<po_section> ::= <proof> <obligations> ":" {<po> ";"}

<namespaces_section> ::= <namespaces> ":" {<namespace>}

<constants> ::= "Constants" | "constants"

<types> ::= "Types" | "types"

<inputs> ::= "Inputs" | "inputs"

<declarations> ::= "Declarations" | "declarations"

<definitions> ::= "Definitions" | "definitions"

<constraints> ::= "Constraints" | "constraints"

<proof> ::= "Proof" | "proof"

<obligations> ::= "Obligations" | "obligations"

<outputs> ::= "Outputs" | "outputs"

<namespaces> ::= "Namespaces" | "namespaces"

Semantics

1. (HLLText) An HLL text (<HLL>) is a (possibly empty) list of sections.

2. (GlobalTopLevelScopes) The Global top-level scopes of an HLL text <HLL>
that is not nested within a <namespace> encompass the entire text.

3. (SectionOrderIrrelevant) The order of the sections of an HLL text and the
order of items within the sections have no impact on the semantics of the
text.

4. (SectionsReopen) Sections may be opened any number of times.
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Restrictions

1. (OutputsFinite) The <expr> in an <outputs> section shall be either of
scalar type or of a composite type with a finite number of scalar components
(either directly or indirectly via other composite components).
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A Syntax Overview

<HLL> ::= {<section>}

<section> ::= <constants_section>

| <types_section>

| <inputs_section>

| <decl_section>

| <def_section>

| <outputs_section>

| <constr_section>

| <po_section>

| <namespaces_section>

<constants_section> ::= <constants> ":" {<constant> ";"}

<types_section> ::= <types> ":" {<type_def> ";"}

<inputs_section> ::= <inputs> ":" {<input> ";"}

<decl_section> ::= <declarations> ":" {<declaration> ";"}

<def_section> ::= <definitions> ":" {<definition> ";"}

<outputs_section> ::= <outputs> ":" {<expr> ";"}

<constr_section> ::= <constraints> ":" {<constraint> ";"}

<po_section> ::= <proof> <obligations> ":" {<po> ";"}

<namespaces_section> ::= <namespaces> ":" {<namespace>}

<constants> ::= "Constants" | "constants"

<types> ::= "Types" | "types"

<inputs> ::= "Inputs" | "inputs"

<declarations> ::= "Declarations" | "declarations"

<definitions> ::= "Definitions" | "definitions"

<constraints> ::= "Constraints" | "constraints"

<proof> ::= "Proof" | "proof"

<obligations> ::= "Obligations" | "obligations"

<outputs> ::= "Outputs" | "outputs"

<namespaces> ::= "Namespaces" | "namespaces"

<namespace> ::= <id> "{" <HLL> "}"

<constant> ::= "bool" <id> ":=" <expr>

| "int" <id> ":=" <expr>

<type_def> ::= <type> <declarator> {"," <declarator>}

| <enum_def>

| <sort_def>

<declarator> ::= <id> {<declarator_suffix>}

<declarator_suffix> ::= "[" <expr_list> "]"

| "(" <type_list> ")"

<type> ::= "bool"

| <integer>

| <tuple>

| <structure>
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| <array>

| <function>

| <named_type>

<integer> ::= "int"

| "int" <sign>

| "int" <range>

<sign> ::= "signed" <id_or_int>

| "unsigned" <id_or_int>

<id_or_int> ::= <id>

| <int_literal>

<range> ::= "[" <expr> "," <expr> "]"

<enum_def> ::= <enumerated> <id>

<enumerated> ::= "enum" "{" <id_list> "}"

<tuple> ::= "tuple" "{" <type_list> "}"

<structure> ::= "struct" "{" <member_list> "}"

<sort_def> ::= "sort" [ <sort_contrib> "<" ] <id>

<sort_contrib> ::= <path_id_list>

| "{" <id_list> "}"

<array> ::= <type> "^" "(" <expr_list> ")"

<function> ::= "(" <type> {"*" <type>} "->" <type> ")"

<named_type> ::= <path_id>

<type_list> ::= <type> {"," <type>}

<member_list> ::= <id> ":" <type> {"," <id> ":" <type>}

<input> ::= [<type>] <input_declarator>

{"," <input_declarator>}

<input_declarator> ::= <declarator>

| "I" "(" <declarator> ")"

<declaration> ::= [<type>] <declarator> {"," <declarator>}

<po> ::= <expr>

<constraint> ::= <expr>

| "I" "(" <expr> ")"

<definition> ::= <lhs> ":=" <rhs>

| "I" "(" <lhs> ")" ":=" <rhs>

| "X" "(" <lhs> ")" ":=" <rhs>

| <lhs> ":=" <rhs> "," <rhs>

<lhs> ::= <unfolding>

| <id> {<formal_param>}+

<rhs> ::= <expr>

| <collection>

<collection> ::= "{" <rhs> {"," <rhs>} "}"

<unfold_lhs> ::= <id> | "_"

<unfolding> ::= <unfold_lhs> {"," <unfold_lhs>}
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<formal_param> ::= "[" <id_list> "]"

| "(" <id_list> ")"

<accessor> ::= "." <id>

| "." <int_literal>

| "[" <expr_list> "]"

| "(" <expr_list> ")"

