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Abstract – The present paper proposes a new Strain Energy Function (SEF) for 

incompressible transversely isotropic hyperelastic materials, i.e. materials with a single fiber 

family. This SEF combines polyconvex invariants forming an integrity basis [1] in a polynomial 

and exponential form. Compared to a previous attempt for building a SEF based on the same 

invariants [2], we have reduced the number of material parameters from 23 to 10, without 

losing any accuracy on the numerical results. The 10 material parameters are identified by 

comparing the closed form solutions deriving from our model with experimental and 

numerical data extracted from the literature. These data concern uniaxial tension and shear 

tests, both parallel and transverse to the fiber direction [3, 4], as well as shear calculations 

with 9 different fiber angles [5]. Due to the variety of the considered situations, we have 

developed specific identification strategies based on: 1) the linear or nonlinear nature of the 

material parameters of the model; 2) the modeling of the free boundary conditions by a 

spectral approach. 
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Understanding the behavior of transversely isotropic hyperelastic materials is a keystone 

for scientists because their modeling has a wide range of applications in engineering science 

and health therapeutic, like medical prosthesis, ergonomics and manufacturing. For example, 

virtual surgery simulation could obtain a realistic rendering of biological soft tissue behavior, 

which is helpful for surgical planning and treatment [6]. It is accepted that these materials 

are anisotropic due to the embedded fiber and that their mechanical behavior can be 

modelled through an appropriate SEF [7]. 

These past twenty years, many SEF have been proposed for transversely isotropic materials 

to investigate the mechanical behavior of biological soft tissues [8]. Shearer [9] built for 

example a SEF for the hyperelastic modeling of ligaments and tendons based on the 

geometrical arrangement of their fibrils. Limbert et al. [10] proposed a phenomenological 

constitutive law to describe the anisotropic visco-hyperelastic behavior of the human 

posterior cruciate ligament at high strain rates. For the fiber-reinforced rubber materials, 

Ciarletta et al. [3] introduced a new hyperelastic model using a non-classical measure of 

strains. In the same vein, Fereidoonnezhad et al. [11] built later a model using this kind of 

strains, reporting the nonlinearity aspect from the form of the SEF to the strain invariant. All 

these models, like most of the papers published in the literature, divide the SEF into an 

isotropic part and an anisotropic part. The first part is used to model the low strain behavior 

of the ground matrix and the second part accounts for the behavior of the fibers at higher 

strain [12, 13]. A first alternative to this standard method is to replace scalar-invariant based 

approach by operations between fourth-order tensors [14]. Another alternative consists in 

using an integrity basis of invariants as proposed in [1], and mixing them in a single SEF [2]. 

This second alternative, mathematically justified by the theory of invariant polynomials and 

by Noether’s theorem, is inspired by the pioneering work of Thionnet et al. [15]. The 

polyconvexity and physical sense of the invariants forming the integrity basis exhibited in [1] 

are discussed in [2]. In addition, the attempt made in [2] for building a SEF combining these 

invariants with polynomial and power form functions provided an excellent correlation with 

experimental data. However, two drawbacks can be reported: 

1) a large number of material parameters (up to 23) making the physical interpretation 

of these parameters difficult, 
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2) some convergence problem at low strain due to the logarithmic singularity near zero 

of power form functions. 

To overcome these two drawbacks, we propose in Section 3 of this paper a new SEF 

combining the same invariants as the ones used in [2], but with an exponential function with 

respect to these invariants, instead of a power form one. An exponential function actually 

offers a perfect regularity, contrarily to a power form function, avoiding any convergence 

problems. In addition, without losing any accuracy on the numerical results, we have 

simplified the SEF by reducing the number of material parameters from 23 to 10. Considering 

some specific loadings, it is possible to reduce more the number of material parameters. For 

example, we prove in section 4.1 that our model can be reduced from 10 to 5 material 

parameters in the case of a uniaxial tensile loading. In section 5.4, we also demonstrate that 

our model can be reduced from 10 to 7 material parameters in the case of a shear loading. 

However, in the most complicated loading cases, if for example tensile and shear tests are 

both accounted, the use of the 10 material parameters embedded in our model is required. 

As we aimed to develop a model capable of encompassing as many cases as possible, instead 

of a model dealing with a single application, we keep all the 10 material parameters. 

Anisotropic hyperelasticity is a dynamic field of research and many models are proposed in 

the literature. But, contrarily to isotropic hyperelasticity, a few receives a full consensus, 

except perhaps the well-known HGO model [8] to name a few. It is therefore useful to 

propose a general model covering a wide range of applications and efficient in as many cases 

as possible. 

The 10 material parameters embedded in our model are identified in Section 5 by comparing 

closed form solutions (Section 4) with experimental and numerical data extracted from the 

literature. These data concern uniaxial tension and shear tests, both parallel and transverse 

to the fiber direction [3, 4], as well as shear calculations with 9 different fiber angles [5]. The 

most complicated case to fit concerns the experimental data extracted from [3]. As reported 

in [11], it is difficult to match these data by using standard models such as the ones 

introduced in [24-26]. To the best of our knowledge, there are few models in the literature 

attempting to match these data, except those proposed in [3] and [11] which use non 

classical measure of strain and provide satisfactory predictions with only 4 material 
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parameters. However, these models use a case sensitive material parameter introducing 

possible discontinuities in the stress tensor when the fibers change from a tension to a 

compression state. The model proposed in this paper contains more parameters (10 against 

4) but ensures the stress continuity. 

Due to the variety of the considered situations, we have developed in Section 5.1 specific 

identification strategies based on: 1) the linear or nonlinear nature of the material 

parameters of the model; 2) the modeling of the free boundary conditions by a spectral 

approach. These strategies have been implemented in the Octave free software [16]. 

 

Notations 

A bold-face Latin lowercase letter, say a, and a bold-face Latin capital letter, say A, will 

denote a vector and second-order tensor, respectively. The standard Euclidean inner 

product in a n vector space dimension, and its related norm, are defined by: 

< ��, � >= ∑ �	
�
�	�	
�  ; ‖�‖ = �∑ (�	)��	
�  

The product between two vectors a and b, and between two tensors A and B are 

respectively defined by: (� ⊗ �)	
 = �	�
 ;  (� ⊗ �)	
�� = �	
��� 
 

2. Preliminaries 

2.1. Kinematics and basic continuum mechanics 

Consider a continuum body V with particle P ∈ V which is embedded in the 

three-dimensional Euclidean space at given instant of time t. As the continuum body V 

moves in space from one instant of time to another it occupies a continuous sequence of 

geometrical regions denoted by �� … �	 . ��  is referred to as the fixed reference 

(undeformed or Lagrangian) configuration ( = 0) of the body V while the configuration t is 

called the current (deformed or Eulerian) configuration. The position " of particle P in the 

current (or deformed) configuration can be deduced by the motion # that depends on its 

initial position vector $ and the time  : 

 " = #($,  ) (1) 
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The transformation gradient tensor % is defined by: 

 % = &"&$ = ' + &)($,*)&$  (2) 

where ' is the unity tensor and )($,  ) = " − $ is the displacement vector of the particle. 