<expr> ::= <ite_expr>

| <lambda_expr>

| <binop_expr>

| <membership_expr>

| <unop_expr>

| <proj_expr>

<ite_expr> ::= "if" <expr> "then" <expr>

{"elif" <expr> "then" <expr>}

"else" <expr>

<lambda_expr> ::= "lambda" {<declarator_suffix>}+ ":"

{<formal_param>}+ ":=" <expr>

<binop_expr> ::= <expr> <binop> <expr>

<membership_expr> ::= <expr> ":" <domain>

<domain> ::= <range>

| <type_domain>

<type_domain> ::= <named_type>

| "bool"

| "int"

<unop_expr> ::= <unop> <expr>

<proj_expr> ::= <closed_expr> { <accessor> }

<closed_expr> ::= <bool_literal>

| <int_literal>

| <named_expr>

| <next_expr>

| <pre_expr>

| <fun_expr>

| <cast_expr>

| <with_expr>

| <case_expr>

| <quantif_expr>

| "(" <expr> ")"

<bool_literal> ::= <true>

| <false>

<dec_literal> ::= [0-9](_?[0-9])*

<bin_literal> ::= 0[Bb][0-1][_?[0-1])*

<hex_literal> ::= 0[Xx][0-9A-Fa-f](_?[0-9A-Fa-f])*

<int_literal> ::= <dec_literal>

| <hex_literal>

| <bin_literal>
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<named_expr> ::= <path_id>

<next_expr> ::= "X" "(" <expr> ")"

<pre_expr> ::= ("pre" | "PRE") ["<" <type> ">"]

"(" <expr> ["," <expr>] ")"

<fun_expr> ::= <fop> "(" <expr_list> ")"

<cast_expr> ::= "cast" "<" <type> ">" "(" <expr> ")"

<with_expr> ::= "(" <expr> "with" {<accessor>}+ ":=" <rhs> ")"

<case_expr> ::= "(" <expr_list> {<case_item>}+ ")"

<case_item> ::= "|" <pattern_list> "=>" <expr>

<pattern> ::= <expr>

| <named_type> ( <id> | "_" )

| "_"

<pattern_list> ::= <pattern> { "," <pattern> }

<quantif_expr> ::= <quantifier> <quantif_var> {"," <quantif_var>}

( "(" <expr> ["," <rhs>] ")" | <quantif_expr> )

<quantif_var> ::= <id> ":" <quantif_domain>

<quantif_domain> ::= <domain>

| "$items" "(" <expr> ")"

<binop> ::= "#" | "&" | "#!" | "->" | "<->"

| ">" | ">=" | "<" | "<="

| "=" | "==" | "!=" | "<>"

| "+" | "-" | "*" | "%" | "^" | "<<" | ">>"

| "/" | "/>" | "/<"

<unop> ::= "~" | "-"

<fop> ::= "$min"

| "$max"

| "$abs"

| "$or"

| "$and"

| "$xor"

| "$not"

| "bin2u"

| "u2bin"

| "bin2s"

| "s2bin"

| "population_count_eq"

| "population_count_lt"

| "population_count_gt"

<expr_list> ::= <expr> {"," <expr>}

<id_list> ::= <id> {"," <id>}

<path_id_list> ::= <path_id> {"," <path_id>}

<path_id> ::= <relative_path> <id>

| <absolute_path> <id>

<relative_path> ::= { <id> "::" }

<absolute_path> ::= "::" { <id> "::" }
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<id> ::= regexp: [a-zA-Z_][a-zA-Z0-9_]*

| regexp: ’[^\n’]+’

| regexp: "[^\n"]+"

<true> ::= "true" | "TRUE" | "True"

<false> ::= "false" | "FALSE" | "False"

<quantifier> ::= "SOME" | "ALL" | "SUM" | "PROD"

| "CONJ" | "DISJ" | "$min" | "$max"

| "SELECT"

A.1 Operator Precedence and Associativity

The precedence of expressions is given below in order from lowest to highest (same line
means same precedence). The information below is a copy of (ExprPrecedence).

1. <ite_expr>, <lambda_expr>

2. <binop_expr>, <membership_expr>

3. <unop_expr>

4. <proj_expr>

The precedence of the binary operators is given below in order from lowest to highest,
together with their associativity. Same line means same precedence. The information
below is a copy of (BinopGrouping).

Precedence Associativity

<-> #! left
-> right
# left
& left
> >= < <= = == != <> left
<< >> left
+ - left
* / /< /> % left
^ right
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B Reserved Words

ALL

assumptions

Assumptions

bin2s

bin2u

block

blocks

Blocks

bool

cast

CONJ

constants

Constants

constraints

Constraints

declarations

Declarations

definitions

Definitions

DISJ

elif

else

enum

false

False

FALSE

guarantees

Guarantees

I

if

inputs

Inputs

int

lambda

namespaces

Namespaces

new

obligations

Obligations

outputs

Outputs

population_count_eq

population_count_gt

population_count_lt

pre

PRE

PROD

proof

Proof

s2bin

SELECT

signed

SOME

sort

struct

SUM

then

true

True

TRUE

tuple

types

Types

u2bin

unsigned

with

X
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C Restrictions Overview

Below are listed the direct and indirect restrictions which apply to each language con-
struct of HLL. The indirect restrictions, as explained in Section 2.4.2, are due to language
constructs being defined by translation or reduction to other language constructs which
in turn have restrictions on them. These restrictions also apply, indirectly, to the lan-
guage constructs defined by the translation or reduction, and are thus listed in the table
below.

On the other hand, some language constructs contain sub-constructs which have specific
restrictions applied to them. The restrictions which apply to sub-constructs are not listed
as applicable to the parent construct (to avoid duplication). An example is projections,
<proj_expr>, which are defined using the sub-construct <accessor> where specific
restrictions apply.

When a restriction applies only to a certain part of a language construct, we will occa-
sionally, for the benefit of the reader and especially if the restriction is indirect, prefix
the restriction with the part of the language construct to which it applies.
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Language Construct Parent Construct Applicable Restrictions

Section 4

<id> (ReservedWords)

Section 5

<path id> (PathIdNoImplicitDecl)

Section 7

<declarator suffix> (DeclArrayDimInteger)
(DeclArrayDimConstant)
(DeclFunctionParamScalar)

Section 8

<type> <declarator> <type def> (TypeDefUnicity)
(TypeDefCausality)

<enum def> <type def> (TypeDefUnicity)
(TypeDefCausality)

<sort def> <type def> (TypeDefCausality)

int signed E <integer> (IntSizeInteger)
(IntSizeConstant)
(SignedBitsPositive)
(IntSizeNotNil)

int unsigned E <integer> (IntSizeInteger)
(IntSizeConstant)
(UnsignedBitsNonNegative)
(IntSizeNotNil)

int [E1, E2] <integer> (IntSizeInteger)
(IntSizeConstant)
(IntSizeNotNil)

<enumerated> <enum def> (EnumValueUnicity)

{V1, V2, . . . Vn} <sort contrib> (SortValueUnicity)

sort S1, S2, . . . Sk < S <sort def> (SortSubTypes)

<member list> <structure> (StructCompUnicity)

<function> (FunctionDomainScalar)

<array> (ArrayDimConstant)
(ArrayDimNotNil)

<named type> (NamedTypeRef)

Section 9

[E1, E2, . . . En] <accessor> (ArrayIndexInteger)

(E1, E2, . . . En) <accessor> (FunctionInputScalar)
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Language Construct Parent Construct Applicable Restrictions

Section 10

<ite expr> (IteCondBool)
(IteBranchesCompatible)

<lambda expr> (LambdaParamUnicity)
(LambdaParamsBound)
(LambdaParamsMatch)
(LambdaTypeCheck)

E1 # E2 <binop expr> (BoolOrEquivOperandsBool)

E1 & E2 <binop expr> (BoolOrEquivOperandsBool)

E1 #! E2 <binop expr> (BoolOrEquivOperandsBool)

E1 -> E2 <binop expr> (BoolOrEquivOperandsBool)

E1 <-> E2 <binop expr> (BoolOrEquivOperandsBool)

E1 > E2 <binop expr> (IntCoreBinopOperandsInt)

E1 >= E2 <binop expr> (IntCoreBinopOperandsInt)

E1 < E2 <binop expr> (IntCoreBinopOperandsInt)

E1 <= E2 <binop expr> (IntCoreBinopOperandsInt)

E1 = E2 <binop expr> (EqOperandsFiniteCompatible)

E1 == E2 <binop expr> (EqOperandsFiniteCompatible)

E1 != E2 <binop expr> (EqOperandsFiniteCompatible)

E1 <> E2 <binop expr> (EqOperandsFiniteCompatible)

E1 + E2 <binop expr> (IntCoreBinopOperandsInt)

E1 - E2 <binop expr> (IntCoreBinopOperandsInt)

E1 * E2 <binop expr> (IntCoreBinopOperandsInt)

E1 ^ E2 <binop expr> (IntCoreBinopOperandsInt)

E1 << E2 <binop expr> (IntCoreBinopOperandsInt)
(SecondShiftOperandStatic)
(SecondShiftOperandNonNegative)

E1 >> E2 <binop expr> (IntCoreBinopOperandsInt)
(SecondShiftOperandStatic)
(SecondShiftOperandNonNegative)

E1 / E2 <binop expr> (IntCoreBinopOperandsInt)

E1 /> E2 <binop expr> (IntCoreBinopOperandsInt)

E1 /< E2 <binop expr> (IntCoreBinopOperandsInt)

E1 % E2 <binop expr> (IntCoreBinopOperandsInt)

<domain> (DomainScalar)

<membership expr> (MembershipDomainCompatible)
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Language Construct Parent Construct Applicable Restrictions

Section 10 (continued)

~E <unop expr> (BoolNegOperandBool)

-E <unop expr> (IntNegOperandInt)

<proj expr> (ProjAccCompatible)

<pre expr> (PreOperandsAssignable)

$min(E1, E2) <fun expr> (FunopBinaryCard)
(IntCoreBinopOperandsInt)

$max(E1, E2) <fun expr> (FunopBinaryCard)
(IntCoreBinopOperandsInt)

$abs(E) <fun expr> (FunopUnaryCard)
(IntCoreBinopOperandsInt)