The tensor , is the so-called right Cauchy-Green strain tensor: 

 , = %-% (3) 

In terms of stress tensor, we remind that the second Piola-Kirchhoff stress tensor . and the 

corresponding Cauchy stress tensor / are obtained by differentiating a SEF W with respect 

to C: 

 . = 2 &1&, − 2,3� (4) 

 / = 43�%.%- (5) 

where the extra pressure 2  is included in the formulation to account for the 

incompressibility condition 4 = det(%) = 1. Replacing Eq. (4) into Eq. (5) leads to: 

 / = 243�% &1&, %- − 2' (6) 

The so-called first Piola-Kirchhoff stress tensor ∑, and the nominal stress 9, are deduced 

from Eq. (6) by:  

 ∑ = 4/%3- = 2% &1&, − 2%3- ;  9 = ∑- = 4%3�/ = 2 &1&, %- − 2%3� (7) 

Note that, in the following, the time   will be omitted because we will only deal with static 

problems. 

 

2.2. Invariants and strain energy functions 

In this paper, we focus on a fiber-reinforced material with one fiber family of direction � as 

depicted on Figure 1. We assume that � lies in the plane (:�, :�), forms an angle ; ∈ =0, >�? 

with :�, and that � is a perpendicular vector to � in the plane (:�, :�): 

 � = @AB0C ;  � = @−BA0 C    with A = AGB(;), B = BHI(;)  (8) 

The vector J is defined as the cross product between � and � in order to form a direct 

orthogonal coordinate system (�, �, J): 
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 J = �⋀� = L001M (9) 

 

Figure 1 – A fiber-reinforced material with one-fiber family 

 

In [1], Ta et al. have introduced a set of five invariant polynomials related to C and forming 

an integrity basis of the ring of invariant polynomials under the action of the material 

symmetry group G. The introduction of these invariants was based on the concepts of the 

Noether’s theorem, but with an extension of the classical Reynolds operator in order to 

account for the infinite cardinality of G. The polyconvexity of these invariants, noted below 

Ki, is discussed in [2]. They are defined with respect to six coefficients N	  related to the 

strain tensor C: 

 OP� = N� ;  P� = N� + NQ ;  PQ = NR� + NS� ;  PR = NT� − N�NQ PT = (NR� − NS�)(N� − NQ) + 4NRNSNT  (10) 

 VN� = 〈,�, �〉 ;  N� = 〈,�, �〉 ; NQ = 〈,J, J〉NR = 〈,�, �〉 ; NS = 〈,�, J〉 ;  NT = 〈,�, J〉 (11) 

A SEF W being generally defined as a function of C or of its invariants, we assume that 

Y(P�, P�, PQ, PR, PT). The nominal stress 9 in the equation (7) can therefore be written as: 

 9 = 2 ∑ Z	 &[\&,T	
�,	]S %- − 2%3� (12) 

Where Z	 represent the derivatives of W with respect to P	: 
 Z	 = &1&[\ (13) 

The derivatives 
&[\&,  are calculated straightforwardly from Eqs. (10) and (11): 
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 _̀̂
_a

&[b&, = cd     ;    &[e&, = cf + cg = ' − cd&[h&, = 2NRcdf + 2NScg  ;  &[i&, = 2NTcfg − N�cg − NQcf&[j&, = 2(NRcdf + NScdg)(N� − NQ) + (NR� − NS�)(cf − cg)+4(NRNScfg + NRNTcdg + NSNTcdf)
 (14) 

where the symmetric matrix cd, cf, cg, cdf, cdg  and cfg are defined by: 

 kc� = � ⊗ l ;  c� = � ⊗ � ; cJ = J ⊗ J ; c�� = �� (� ⊗ � + � ⊗ �)c�J = �� (� ⊗ J + J ⊗ �) ;  c�J = �� (� ⊗ J + J ⊗ �)  (15) 

To use Eqs. (12)-(13) later, it is necessary to express how W depends on Ki. This issue is 

discussed in the next section. 

 

3. Material model 

Cai et al. [2] have introduced various SEF combining the invariants defined by (10) in a 

polynomial and in a power law form. However, among these various SEF, the one providing 

the best fitting with experimental data involves up to 23 material parameters. In order to 

provide easier-to-use SEF, it is necessary to work with less material parameters. The 

simplification from the baseline model was performed by trying to match properly the 

experimental data extracted from [3] because it was the most complicated fitting case we 

met. It is for example observed in Figure 2 that it is mandatory for a model to provide a linear 

behavior for matching appropriately the two shear loadings applied parallel and transverse 

to the fiber direction in the range of moderate deformation of the experimental data 

extracted from [3]. 

 

 

 

 

 

 

 

Material A Material B 
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Figure 2 – Simple shear loading applied parallel and transverse to the fiber direction – 

Nominal shear stress vs. the amount of shear deformation [3] 

 

According to the experimental results presented in Figure 2, two conditions must be held: 

Condition 1: the dependence of the shear stress with respect to the shear strain must be 

linear in the range of moderate deformation of the experimental data, 

Condition 2: the slopes of the linear dependence must be different if the shear loading is 

applied parallel or transverse to the fiber direction. 

By using these two conditions as a guideline for building a model simpler than the baseline 

model introduced in [2], we have tested many combinations with the smallest number of 

parameters as possible. The best model we succeeded to build combines the following 

polynomial expansion with a case-sensitive function Ydmm: 

 Y = �� n��(P� − 2)� + �QPQ� + �R(PR + 1)�o + ��R(P� − 2)(PR + 1) 

 + �QPQ + �TPT + ��R(P� + PR − 1) + Ydmm (16) 

 Ydmm =
O �� p��(P� − 1)� + qPQ(rs2tu(P� − 1)�v − 1)w  if P� ≥ 1  0                                                                                    
 (17) 

The number of material parameters is thus reduced to 10. This new SEF offers many other 

advantages: 

1. The invariants used to build the SEF form an integrity basis, as reported in [1], and their 

polyconvex properties were discussed in [2]. In addition, it is possible to attribute a 

physical sense to them, as demonstrated in [2]: 1) K1 represents the elongation squared 

in the fiber direction; 2) K2 is the elongation squared in the isotropic plane perpendicular 

to the fiber direction; 3) K3 is linked to the total amount of shear strain between the 

fiber direction and the isotropic plane; 4) -K4 is the deformation of an area element with 

a unit normal parallel to the fiber direction; 5) K6 is related to the along-fiber shear effect 

between two adjacent fibers and to the shear interaction between the matrix and the 
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fiber. 

2. Since K1 represents the elongation squared in the fiber direction, the case-sensitive part 

(17) of the SEF indicates that a compressive state of the material (K1<1) does not 

produce any stress. This observation is consistent with the literature [13]. 