$or(E1, E2) <fun expr> (FunopBinaryCard)
(ProjAccCompatible)

$and(E1, E2) <fun expr> (FunopBinaryCard)
(ProjAccCompatible)

$xor(E1, E2) <fun expr> (FunopBinaryCard)
(ProjAccCompatible)

$not(E) <fun expr> (FunopUnaryCard)
(ProjAccCompatible)

bin2u(E1, E2) <fun expr> (FunopBinaryCard)
E1: (ProjAccCompatible)
E1: (IteCondBool)
E2: (IntCoreBinopOperandsInt)
E2: (QuantDomainStatic)

u2bin(E1, E2) <fun expr> (FunopBinaryCard)
E1: (ProjAccCompatible)
E2: (DeclArrayDimInteger)
E2: (DeclArrayDimConstant)

bin2s(E1, E2) <fun expr> (FunopBinaryCard)
E1: (ProjAccCompatible)
E1: (IteCondBool)
E2: (IntCoreBinopOperandsInt)
E2: (ArrayIndexInteger)
E2: (QuantDomainStatic)

s2bin(E1, E2) <fun expr> (FunopBinaryCard)
E1: (ProjAccCompatible)
E2: (DeclArrayDimInteger)
E2: (DeclArrayDimConstant)
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Language Construct Parent Construct Applicable Restrictions

Section 10 (continued)

population count lt(E1, . . . En, K) <fun expr> (PopCountNumberStatic)
Ei: (IteCondBool)
K: (IntCoreBinopOperandsInt)

population count gt(E1, . . . En, K) <fun expr> (PopCountNumberStatic)
Ei: (IteCondBool)
K: (IntCoreBinopOperandsInt)

population count eq(E1, . . . En, K) <fun expr> (PopCountNumberStatic)
Ei: (IteCondBool)
K: (IntCoreBinopOperandsInt)

<cast expr> (CastTargetIntImpl)
(ProjAccCompatible)

<with expr> (WithAccCompatible)
(WithRhsAssignable)

<case expr> (CaseSwitchesScalar)
(CasePatternsCompatible)
(CaseBranchesCompatible)
(CasePatternExprConstant)
(CasePatternTypeSort)
(CaseCapturingVarUnicity)

SOME i1 : D1, . . . in : Dn (E) <quantif expr> (QuantVarUnicity)
(QuantDomainFinite)
(QuantDomainStatic)
(BoolQuantOperandsBool)

ALL i1 : D1, . . . in : Dn (E) <quantif expr> (QuantVarUnicity)
(QuantDomainFinite)
(QuantDomainStatic)
(BoolQuantOperandsBool)

DISJ i1 : D1, . . . in : Dn (E) <quantif expr> (QuantVarUnicity)
(QuantDomainFinite)
(QuantDomainStatic)
(BoolQuantOperandsBool)

CONJ i1 : D1, . . . in : Dn (E) <quantif expr> (QuantVarUnicity)
(QuantDomainFinite)
(QuantDomainStatic)
(BoolQuantOperandsBool)

SUM i1 : D1, . . . in : Dn (E) <quantif expr> (QuantVarUnicity)
(QuantDomainFinite)
(QuantDomainStatic)
(IntQuantOperandsInt)

PROD i1 : D1, . . . in : Dn (E) <quantif expr> (QuantVarUnicity)
(QuantDomainFinite)
(QuantDomainStatic)
(IntQuantOperandsInt)
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Language Construct Parent Construct Applicable Restrictions

Section 10 (continued)

$min i1 : D1, . . . in : Dn (E) <quantif expr> (QuantVarUnicity)
(QuantDomainFinite)
(QuantDomainStatic)
(IntQuantOperandsInt)

$max i1 : D1, . . . in : Dn (E) <quantif expr> (QuantVarUnicity)
(QuantDomainFinite)
(QuantDomainStatic)
(IntQuantOperandsInt)

SELECT i1 : D1, . . . in : Dn (E) <quantif expr> (QuantVarUnicity)
(QuantDomainFinite)
(QuantDomainStatic)
(SelectQuantOperandBool)
(SelectQuantNoItemsDomain)

SELECT i1 : D1, . . . in : Dn (E, R) <quantif expr> (QuantVarUnicity)
(QuantDomainFinite)
(QuantDomainStatic)
(SelectQuantOperandBool)
(SelectQuantDefaultCompatible)
(SelectQuantDefaultGround)
(SelectQuantNoItemsDomain)

$items(E) <quantif domain> (ItemsOperandArrayOrFunction)

Section 11

<declaration> (DeclUnicity)
(UndefinedSized)

<input> (DeclUnicity)
(InputsFinite)
(InputsUndefined)
(DeclInitialInputDefNext)
(UndefinedSized)

Section 12

V:= R <definition> (DefCausality)
(DefUnicity)
(DefUndeclaredLhsScalarRhs)
(DefRhsTypeAssignableToLhsType)

I(V):= R <definition> (DefCausality)
(DefUnicity)
(DefCompleteness)
(DefUndeclaredLhsScalarRhs)
(DefRhsTypeAssignableToLhsType)
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Language Construct Parent Construct Applicable Restrictions

Section 12 (continued)

X(V):= R <definition> (DefCausality)
(DefUnicity)
(DefUndeclaredLhsScalarRhs)
(DefRhsTypeAssignableToLhsType)
(LatchesSized)

V:= R1, R2 <definition> (DefCausality)
(DefUnicity)
(DefUndeclaredLhsScalarRhs)
(DefRhsTypeAssignableToLhsType)
(LatchesSized)

V FP:= R <definition> (DefCausality)
(DefUnicity)
(DefUndeclaredLhsScalarRhs)
(DefRhsTypeAssignableToLhsType)
(LambdaParamUnicity)

I(V FP):= R <definition> (DefCausality)
(DefUnicity)
(DefCompleteness)
(DefUndeclaredLhsScalarRhs)
(DefRhsTypeAssignableToLhsType)
(LambdaParamUnicity)

X(V FP):= R <definition> (DefCausality)
(DefUnicity)
(DefUndeclaredLhsScalarRhs)
(DefRhsTypeAssignableToLhsType)
(LatchesSized)
(LambdaParamUnicity)

V FP:= R1, R2 <definition> (DefCausality)
(DefUnicity)
(DefUndeclaredLhsScalarRhs)
(DefRhsTypeAssignableToLhsType)
(LatchesSized)
(LambdaParamUnicity)

V1, . . . Vn:= R <definition> (DefCausality)
(DefUnicity)
(DefUndeclaredLhsScalarRhs)
(DefRhsTypeAssignableToLhsType)
(DefUnfoldingCompatibleRhs)

I(V1, . . . Vn):= R <definition> (DefCausality)
(DefUnicity)
(DefCompleteness)
(DefUndeclaredLhsScalarRhs)
(DefRhsTypeAssignableToLhsType)
(DefUnfoldingCompatibleRhs)
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Section 12 (continued)

X(V1, . . . Vn):= E <definition> (DefCausality)
(DefUnicity)
(DefUndeclaredLhsScalarRhs)
(DefRhsTypeAssignableToLhsType)
(LatchesSized)
(DefUnfoldingCompatibleRhs)

V1, . . . Vn:= E1, E2 <definition> (DefCausality)
(DefUnicity)
(DefUndeclaredLhsScalarRhs)
(DefRhsTypeAssignableToLhsType)
(LatchesSized)
(DefUnfoldingCompatibleRhs)

Section 13

<constant> (ConstantDefRhsConstant)
(ConstantDefInheritedRestrictions)
(DeclUnicity)
(DefUnicity)
(DefRhsTypeAssignableToLhsType)

Section 14

<constraint> (ConstraintBool)

Section 15

<po> (PoType)

Section 16

E; <outputs section> (OutputsFinite)
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D Glossary

For the purposes of this document, the following terms and abbreviations are used.

1. ascendant scope
an enclosing scope, i.e. one higher up in the scope stack; see Section 2.3

2. ASCII
American Standard Code for Information Interchange, a character encoding
standard

3. assignable / assignability
refers to the assignability relation between types, see Section 8; a stream
expression E1 is assignable to a stream expression E2 iff the type of E1 is
assignable to the type of E2

4. combinatorial function
a mapping from values to values (usually a mapping from one or several
values to a single value)

5. combinatorial operator
see combinatorial function

6. compatible / compatibility
(sometimes preceded by type) refers to the compatibility relation between
types, see Section 8; a stream expression E1 is compatible with a stream
expression E2 iff the type of E1 is compatible with the type of E2

7. component
either a component (type) of a composite type, or a component (stream) of a
stream of composite type; similar terms used elsewhere would be e.g. struct
field, array element, function output – all those entities are collectively
called components in this document

8. composite
equivalent to non-scalar;
(noun) a stream of composite type
(adj.) applied to a stream it means a composite stream; applied to a type it
means a composite type; applied to a value it means a value of a composite
type

9. composite type
equivalent to non-scalar type; any type defined in Section 8.2

10. consequence
see Section 2.1.4

11. constant
refers either to a stream defined using the nonterminal <constant> of Sec-
tion 13, or to any stream with a static flag of 2.

12. declared type
see Section 11
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13. defined variable
a variable with a definition, i.e. that occurs on the left hand side of a
definition; see Section 12

14. descendant scope
an enclosed scope, i.e. one further down in the scope stack; see Section 2.3

15. directly defined
(adj.) refers to an entity E1 which is defined in terms of another entity E2
without there being any intermediate entity E3 in between E1 and E2; see
also indirectly defined

16. domain
depending on the context, refers to one of:

(a) the nonterminal <domain>, defined in Section 10.4,

(b) the nonterminal <quantif_domain>, defined in Section 10.7.10,

(c) the parameter types of a function type, see Section 8.2.3,

(d) the domain of an array type, which amounts to the parameter types
of the equivalent function type, see Section 8.2.4, or

(e) the domain of the SELECT operator, which is defined by (QuantSelect-
Domain).