3. Since K1 represents the elongation squared in the fiber direction and K3 the total amount 

of shear strain between the fiber direction and the isotropic plane, the additional SEF 

Ydmm mixes tension and shear effects through the product of rs2tu(P� − 1)�v by PQ. 

This property will be useful for identifying the material parameters when both uniaxial 

tension and simple shear tests will be considered in Section 5. 

4. The exponential growth included in the case-sensitive part of the SEF is suitable for 

capturing the large deformations generally occurring with hyperelastic materials [17, 

18]. 

5. An exponential function can be differentiated as many times as desired, without any 

restrictions. This property is interesting for planning later a finite element 

implementation. 

6. As it will proved in further sections 5.2 to 5.4, an excellent correlation is obtained by 

comparing the SEF (16) with many experiments from the literature. Particularly, our 

model fits perfectly the experimental data if tensile and shear loadings are applied 

parallel or transverse to the fiber direction [3, 4], and if the shear loading angle takes 9 

different values between 0 and 
>� [5]. 

It can be observed that the 10 material parameters involved in Eqs. (16) and (17) play a 

different role with respect to the invariants Ki: a linear dependence for b3, b6 and b24; a 

quadratic dependence for a1, a2, a3 and a4; a coupling dependence (between K2 and K4) for 

a24, and finally an exponential dependence for α and β. It is also noted that the proposed 

SEF does not contain any linear contribution with respect to K1. This lack is due to the need 

of ensuring the continuity of the case-sensitive expression (17), when the stress tensor is 

derived from the SEF. It is also observed that a quadratic term with respect to the shear 

invariant K6 is missing. This is because adding a quadratic contribution with respect to K6 will 

have no effect on uniaxial tension stress (Eqs. (33) and (34)), neither on shear stress if a 
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shear loading is applied parallel to the fiber direction (Eq. (51)). The only effect appears if a 

shear loading is applied transverse to the fiber direction (Eq. (52)) and, in that case, we have 

checked that a quadratic contribution will not improve significantly the accuracy of the 

numerical results. Moreover, it is noticed that Eqs. (16)-(17) are consistent with a standard 

property stating that a SEF must be equal to zero if the material is at rest. Actually, if the 

material is at rest, the displacement is equal to zero and, from Eqs. (2)-(3), both tensors F 

and C are equal to the identity matrix I. Consequently, it follows from Eqs. (10)-(11) that: 

 N� = N� = NQ = 1 ;  NR = NS = NT = 0 (18) 

 P� = 1 ;  P� = 2 ;  PQ = PT = 0 ; PR = −1 (19) 

Reporting Eq. (19) in Eqs. (16)-(17) proves that W=0. 

Finally, in view of determining the stress from the SEF introduced by Eq. (16)-(17), it is 

necessary to first calculate the derivatives of W with respect to P	, as defined by Eq. (13): 

 Z� = &1&[b =
V p�� + quPQrs2tu(P� − 1)�vw(P� − 1)   if P� ≥ 1     0                                                                         otherwise
 (20) 

 Z� = &1&[e = ��(P� − 2) + ��R + ��R(PR + 1) (21) 

 ZQ = &1&[h = �QPQ + �Q +
O }� (rs2tu(P� − 1)�v − 1)   if P� ≥ 1   0                                              otherwise (22) 

 ZR = &1&[i = �R(PR + 1) + ��R + ��R(P� − 2) (23) 

 ZT = &1&[j = �T (24) 

From this calculation, it is possible to check that a material at rest is stress-less, a fact that 

makes sense. Because the extra pressure term p equals zero for a material at rest, it follows 

from Eq. (6) that the Cauchy stress reduces to: 

 / = 2 &1&, = 2 ~Z� &[b&, + Z� &[e&, + ZQ &[h&, + ZR &[i&, + ZT &[j&, � (25) 

It next comes straightforwardly from Eqs. (14) and (18) that: 

 
&[b&, = cd ;  &[e&, = − &[i&, = ' − cd  ;  &[h&, = &[j&, = � (26) 
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Reporting Eq. (26) in Eq. (25) gives: 

 / = 2pZ�cd + (Z� − ZR)(' − cd)w (27) 

The coefficients ω1, ω2 and ω4 are calculated by reporting Eq. (19) in Eqs. (20), (21) and (23): 

 Z� = 0 ;  Z� = ZR = ��R (28) 

As expected, reporting Eq. (28) in Eq. (27) finally yields to / = �. 

 

4. Closed form solutions for uniaxial tension and simple shear tests 

4.1 Uniaxial tension test 

Consider a cubic block of material subjected to a simple tension loading t as shown in Figure 

3. The loading is applied parallel to the fiber direction (left part of Fig. 3) or transverse to the 

fiber direction (right part of Fig. 3). The left face (opposite to t), and the two lateral faces 

(down and back) of the block are simply supported. The two last faces (up and front) are 

free. 

 

 

Figure 3 – Uniaxial tension test 

 

By using the incompressibility condition 4 = det(%) = �����Q = 1 (where λ1, λ2 and λ3 

represent the principal stretches), and by considering the loading and the boundary 

conditions applied to the block of material, one obtains a diagonal matrix for the 

deformation tensors F and C and for the stress tensor P: 

 % = ��� 0 00 �� 00 0 ��3���3�� ⇒ , = ���� 0 00 ��� 00 0 ��3���3�� (29) 
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 9 = ����	 0 00 ���	 00 0 �QQ	 � (30) 

The diagonal component ���	  represents the tensile stress in the loading direction, while 

the two other diagonal terms ���	  and �QQ	  are related to the free faces of the cubic block. 

The superscript i stands for p or t, depending on whether the loading is parallel or transverse 

to the fiber direction. The three diagonal components of P, corresponding to these two 

loading cases, are given by [2]: 

 O���� = 2Z��� − 2��3� ;  ���� = 2(Z��� − ZR��3���3�) − 2��3��QQ� = 2(Z� − ZR���)��3���3� − 2����  (31) 

 O���* = 2(Z��� − ZR��3���3�) − 2��3� ;  ���* = 2Z��� − 2��3��QQ* = 2(Z� − ZR���)��3���3� − 2����  (32) 

The free loading condition P33=0 is used with the third equations of (31)-(32) for eliminating 

the extra pressure p from the two first equations of (31) and (32): 

 ���� = 2tZ��� − Z���3Q��3� + ZR��3Qv ; ���� = 2Z�t�� − ��3���3Qv (33) 

 ���* = 2Z�(�� − ��3Q��3�) ; ���* = 2tZ��� − Z���3���3Q + ZR��3Qv (34) 

If the stretches λ1 and λ2 are switched together, it is noticed that ����  corresponds to ���* , 

and ����  to ���* . That makes sense because the role played by the two directions E1 and E2 is 

reversed if the loading is applied parallel or transverse to the fiber direction. 