17. EBNF
Extended Backus-Naur Form, see also Section 2.4.1

18. equivalent to
see Section 2.4.2

19. explicit grouping
the process of adding parentheses around all subexpressions (or groups) in
a text; for example, expressions such as “a & b & c” and “a + b * c” are
explictly grouped into respectively “((a & b) & c)” and “(a + (b * c))”

20. free
(adj.) applied to a variable it means a variable that is free to take any value
of its type in each time step; input variables are free; quantifier variables
or defined variables are not free

21. fresh
(adj). applied to the identifier of an entity it means that another entity
with the same identifier is not visible within the same namespace; (an entity
with a fresh name does not hide another entity)

22. function accessor
see (AccFunction) of Section 9

23. function value
see combinatorial function

24. group / grouping
see implicit grouping or explicit grouping
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25. hide / hiding
refers to variable hiding see Section 2.3

26. HLL
High Level Language

27. HLL function
a stream of combinatorial functions (function values) which, together with
a function accessor, maps streams to streams by point-wise application of
the combinatorial function in each time step on the values of the stream
operands in the same time step; HLL functions are distinct from temporal
functions which are general mappings of streams to streams

28. iff
if and only if

29. implicit grouping
the process by which a parser uses syntax, precedence and associativity
rules to map a text into an abstract syntax tree (AST) where each group
(or subexpression) is represented by its own vertex

30. implicit input
(sometimes followed by variable) a free variable that is not an (explicit)
input

31. indirectly defined
(adj.) refers to an entity E1 which is defined in terms of another entity E2
via an intermediate entity E3; e.g. E1 := E3; E3 := E2;

32. initial input
(sometimes followed by variable) a memory variable which is undefined in
the first time step (i.e. it has only a next definition, see Section 12)

33. input
(sometimed preceded by explicit; sometimes followed by variable) refers to
variables declared using the nonterminal <input>, see Section 11

34. integer implementation type
see Related Notation 1 of Section 8.1.2

35. integer range type
see Related Notation 2 of Section 8.1.2

36. integer type
any type defined in Section 8.1.2

37. latch
(sometimes followed by variable) a variable defined using a latch or a next
definition, see Section 12

38. literal
(sometimes followed by value) refers to an immediate value such as the
integer literal 1234 or the Boolean literal true.
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39. memory
either a pre expression or a latch; if followed by variable it means a latch.

40. model
(sometimes preceded by stream) see Section 2.1.1.

41. multidimensional
(adj). applied to an array type it means that the type has more than one
dimension, see Section 8.2.4

42. multivariate
(adj). applied to a function type it means that the type has more than one
parameter type, see Section 8.2.3

43. namespace
see Section 2.3; not to be confused with user namespace

44. nil
see Section 2.1.2

45. parameter
refers to the nonterminal <formal_param> defined in Section 10.2

46. proposition
see Section 2.1.3

47. qualified
(adj). applied to a path identifier (<path_id>) it means a path identifier
with at least one occurrence of "::". See Section 5.1

48. reducible to
see Section 2.4.2

49. scalar
(noun) a stream of scalar type
(adj.) applied to a stream it means a scalar stream; applied to a type it
means a scalar type; applied to a value it means a value of a scalar type

50. scalar type
any type defined in Section 8.1

51. scope
see Section 2.3

52. significant bit
a significant bit of an integer encoded in two’s complement is a bit which
cannot be removed from the encoding without changing the encoded value;
leading 0s and 1s are not significant, meaning that the numbers 000 and
0 both encode 0, 001 and 01 both encode +1, and 111 and 1 both encode
−1

53. static flag
see Section 2.1.5
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54. stream
a stream of values of a certain type, see Section 10

55. temporal function
a mapping from streams to streams

56. temporal operator
see temporal function

57. type
a tool for the classification of streams which can be understood simply as
a set of values, see Section 8

58. undefined variable
see free variable

59. unsized copy
see Section 8.4.2

60. user namespace
see Section 5; not to be confused with namespace

61. value
a mathematical object that is the element or member of a type, for exam-
ple the Boolean value “true”, the integer value “1234”, or the enum value
“blue”; composite values (i.e. values of composite types) can be repre-
sented by n-tuples where n corresponds to the number of components of
the composite type, for example “(true, 1234)”; if a value V is used in a
context where a stream is expected, it is interpreted as a constant stream
that takes the value V in each time step

62. variable
(often preceded by stream) a stream variable, i.e. a named stream (that
can be referenced if it is visible)

63. visible / visibility
refers to variable visibility, see Section 2.3
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AccArray, 51
AccFunction, 51
AccStruct, 51
AccTuple, 51
AccessorSyntax, 51
ArrayAssignability, 45
ArrayCompatibility, 45
ArrayDimConstant, 45
ArrayDimNotNil, 45
ArrayIndexInteger, 51
ArraySyntax, 45
ArrayType, 45
ArrayValues, 45
BinopGrouping, 60
BinopStaticFlag, 60
BinopSyntax, 57
BoolAnd, 57
BoolAssignability, 35
BoolCompatibility, 35
BoolEquiv, 57
BoolImpl, 57
BoolLitFalse, 67
BoolLitStaticFlag, 67
BoolLitSyntax, 67
BoolLitTrue, 67
BoolNeg, 63
BoolNegOperandBool, 63
BoolOr, 58
BoolOrEquivOperandsBool, 60
BoolQuantOperandBool, 86
BoolSyntax, 35
BoolValueOrder, 35
BoolValues, 35
BoolXor, 57
CaseBranchesCompatible, 80
CaseCapturingVarStaticFlag, 80
CaseCapturingVarUnicity, 80
CaseCapturingVariable, 79
CaseExpr, 79
CaseExprNil, 80
CaseExprStaticFlag, 80
CaseExprSyntax, 79
CasePatternExpr, 79
CasePatternExprConstant, 80
CasePatternType, 79
CasePatternTypeSort, 80