In order to calculate the three coefficients ω1, ω2 and ω4 involved in Eqs. (33)-(34), the three 

vectors a, b and c are determined from Eqs. (8)-(9): 

 ; = 0: � = L100M ;  � = L010M ;  J = L001M  (35) 

 ; = >�: � = L010M ;  � = L−100 M ;  J = L001M  (36) 

Eqs. (10), (11), (35) and (36) next yield to: 

 ; = 0: V N� = ��� ;  N� = ��� ;  NQ = ��3���3� ;  NR = NS = NT = 0 P� = ��� ;  P� = ��� + ��3���3� ; PQ = PT = 0 ; PR = − ��3� (37) 

 ; = >�: V N� = ��� ;  N� = ��� ;  NQ = ��3���3� ;  NR = NS = NT = 0 P� = ��� ;  P� = ��� + ��3���3� ; PQ = PT = 0 ; PR = − ��3� (38) 

ω1, ω2 and ω4 can then be calculated from Eqs. (20), (21), (23), (37) and (38): 
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 ; = 0: VZ� = ��(��� − 1) ; Z� = ��(��� + ��3���3� − 2) + ��R + ��R(1 −  ��3�)ZR = �R(1 −  ��3�) + ��R + ��R(��� + ��3���3� − 2)    (39) 

 ; = >�: VZ� = 0 ;  Z� = ��(��� + ��3���3� − 2) + ��R + ��R(1 −  ��3�)ZR = �R(1 −  ��3�) + ��R + ��R(��� + ��3���3� − 2)     (40) 

As a consequence of the case-sensitive expression (20), Z� is equal to zero if ; = >� while 

it is not if ; = 0. Actually, in the case of a tensile loading parallel to the fiber direction (; = 0), it results from Eq. (37) that P� = ��� ≥ 1, giving a non-zero contribution for Z�. 

On the contrary, in the case of a tensile loading transverse to the fiber direction �; = >��, it 

results from Eq. (38) that P� = ��� ≤ 1 since the lateral free faces of the block of material 

are shrunk. In this situation, as a consequence of the case-sensitive expression (20), Z� is 

equal to zero. In order to express the tensile stress with respect to the stretches λ1 and λ2, 

we finally report Eqs. (39)-(40) in Eqs. (33)-(34): 

 ���� = 2t(��� − 1)���� − (��� + ��3���3� − 2)��3Q��3��� + (1 − ��3�)��3Q�R 

 +(��� + 2��3���3� − 2 − ��3�)��3Q��R + (1 − ��3�)��3Q��Rv (41) 

 ���� = 2t��(��� + ��3���3� − 2) + ��R + ��R(1 −  ��3�)vt�� − ��3���3Qv (42) 

 

 ���* = 2t��(��� + ��3���3� − 2) + ��R + ��R(1 −  ��3�)vt�� − ��3Q��3�v (43) 

 ���* = 2t−(��� + ��3���3� − 2)��3���3Q�� + (1 − ��3�)��3Q�R 

 +(��� + 2��3���3� − 2 − ��3�)��3Q��R + (1 − ��3�)��3Q��Rv (44) 

It is observed that the stresses described by Eqs. (41)-(44) depend on 5 material parameters 

(a1, a2, a4, b24 and a24), among the 10 embedded in the model, and also on the two stretches 

λ1 and λ2. During a uniaxial tensile stress, λ1 is always a known data while λ2 can be 

measured [3] or not [4]. If λ2 has been measured, the measurements are reported in Eqs. (41) 

and (43) for calculating the tensile stress. It is then noted that the dependence of the tensile 

stresses is linear with respect to the material parameters. On the contrary, if λ2 is not 

measured during the experiments, we have to calculate it from Eqs. (42) and (44) by using 

the free loading condition ��� = 0: 

 ; = 0: �� = ���b (45) 

 ; = >�: ��� = de3�dei�be�di�bi�be��de3fei3dei�(di3de�fei3�dei)�be�dei�bi� (46) 

It can be noted that Eq. (45) can also be found by using the incompressibility condition 
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�����Q = 1. The two directions E2 and E3 actually play the same role if ; = 0, and thus 

λ2=λ3. Using this equality with �����Q = 1 gives ����� = 1, which is equivalent to (45). Also 

note that reporting Eq. (45) in Eq. (41) does not change the nature of the tensile stress with 

respect to the material parameters which is still linear. However, if ; = >�, reporting Eq. (46) 

in Eq. (43) leads to a situation where the tensile stress depends nonlinearly on the 4 material 

parameters a2, a4, b24 and a24. All these observations are of prime importance in order to 

select the appropriate optimization process for identifying the material parameters of the 

model. This identification will be performed in Section 5. 

 

4.2 Simple shear test 

A shear experiment is driven by the shear deformation k which is considered as a known 

data. As shown in Figure 4, the field displacement U related to a block of material subjected 

to a simple shear deformation is expressed in a linear form with respect to k: 

 ) = ���:� (47) 

It follows from Eqs. (2)-(3) that the corresponding strain tensors are: 

 % = L1 � 00 1 00 0 1M ⇒ , = L1 � 0� �� + 1 00 0 1M (48) 

 

 

Figure 4 – Simple shear test 

 

Prior to calculate the stress tensor, we first need to determine the invariants Ki and their 

related coefficients ρi from Eqs. (10)-(11): 
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 VN� = 1 + ��B� + 2�AB  ;  N� = 1 + ��A� − 2�AB ;  NQ = 1NR = �(A� − B�) + ��BA ;  NS = NT = 0  (49) 

 VP� = 1 + ��B� + 2�AB   ;  P� = 2 + ��A� − 2�AB ;  PQ = ��(A� − B� + �AB)�PR = −1 − ��A� + 2�AB ;  PT = �Q(A� − B� + �AB)�(�A� − 2AB)  (50) 

Since the angle θ belongs to the interval =0, >�?, c and s are positive, and then K1 is larger 

than 1. The first occurrence of the case-sensitive expressions (20) and (22) must therefore be 

used. In the particular case of a loading parallel (A = 1, B = 0) or transverse (A = 0, B =
1) to the fiber direction, the nominal shear stress component adopts a simple form as 

reported in [2]: 

 ; = 0:  ��� = 2t(Z� + ZQ − ZR)� − ZR�Qv (51) 

 ; = >� : ��� = 2t(Z� + ZQ − ZR)� − ZT�Qv (52) 

In order to calculate the coefficients ω2, ω3, ω4 and ω6 of Eqs. (51)-(52) with respect to the 

fiber angle θ, we report Eq. (50) in Eqs. (21)-(24): 

 ; = 0: VZ� = (�� − ��R)�� + ��R ;  ZQ = �Q�� +  �Q  ZR = (��R − �R)�� + ��R ;  ZT = �T     (53) 

 ; = >�: Z� = ��R ;  ZQ = �Q�� +  �Q + }� (rs2tu�Rv − 1) ; ZR = ��R ;  ZT = �T   (54) 

And, by reporting Eqs. (53)-(54) in Eqs. (51)-(52): 

 ; = 0: ��� = 2t�Q� + (�� + �R − 2��R + �Q − ��R)�Q + (�R − ��R)�Sv (55) 

 ; = >�: ��� = 2 =��Q − }�� � + (�Q − �T)�Q + }� rs2tu�Rv�? (56) 

In Eqs. (55) and (56), it is noticed a difference of −q� between the linear terms with k, 

meaning that the linear contributions have a different slope. The initial linear slope is 

actually equal to 2�Q for a shear loading parallel to the fiber direction while this initial linear 

slope is equal to 2�Q − q for a shear loading transverse to the fiber direction. Hence, the 

two initial linear slopes are not equal with a difference driven by the material parameter q 

and condition 2 introduced in section 3 is fulfilled. This particularity is of a major importance 

in view of fitting properly the experimental shear stress extracted from [3]. Actually, this 

shear stress behaves linearly with k (Fig. 2), but with a different slope depending on if the 

shear loading is applied parallel or transverse to the fiber direction. Our model is therefore 

able to well predict this kind of behavior (Fig. 8 and 10). 

However, as reported in [5], it is also possible to be faced to a shear loading not necessarily 
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parallel or transverse to the fiber direction. In such situations, we have to establish more 

general formulas than Eqs. (55)-(56) by first reporting Eqs. (8)-(9) in (15), and next reporting 

the result in Eq. (14): 

 

_̂_
__
__̀
__
__
__
a &[b&, = LA� AB 0AB B� 00 0 0M ; &[e&, = L−B� −AB 0AB A� 00 0 1M ; 

&[h&, = �(A� − B� + �AB) L −2AB A� − B� 0A� − B� 2AB 00 0 0M 
 &[i&, = L−B� BA 0BA −A� 00 0 −1 − ��A� + 2�ABM

&[j&, = ��(A� − B� + �AB)A(�A − 2B) L −2AB A� − B� 0A� − B� 2AB 00 0 0M
+��(A� − B� + �AB)� L−B� −AB 0AB A� 00 0 −1M

 (57) 

It follows straightforwardly from Eqs. (6), (20)-(24), (48), (50) and (57) that the Cauchy stress 

tensor adopts the particular form: 

 / = L��� ��� 0��� ��� 00 0 �QQM (58) 

 ��� = 2p�B�(�B + A)(�B + 2A)�� + �A�(�A − B)(�A − 2B)(�� + �R − 2��R) 

 +�Q(A� − B� + �AB)Q(A� − B� + 2�AB)�Q + �(A� − B� + �AB)(A� − B� + 2�AB)�Q 

 +��A(A� − B� + �AB)t(�A − 2B)(A� − B� + 2�AB) + (�A − B)(A� − B� + �AB)v�T 

 +�(A� − B� + �AB)trs2(ut�B(�B + 2A)v�)u(�B)�(�B + A)(�B + 2A) 

 + ge3�e���g�� (rs2(ut�B(�B + 2A)v�) − 1)? q� (59) 

 ��� = 2p�BQ(�B + 2A)�� − �AB�(�A − 2B)(�� − ��R) + 2�QAB(A� − B� + �AB)Q�Q 

 +(�A − B)��A(2B − �A)(�R − ��R) + �A(�A − 2B)��R + 2�AB(A� − B� + �AB)�Q 

 +��(A� − B� + �AB)t(A� − B� + �AB)(1 + A�) + 2A�B(�A − 2B)v�T 

 +�B(A� − B� + �AB)trs2(ut�B(�B + 2A)v�)u(�B)�(�B + 2A)(A� − B� + �AB) 

 +A(rs2(ut�B(�B + 2A)v�) − 1)vqw (60) 

Note that the extra pressure p was eliminated from Eqs. (59)-(60) by using the plane stress 

condition �QQ = 0. It is also noted that all the 10 material parameters of the model are 

involved in the stress expressions, except b24 which is only concerned by the normal stress 
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���. It is finally observed that the material parameters a24 appears in Eq. (60) with the 

expressions �� − ��R and �R − ��R while it appears in Eq. (59) with the expression �� +
�R − 2��R . We can therefore deduce from the basic equality �� + �R − 2��R = (�� −
��R) + (�R − ��R) that a24, a2 and a4 are not independent material parameters. This is why 

only �� − ��R and �R − ��R are provided in Table 6. Performing an identification process 

based on only shear experiments using the stress components ��� and ��� only allows to 

identify 9 of the 10 material parameters of our model. 

 

5. Material parameter identification 

In order to identify the 10 material parameters ��, ��, �Q, �R, ��R, �Q, �T, ��R, q and 

u of our model, we have used the classical coefficient of determination ��: 

 �� = 1 − �������� (61) 

Where ���� and �*�* are respectively the residual sum and the total sum of squares over 

the number of experimental data n: 

 ���� = ‖� − �‖� = ∑ ( 	 − ¡	)��	
�  ;  �*�* = ‖� − �¢‖� = ∑ ( 	 −  £)��	
�  (62) 

 	 stands for the experimental data, ¡	  for the theoretical data and  £ for the mean of the 

experimental data: 

  £ = �� ∑  	�	
�  (63) 

The closest to 1 �� is, the best the fit of the experimental data by the theoretical data will 

be. The aim is thus to find the set of material parameters (��, ��, �Q, �R, ��R, �Q, �T, ��R, q, u) 

minimizing the ratio 
��������. 

 

5.1 Optimization strategies 

As outlined before, the nature of the theoretical stress is partly linear and partly 

nonlinear with the material parameters, depending on the loading condition. For example, if 

the stretch λ2 is known, Eqs. (41)-(43) show that the two tensile stresses, parallel and 

transverse to the fiber direction, are linear with respect to a1, a2, a4, a24 and b24. On the 

contrary, if the stretch λ2 is unknown, it is necessary to report Eqs. (45)-(46) in Eqs. (41)-(43) 

and the tensile stress transverse to the fiber direction becomes nonlinear with respect to a2, 
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a4, a24 and b24 while the tensile stress parallel to the fiber direction remains linear. Regarding 

the shear stress, if the loading is parallel to the fiber direction, Eq. (55) shows a linear 

dependence with respect to a2, a4, a24 and b3 while Eq. (56) shows a linear dependence with 

respect to a3, b3, b6 and α but a nonlinear dependence with respect to β. In the general case 

of any shear angle, Eqs. (59)-(60) show that the dependence is linear with respect to 9 of 10 

material parameters, namely a1, a2, a3, a4, a24, b3, b6, a24, b24 and α, while the dependence is 

nonlinear with respect to β. All these remarks suggest that it could be possible to take 

advantage of all the existing linear dependences in order to elaborate efficient optimization 

algorithms. The strategy consisting in splitting the material parameters in two categories, 

linear and nonlinear, has been already used in [19]. In this context, we note lp the vector 

storing the linear material parameters, and nlp the vector storing the nonlinear ones. With 

these notations the theoretical stress f can be written in a generic form as follows: 

 � = ∑ ¤2
¥¦§

� 
̈ (64) 

Where Nlp stands for the number of linear material parameters included in the model. The 

Nlp vectors 
̈ are built according to the theoretical equations (41), (43), (45), (46), (55), (56), 

(59) and (60). Each of them: 

• is of dimension n, 

• stores the stress contribution corresponding to each of the n stretches λ1 (or of the n 

shear deformation k) measured during the experiments, 

• is associated with the linear material parameter lpj, 

• depends on the nonlinear material parameters stored in nlp. 