CasePatternWildcard, 79
CasePatternsCompatible, 80
CaseSwitchesScalar, 80
CastExpr, 75
CastExprSyntax, 75
CastSigned, 75
CastStaticFlag, 75
CastTargetIntImpl, 75
CastUnsigned, 75
ClosedExprSyntax, 66
CollArrayAssignability, 48
CollFuncAssignability, 48
CollMultiDimArrayAssignability, 48
CollMultiVarFuncAssignability, 48
CollTupleCompatibility, 48
CollTupleStructAssignability, 48
CollectionReason, 48
CollectionStaticFlag, 93
CollectionType, 48
CommentDoubleSlash, 24
CommentSlashStar, 24
ConstantDef, 95
ConstantDefInheritedRestrictions, 95
ConstantDefIsaDeclDef, 95
ConstantDefRhsConstant, 95
ConstantStaticFlag, 95
ConstantSyntax, 95
ConstraintAlways, 96
ConstraintBool, 96
ConstraintInitial, 96
ConstraintSyntax, 96
DeclArrayDimConstant, 32
DeclArrayDimInteger, 32
DeclFunctionParamScalar, 32
DeclInitialInput, 89
DeclInitialInputDefNext, 90
DeclInput, 89
DeclMultInline, 89
DeclNormal, 89
DeclUnicity, 89
Declaration, 89
DeclarationSyntax, 89
Declarator, 32
DeclaratorSyntax, 32
DeclaratorTypeCalc, 32
DefAlways, 92
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DefAlwaysStaticFlag, 93
DefArrayFunction, 93
DefCausality, 94
DefCollectionRhs, 93
DefCompleteness, 94
DefFunctionInit, 93
DefFunctionNext, 93
DefInit, 92
DefLatch, 93
DefLatchStaticFlag, 93
DefNext, 93
DefRhsTypeAssignableToLhsType, 94
DefUndeclared, 92
DefUndeclaredLhsScalarRhs, 94
DefUndeclaredType, 92
DefUnfolding, 93
DefUnfoldingCompatibleRhs, 94
DefUnicity, 94
Definition, 92
DefinitionSyntax, 92
Domain, 62
DomainAsRange, 62
DomainAsType, 62
DomainScalar, 62
Elif, 53
EmptyScalarTypeNil, 52
EnumAssignability, 38
EnumCompatibility, 38
EnumDef, 38
EnumSyntax, 38
EnumValueDef, 38
EnumValueOrder, 38
EnumValueSpace, 38
EnumValueStaticFlag, 38
EnumValueUnicity, 38
EqOperandsFiniteCompatible, 60
Expr, 52
ExprPrecedence, 52
ExprSyntax, 52
FormalParamStaticFlag, 56
FunctionAssignability, 43
FunctionCompOrder, 43
FunctionCompatibility, 43
FunctionDomainEquality, 43
FunctionDomainScalar, 43
FunctionInputScalar, 51
FunctionSyntax, 43
FunctionType, 43
FunctionValues, 43
FunopBinaryCard, 74

FunopBinaryStaticFlag, 74
FunopNaryStaticFlag, 74
FunopSyntax, 72
FunopUnaryCard, 74
FunopUnaryStaticFlag, 74
GlobalTopLevelScopes, 98
GroupedExpr, 66
GroupedExprStaticFlag, 66
HLLText, 98
Id, 26
IdOrInt, 36
IdSignificantChars, 26
IdSyntax, 26
IfThenElse, 53
InlineMultTypeDef, 34
InputsFinite, 89
InputsUndefined, 89
IntAbs, 72
IntAdd, 58
IntAssignability, 36
IntCeilDiv, 57
IntCompatibility, 36
IntCoreBinopOperandsInt, 61
IntDiv, 58
IntExp, 59
IntFloorDiv, 57
IntGt, 57
IntGte, 57
IntLeftShift, 57
IntLitBinary, 68
IntLitDecimal, 68
IntLitHexadecimal, 68
IntLitStaticFlag, 68
IntLitSyntax, 68
IntLitUnderscores, 68
IntLiteral, 68
IntLt, 58
IntLte, 57
IntMax, 72
IntMin, 72
IntMul, 58
IntNeg, 63
IntNegOperandInt, 63
IntQuantOperandInt, 86
IntRangeValues, 36
IntRem, 58
IntRightShift, 57
IntSignedValues, 36
IntSizeConstant, 36
IntSizeInteger, 36
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IntSizeNotNil, 37
IntSub, 57
IntSyntax, 36
IntUnsignedValues, 36
IntValueOrder, 36
IntValues, 36
IteBranchesCompatible, 53
IteCondBool, 53
IteExprStaticFlag, 53
IteExprSyntax, 53
ItemsOperandArrayOrFunction, 86
LambdaArray, 55
LambdaDeclSuffixOverhang, 55
LambdaExprSyntax, 55
LambdaFunction, 56
LambdaMultFormalParam, 55
LambdaParamUnicity, 56
LambdaParamsBound, 56
LambdaParamsMatch, 56
LambdaScope, 55
LambdaStaticFlag, 56
LambdaType, 55
LambdaTypeCheck, 56
LatchesSized, 94
Membership, 62
MembershipDomainCompatible, 62
MembershipPrecedence, 62
MembershipStaticFlag, 62
MembershipSyntax, 62
NamedExpr, 69
NamedExprImplicitDecl, 69
NamedExprStaticFlag, 69
NamedExprSyntax, 69
NamedExprUndefinedStaticFlag, 69
NamedType, 46
NamedTypeAssignability, 46
NamedTypeCompatibility, 46
NamedTypeRef, 46
NamedTypeSyntax, 46
NamespaceSyntax, 27
NextExpr, 70
NextExprStaticFlag, 70
NextExprSyntax, 70
OpBin2s, 72
OpBin2u, 72
OpBitwiseAnd, 74
OpBitwiseNot, 73
OpBitwiseOr, 73
OpBitwiseXor, 73
OpEqCompositeMultiDim, 60