In order to minimize the objective function 
��������, Eq. (64) is reported in the left equation of 

(62): 

 ���� = ‖�‖� + ‖�‖� − 2〈�, �〉 = ‖�‖� + 〈©ª, c ©ª〉 − 2〈�, ©ª〉 (65) 

M is a Nl x Nl matrix whose components are defined by «
� = 〈 
̈ , ¨�〉 and b is a 

Nl-dimension vector of component: �
 = 〈�, 
̈〉. Because the vectors 
̈ depend on the 

nonlinear material parameters nlp, the matrix M and the vector b too: M(nlp), b(nlp). Note 

that we have considered ����  instead of 
��������  because �*�*  does not depend on the 

material parameters. Minimizing ���� with respect to the material parameters is therefore 
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equivalent to the minimization of 
��������. From a practical point of view, we have implemented 

�������� because a relative criterion is numerically better than an absolute one. However, for the 

sake of simplicity, we will keep ���� in the following for the theoretical calculation. In the 

RHS of Eq. (65), the first term is a constant value with respect to the linear material 

parameters lp, the dependence of the second term is quadratic with lp and linear with the 

third. We are thus faced to a standard least square optimization problem and the solution is 

easily found by deriving the RHS of Eq. (65) with respect to ©ª: 

 c(¬©ª) ©ª = �(¬©ª) (66) 

Note that Eq. (66) is a linear system with respect to lp, but not with respect to nlp. We 

therefore need to solve iteratively Eq. (66) inside a loop. We have implemented this loop in 

the Octave free software [16], and the optimization related to the nonlinear material 

parameters was performed with the fminbnd or fminsearch functions, depending on if the 

number of nonlinear parameters is one or strictly greater that one. The corresponding 

algorithm is presented in Figure 5. It should be noted that splitting the material parameters 

into two categories allows to save computation time because the optimization related to the 

nonlinear material parameters concerns a small number of parameters and solving the linear 

system (66) with respect to the linear material parameters is very fast. 

 

 

 

 

 

 

 

 

 

Figure 5 – Flow chart of the optimization process in the case where λ2 is an unknown data 

 

However, in some circumstances of tensile loading, the free boundary condition ��� = 0 

• Step 1: Set a tolerance value ε 

• Step 2: Set the initial values of the linear and nonlinear parameters lp and nlp 

• Step 3: Calculate the objective function ���� with Eq. (65) 

• Step 4: Optimization loop 

Do while ���� > ­ 

Update nlp by minimizing ���� (fminbnd or fminsearch) 

Update lp by solving the linear system (66) 

Update the objective function ���� with Eq. (65) 

Enddo 
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must be included in the optimization process. For example, if λ2 is known from experimental 

measurements, we do not need to use Eqs. (42) and (44) to get λ2. In such a case, the free 

boundary condition ��� = 0 is not automatically satisfied while it must hold. On the 

contrary, if the stretch λ2 is unknown, we use Eqs. (42) and (44) to get λ2 and the condition ��� = 0 is automatically satisfied. Several strategies to enforce a stress to be zero during an 

optimization process are discussed in [20]. One of the main difficulties comes from the 

necessity to work with a relative objective function because we have to divide ���� by �*�*, 

and �*�* is equal to zero if ��� is equal to zero. To overcome this difficulty, we propose an 

original method based on a spectral analysis. This method consists in using again Eq. (66), 

but with a null vector instead of b since y is now equal to zero: 

 c��(¬©ª) ©ª = � (67) 

The superscript 22 is introduced in Eq. (67) in order to refer to the stress component ���, 

and also to avoid any misunderstanding with the matrix M(nlp) of Eq. (66). A non-trivial 

solution of Eq. (67), that is to say a non-zero vector lp, is provided by the eigenvectors of 

c��(¬©ª) related to a null eigenvalue. It is therefore possible to expand lp with an 

eigenvector basis, says eig, related to the 0 proper vector subspace (of dimension N0) of 

c��(¬©ª): 

 ©ª = ∑ ��¥®�
� ¯°±� (68) 

Eq. (68) is next reported in Eq. (65): 

 ���� = ‖�‖� + 〈�, ² �〉 − 2〈J, �〉 (69) 

N is a N0 x N0 matrix whose components are defined by ³�´ = 〈¯°±�, c ¯°±´〉, c is a 

N0-dimension vector of component A� = 〈�, ¯°±�〉, and a is a N0-dimension vector storing 

the component ap of lp in the eigenvector’s expansion (68). Because N and c are related to 

M and b, they also depend on the nonlinear material parameters nlp: N(nlp), c(nlp). Eq. (69) 

is again a standard least square optimization problem whose solution is easily found by 

deriving the RHS of Eq. (69) with respect to a: 

 ²(¬©ª) � = J(¬©ª) (70) 

We have therefore obtained an equation similar to Eq. (66), but with a lower size since N0 is 

lower than Nl. N0 is actually the dimension of a proper vector subspace included in a vector 
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space of dimension Nl. Since Eq. (70) is a linear system with respect to a, but not with 

respect to nlp, we need to solve it iteratively inside a loop. The corresponding algorithm 

developed with Octave is presented in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Flow chart of the optimization process in the case where λ2 is a known data 

 

5.2 Comparison between the model (16) and the data of Ciarletta et al. [3] 

The experimental data obtained in [3] are used in this section as a reference to identify 

the material parameters of our model. These data concern two different fiber-reinforced 

rubbers materials under uniaxial tension and shear deformations, with a loading direction 

parallel or transverse to the fiber direction. The materials are made of soft silicone rubbers 

reinforced by polyamide or hard silicone rubber. These two kinds of materials are 

respectively referenced as Mat. A and Mat. B. The corresponding material parameters are 

shown in Tables 1 and 2. They were identified by using the algorithm of Figure 6 because λ2 

was measured during the tensile test in [3]. The stress prediction was computed by applying 

the following analytical formulas: Eqs. (41) and (43) for the tensile loading and Eqs. (55)-(56) 

for the shear loading. 

 

�� �� �Q �R ��R 

0.049 0.030 0.073 0.27 0.081 

• Step 1: Set a tolerance value ε 

• Step 2: Set the initial values of the linear and nonlinear parameters lp and nlp 

• Step 3: Calculate the objective function ���� with Eq. (65) 

• Step 4: Optimization loop 

Do while ���� > ­ 

Update nlp by minimizing ���� (fminbnd or fminsearch) 

Compute the eigenvectors of c��(¬©ª) related to the eigenvalue 0 

Update a by solving the linear system (70) 

Update lp by using the spectral decomposition (68) 

Update the objective function ���� with Eq. (65) 

Enddo 
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�Q �T ��R q u 

0.043 -0.85 0.069 -0.18 -6.2 1010 

Table 1 – Identified material parameters – Mat. A 

 

�� �� �Q �R ��R 

1.48 0.24 -2.05 4.7 1.5 

�Q �T ��R q u 

0.093 -40 0.73 -11 -2.9 1010 

Table 2 – Identified material parameters – Mat. B 

 

The comparisons between the experimental and the numerical results are presented on 

Figures 7 and 8 for Mat. A and on Figures 9 and 10 for Mat. B. From these figures, we can 

observe that the numerical results match very well the experimental data. This is confirmed 

by the coefficients of determination �� presented in Table 3. Compared to the best model 

proposed in [2], we find the same coefficient of determination for Mat. A, and almost the 

same for Mat. B, with a reduction of the number of material parameters from 23 to 10. In 

the case of material B, it is observed that two loadings (Figs. 9a and 10a) provide result 

slightly worse than the two others (Figs. 9b and 10b). In Fig. 9a, the behavior curve presents 

several curvature changes: first concave, then convex, and finally slightly concave. This kind 

of behavior is difficult to predict, especially in a situation where we need to match 

simultaneously 4 loading cases. Fig. 10a concerns a situation where the experimental data 

are scattered with a large standard deviation, and it is well known that fitting such 

experimental data is challenging. By using a model including more than 10 material 

parameters, such as in [2] with 23 material parameters, it is possible to improve the accuracy, 

with a coefficient of determination R2 changing from 0.98 to 0.99 and from 0.97 to 0.99 

respectively, as reported in Table 3. However, this is a very slight increase and the price to 

pay for improving results by so little does not worth it. 

 

 

(a) (b) 
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Figure 7 – Tensile stress Mat. A – loading parallel (a) and transverse (b) to the fiber direction 

 

  

 

 

 

 

 

 

  

Figure 8 – Shear stress Mat. A – loading parallel (a) and transverse (b) to the fiber direction 

 

 

 

 

 

 

 

Figure 9 – Tensile stress Mat. B – loading parallel (a) and transverse (b) to the fiber direction 
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Figure 10 – Shear stress Mat. B – loading parallel (a) and transverse (b) to the fiber direction 

 

SEF 

Tension Shear 

parallel transverse parallel transverse 

Mat A Mat B Mat A Mat B Mat A Mat B Mat A Mat B 

Eqs. (16)-(17) 1 0.98 1 0.99 1 0.97 1 1 

Eq. (75) in [2] 1 0.99 1 0.99 1 0.99 1 1 

Table 3 – Coefficient of determination �� 

 

5.3 Comparison between the model (16) and the data of Davis et al. [4] 

In this section, we consider uniaxial tension deformation and simple shear deformation of 

human medial collateral ligament (MCL) tissue. Quapp et al. [21] performed experiments on 

this kind of tissue under the cases of uniaxial tension deformation parallel and transverse to 

the fiber direction. Davis et al. [4] used later these experimental data to determine material 

parameters and to make predictions for simple shear parallel and transverse to the fiber 

direction. We compare our SEF with these two sets of experimental data covering a large 

scope of the material behavior. The values of material parameters for MCL tissue (Table 4) 

were determined by using the optimization method described in Section 5.1 and by applying 

the closed form solutions exhibited in Section 4. More precisely, the identification process 

was performed by using the algorithm of Figure 5 because λ2 has not been measured during 

the experiments. Eqs. (45)-(46) were thus used to compute λ2. The stress prediction is next 

calculated by applying the following analytical formulas: Eqs. (41) and (43) for the tensile 

loading and Eqs. (55)-(56) for the shear loading. The comparison between our model and the 

data extracted from [4] are shown in Figures 11 and 12. It is observed an excellent 

agreement confirmed by the corresponding coefficients of correlation (Table 5). The worst 
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case (��=0.99 in Fig. 11a) concerns a situation where the behavior curve presents several 

curvature changes: first concave, then convex, and finally slightly concave. As observed 

previously in section 5.2, these changes of curvature are difficult to predict, especially in a 

context where we need to match simultaneously four loading cases and find the best balance 

between them. 

 

�� �� �Q �R ��R 

40 12136 -9.05 12808 12465 

�Q �T ��R q u 

2.1 -65 1.1 46 11 

Table 4 – Identified material parameters – MCL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 – Tensile stress MCL – loading parallel (a) and transverse (b) to the fiber direction 

 

 

(a) (b) 
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Figure 12 – Shear stress MCL – loading parallel (a) and transverse (b) to the fiber direction 

 

SEF 
Tension Shear 

parallel transverse parallel transverse 

Eqs. (16)-(17) 0.99 1 1 1 

Table 5 – Coefficient of determination �� for MCL 

 

5.4 Comparison between the model (16) and the data of Horgan et al. [5] 

Horgan et al. [5] used recent experimental data, obtained by Feng et al. [22] with 

porcine brain white matter, to perform simple shear computations with 9 different values of 

the angle ;. We have used these 9 simple shear simulations as a reference for identifying 9 

of the 10 material parameters of our model (Table 6). As previously highlighted with Eqs. 

(59)-(60), it is actually reminded that using shear tests is not sufficient for identifying all the 

material parameters. It should be also outlined that the stresses are normalized in this 

section by a shear modulus µ equal to 1.49 kPa, according to [5]. This value of µ was 

previously determined in [22]. The values of material parameters for porcine brain white 

matter were identified by using the optimization method described in section 5.1 and by 

applying the closed form solutions exhibited in section 4. More precisely, the identification 

process was performed by using the algorithm of Figure 5 because it is obvious that λ2 is not 

measured during a shear test. The stress prediction is computed by applying the analytical 

formulas (59) for the shear stress and (60) for the normal stress. The comparisons between 

our model and the Horgan computations are shown in Figure 13. It is observed an excellent 

(a) (b) 
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agreement confirmed by the corresponding coefficients of correlation (Table 7). 