OpEqCompositeUniDim, 59
OpEqEq, 57
OpEqScalar, 59
OpNeq, 57
OpPopCountEq, 73
OpPopCountGt, 73
OpPopCountLt, 73
OpS2bin, 73
OpU2bin, 72
OutputsFinite, 99
PathAbsolute, 28
PathId, 28
PathIdLookup, 29
PathIdNoImplicitDecl, 29
PathIdSyntax, 28
PathRelative, 28
PoBool, 97
PoComposite, 97
PoFalsifiable, 97
PoSyntax, 97
PoType, 97
PoValid, 97
PopCountNumberStatic, 74
Pragma, 25
PreExprStaticFlag, 71
PreExprSyntax, 71
PreOperandsAssignable, 71
PreTyped, 71
PreTypedWithInit, 71
PreUntyped, 71
PreUntypedWithInit, 71
PreUppercase, 71
ProjAccCompatible, 65
ProjArrayFunc, 64
ProjExprNil, 65
ProjExprStaticFlag, 65
ProjExprSyntax, 64
ProjMultipleAcc, 64
Projection, 64
QuantAll, 83
QuantConj, 83
QuantDisj, 83
QuantDomainDomain, 82
QuantDomainFinite, 86
QuantDomainItems, 83
QuantDomainStatic, 86
QuantExprStaticFlag, 86
QuantExprSyntax, 82
QuantMax, 84
QuantMin, 84
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QuantMultVar, 83
QuantProd, 84
QuantScope, 82
QuantSelectDefault, 85
QuantSelectDomain, 85
QuantSelectType, 85
QuantSelectWithDefault, 86
QuantSelectWithoutDefault, 85
QuantSome, 83
QuantSum, 84
QuantVarStaticFlag, 86
QuantVarType, 83
QuantVarUnicity, 86
RangeDomainStaticFlag, 62
ReservedWords, 26
SecondShiftOperandNonNegative, 61
SecondShiftOperandStatic, 61
SectionOrderIrrelevant, 98
SectionSyntax, 98
SectionsReopen, 98
SelectQuantDefaultCompatible, 87
SelectQuantDefaultGround, 87
SelectQuantNoItemsDomain, 87
SelectQuantOperandBool, 86
SignedBitsPositive, 37
SortAssignability, 39
SortCompatibility, 39
SortContrib, 39
SortContribScope, 39
SortDef, 39
SortSubTypeContrib, 39
SortSubTypes, 39
SortSyntax, 38
SortUnionAssignability, 50
SortUnionCompatibility, 50
SortValueContrib, 39
SortValueOrder, 39
SortValueSpace, 39
SortValueStaticFlag, 39
SortValueUnicity, 39
StructAssignability, 41
StructCompIdSpace, 41
StructCompUnicity, 41

StructCompatibility, 41
StructSyntax, 41
StructType, 41
StructValues, 41
TupleAssignability, 40
TupleCompatibility, 40
TupleSyntax, 40
TupleType, 40
TupleValues, 40
Type, 33
TypeAssignability, 34
TypeCalc, 33
TypeCompatibility, 34
TypeDef, 33
TypeDefCausality, 34
TypeDefUnicity, 34
TypeDomainStaticFlag, 62
TypeIdSpace, 33
TypeSyntax, 33
UndefinedSized, 90
UnionComposite, 50
UnionScalar, 50
UnionSort, 50
UnionTupleCollection, 50
UnopStaticFlag, 63
UnopSyntax, 63
UnsignedBitsNonNegative, 37
UnsizedComposite, 49
UnsizedInteger, 49
UnsizedScalar, 49
UserNamespace, 27
UserNamespaceName, 27
UserNamespaceScattering, 27
WithAccCompatible, 78
WithArrayAcc, 78
WithCollectionRhsMultiDim, 77
WithCollectionRhsUniDim, 77
WithExprStaticFlag, 78
WithExprSyntax, 77
WithFunctionAcc, 78
WithMultipleAcc, 78
WithRhsAssignable, 78
WithTupleStructAcc, 78
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