 

�� �� − ��R �Q �R − ��R 
 

7.7 10-3 4.05 10-5 1.2 10-3 -2.3 10-6 

�Q �T ��R q u 

1.4 10-3 -5.8 10-4 8.1 10-4 2.02 10-3 -2.5 

Table 6 – Identified material parameters – Porcine brain white matter 

 

 

 

 

 

 

 

 

 

Figure 13 – Porcine brain white matter – shear (a) and normal (b) stresses normalized by a 

shear modulus equal to 1.49 kPa 

 

θ 0° 30° 45° 60° 90° 

R2 σ12/µ 1 0.99 1 1 1 

θ 0° 5° 10° 15° 
 

R2 σ22/µ 0.99 0.99 0.99 0.99 

Table 7 – Coefficient of determination �� for porcine brain white matter 

 

It is observed in Table 6 that the identified values of the two coefficients �� − ��R and 

�R − ��R are very low compared to the values of the other material parameters. That 

indicates that these two coefficients likely play a minor role in a shear test. To confirm this 

guess, we removed these two coefficients from our model and used a model reduced to only 

(a) (b) 



28/32 

7 parameters: ��, �Q, �Q, �T, ��R, q and u. By performing a new identification with the shear 

data extracted from [5], we found the same curves as in Figure 13 and the same coefficients 

of determination as in Table 7. In the context of a shear loading, it is therefore possible to 

predict accurately the shear stress with a model containing only 7 material parameters. To 

understand why the two coefficients �� − ��R and �R − ��R were little concerned by a 

shear test, we considered the linear theory. Particularly, we used equation (19) introduced in 

[23] to compute the infinitesimal shear modulus µL and µT (respectively parallel and 

transverse to the fiber direction) and the infinitesimal longitudinal Young modulus EL: 

 µ- = 2(Y�� + Y��); µ¶ = 2(Y�� + Y�� + YS�) (71) 

 ·¶ = 4(YRR� + 4YRS� + 4YSS� ) − µ- + 4µ¶ (72) 

In Eq. (71)-(72), the subscripts indicate derivatives with respect to the classical invariants 

�̧, ¸�, ¸Q, 4R and 4S: 

�̧ = ¹º(,); ¸� = �� t �̧� − ¹º(,»)v; ¸Q = ¼r (,); 4R = ¹º(,� ⊗ l ); 4S = ¹º(,»� ⊗ l ) (73) 

while the superscript 0 denotes evaluation in the reference configuration. In this 

configuration, the classical invariants reduce to: 

 �̧ = ¸� = 3; ¸Q = 1; 4R = 4S = 1 (74) 

To calculate Y��, we first apply the derivative chain rule to the strain energy function Y: 

 Y� = Z� &[b&¾b + Z� &[e&¾b + ZQ &[h&¾b + ZR &[i&¾b + ZT &[j&¾b  (75) 

We next use the link between the invariants P	 and the classical invariants [1]: 

 P� = 4R;  P� = �̧ − 4R;  PQ = 4S − 4R�;  PR = �̧4R − 4S − ¸�; 

 PT = �̧ (4S + 4R�) − 34R4S + 4RQ + 2¸Q − 2¸�4R (76) 

The derivatives of the invariants P	 with respect to �̧ are computed straightforwardly 

from (76): 

 
&[b&¾b = &[h&¾b = 0; &[e&¾b = 1; &[i&¾b = 4R;  &[j&¾b =4S + 4R� (77) 

Reporting Eq. (77) in Eq. (75) yields to: 

 Y� = Z� + 4RZR + (4S + 4R�)ZT (78) 

The three coefficients Z�, ZR and ZT are next replaced in Eq. (78) by using Eqs. (21), (23) 

and (24): 
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 Y� = ��(P� − 2) + ��R + ��R(PR + 1)  

 +4Rt�R(PR + 1) + ��R + ��R(P� − 2)v + (4S + 4R�)�T (79) 

To switch from Y� to Y��, Eqs. (19) and (74) are reported in Eq. (79): 

 Y�� = 2(��R + �T) (80) 

Y��, YS�, YRR� , YRS�  and YSS�  are calculated the same as Y��: 

 Y�� = −��R − 2�T; YS� = �Q − ��R (81) 

 YRR� = �� + 4�Q + 9�R − 6��R − 2�Q + 12�T; YRS� = ��R − 2�Q − 3�R − 3�T; 
 YSS� = �Q + �R (82) 

The shear modulus µL and µT are obtained by reporting Eqs. (80) and (81) in Eq. (71): 

 µ¶ = 2�Q;  µ- = 2��R (83) 

Note that it is not inconsistent to find that µ- is not equal to the initial slope 2�Q − q 

found in section 4.2 with a shear loading applied transversely to the fiber direction. The 

explanation comes from the fact that µ- is calculated from the Cauchy stress / while 

2�Q − q is calculated from the nominal stress 9. Eq. (83) proves that the infinitesimal shear 

modulus µL and µT do not depend on the two coefficients �� − ��R  and �R − ��R . 

Therefore, that makes sense that the three material parameters ��, �R and ��R are not 

concerned by an identification process with a shear test. Finally, the infinitesimal 

longitudinal Young modulus EL is obtained by reporting Eqs. (82) and (83) in Eq. (72): 

 ·¶ = 2p2(�� − ��R) + 2(�R − ��R) − ��Rw (84) 

Contrarily to the shear modulus, the infinitesimal longitudinal Young modulus EL depend on 

the two coefficients �� − ��R and �R − ��R. Therefore, the three material parameters ��, 

�R and ��R must be concerned by an identification process with an extension test. This 

observation is consistent with the conclusion drawn in section 4.1. 

 

6. Conclusions 

In this study, a new strain energy function (SEF) was proposed for modelling 

incompressible transverse isotropic hyperelastic materials with a single fiber direction. The 

SEF was built by combining into polynomial and exponential forms the integrity basis of 

anisotropic invariants proposed in [1]. This combination allows to reach a high level of 
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regularity with the exponential function and to reduce the number of material parameters 

from 23 to 10 compared to [2]. In some specific cases, it is possible to reduce more the 

number of material parameters and get a simpler version of the model. For example, if one is 

only interested in a tensile test, it is possible to reduce the number of material parameters 

from 10 to 5 as explained in section 4.1. Moreover, it is proved in section 5.4 that performing 

an identification process based on shear experiments only require 7 of the 10 material 

parameters of our model. However, in the most complicated loading case mixing tensile and 

shear tests, the use of the 10 material parameters embedded in our model is required. 

In order to identify the 10 material parameters of the proposed model, we have developed 

and implemented specific original optimization tools inside the Octave free software 

because we have to cope with a wide variety of loading cases: uniaxial tension and shear 

tests, both parallel and transverse to the fiber direction [3, 4], as well as shear tests with 9 

different fiber angles [5]. The non-standard identification strategies we have implemented 

are based on: 1) the linear or nonlinear nature of the material parameters; 2) the modeling 

of the free boundary conditions by a spectral approach. 

Finally, we compared our model with experimental and numerical data extracted from the 

literature [3-5]. These comparisons, which relate to various loading cases and materials, 

demonstrate that our model is capable to accurately predict the mechanical behavior of 

one-fiber anisotropic hyperelastic structures. 
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