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Drip irrigation is one of the most efficient irrigation techniques, but it is susceptible to

dripper clogging. This study proposes a novel and non-destructive method based on visible

and near infrared (Vis/NIR) spectroscopy coupled with chemometric methods for the

discrimination and thickness estimation of physical and chemical fouling in drip-irrigation

systems. Four representative materials linked to physical and chemical clogging (kaolin,

bentonite, sand and calcium carbonate) at different thicknesses were selected to illustrate

the potential of the approach. Partial least squares regression (PLSR) and its modification

partial least squares with discriminant analysis (PLS-DA) were selected for the modelling of

clogging materials. The PLS-DA model was able to predict with 96.97% accuracy all classes

of materials. The PLSR models were able to estimate fouling thickness with relative pre-

diction errors comprised between 134 mm and 164 mm. This difference appears mainly to be

due to the physical properties of the selected materials. This prediction accuracy enabled

the estimation of the clogging thickness between 10 and 21% of dripper channel coverage

depending on the dripper channel section and the material under study. The proposed

method offers an appropriate approach for clogging studies in drip irrigation systems that

could be transferred to field applications.

1. Introduction

Drip irrigation can offer up to 90% application efficiency and is

one of the most effective irrigation techniques (Camp, Lamm,

Evans, & Phene, 2000). It offers a high irrigation uniformity,

which leads to improved crop yields (Wang, Gong, Di, Yu, &

Zhao, 2013). In addition, drip irrigation is well adapted to

using reclaimed water and for fertigation as it limits contact

between irrigation water and the plant (Lamm, Ayars, &
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Nakayama, 2006). However, drip irrigation emitters are prone to

be clogged, which reduces both irrigation performance and

uniformity (Lamm et al., 2006; Niu, Liu, & Chen, 2013).

There are three main types of emitter clogging: physical,

chemical and biological (Bucks, Nakayama, & Gilbert, 1979;

Adin & Sacks, 1991). Physical clogging is caused by the depo-

sition of solid particles present in the irrigation water (clays,

silts, fine sands) (Niu et al., 2013; Oliveira et al., 2017). Chem-

ical clogging is associated with the precipitation of insoluble

materials stemming from the reaction between cations (Ca2þ,

Mg2þ and Fe2þ) and anions (CO 2�
3 , HCO3

- and SO 2�
4 ) (Hills,

Nawar, & Waller, 1989; Rizk, Ait-Mouheb, Bourri�e, Molle, &

Roche, 2017). Biological clogging is due to bacterial develop-

ment that forms a matrix called a biofilm (Lequette, Ait-

Mouheb, & W�ery, 2020; Qian et al., 2017; Yan et al., 2009).

Moreover, these three clogging types can occur simulta-

neously, forming a more complex clogging, particularly for

treated wastewater irrigation (Rizk, Ait-Mouheb, Molle, &

Roche, 2019; Tarchitzky, Rimon, Kenig, Dosoretz, & Chen,

2013; Yan et al., 2009).

Depending on themain type of clogging observed, different

maintenance operations should be performed (Lamm et al.,

2006). Upstream filtration and hydraulic flushes are usually

performed to prevent physical clogging (Puig-Bargu�es, Lamm,

Trooien, & Clark, 2010), acid injections are used to avoid

chemical clogging (Hills et al., 1989) and chlorination is the

most common operation used to eliminate biological devel-

opment (Lequette et al., 2021). Therefore, detecting and iden-

tifying these clogging types is crucial for drip irrigation system

management. Clogging detection and identification under

field conditions remains problematic. Only indirect methods

based on emitters’ discharge or drip lines pressure are used to

estimate clogging development (Camargo, Molle, Tomas, &

Frizzone, 2014). However, these methods do not give infor-

mation on the clogging nature and are unable to detect clog-

ging at its early stages.

Concerning the function of the drippers used, internal flow

channel depths generally vary between 800 mm and 1330 mm

(Lequette et al., 2020; Yang et al., 2020), which significantly

limits the number of methods that can be used to determine

the fouling levels in situ. However, some methods that could

cope with such scales appear in the literature. The electrical

sensors studied by Pavanello et al. (2011) and Turolla, Di

Mauro, Mezzera, Antonelli, and Carminati (2019) are suitable

for detecting biofilm and calcium carbonate. Nevertheless,

these sensors require deposition of the clogging material on a

steel surface. These conditions do not accurately represent

the clogging mechanisms found with plastic drip irrigation

emitters. Vibration sensors, developed by Pereira, Mendes,

and Melo (2008), are useful for biofilm detection, and the ul-

trasonic sensors proposed by Mizrahi et al. (2012) can detect

calcium carbonate precipitates in membrane filtration. How-

ever, both these solutions are only suitable for one specific

clogging material. The optical sensors developed by Mendret,

Guigui, Schmitz, Cabassud, and Duru (2007) can quantify the

thickness of the clogging material in membrane filtration.

Nevertheless, this sensor is unable to discriminate the mate-

rials constituting the membrane clogging. Therefore, none of

these devices are well suited for clogging studies in drip irri-

gation, and for the selection of a proper cleaningmethod such

as chlorination or acid injections Q2.

In this context, absorbance spectroscopy could be used for

non-destructive and in situmeasurements for dripper clogging

detection in order to classify clogging type and to estimate

fouling thickness. Indeed, Tarchitzky et al. (2013) have already

highlighted the relevance of mid-infrared (MIR) spectroscopy

for the analysis of biological and physical clogging. However,

MIR equipment would not appear suitable for on-site applica-

tionmainly because of its complexity and cost (Viscarra Rossel,

Walvoort, McBratney, Janik, & Skjemstad, 2006; Haas &

Mizaikoff, 2016). In the ultra violet/visible/near infrared (UV/

Vis/NIR) region, spectroscopy can be used for low-cost in situ

monitoring as was demonstrated by Zimmerleiter et al. (2020).

Moreover, over the past few decades, the use of absorbance

spectroscopy in the development of non-destructive, in situ,

low-cost and rapid measurement has increased in different

research areas such as water and soil science (Adamchuk,

Hummel, Morgan, & Upadhyaya, 2004; Berho, Pouet, Bayle,

Azema, & Thomas, 2004; ViscarraRossel et al., 2006,

Zimmerleiter et al., 2020). This technique is usually associated

with models developed using chemometric methodologies to

predict the characteristics of analysed samples.

In general, chemometric methods can be used to solve

problems in qualitative/quantitative and discrimination anal-

ysis (Xie et al., 2015; Lopo, Teixeira dos Santos, P�ascoa, Graça,&

Lopes, 2018). Among them, partial least squares regression

(PLSR) (Geladi & Kowalski, 1986) and its modification partial

least squares with discriminant analysis (PLS-DA) (Wold et al.,

1984) are themost commonly used. However, no chemometric

works have been reported in the literature for the characteri-

sation of clogging in drip irrigation systems.

In this work, PLS-DA is used to discriminate different types

of clogging materials and PLSR to perform a thickness esti-

mation of these clogging materials. The main goal of this

study was to test the applicability of Vis/NIR spectroscopy

combined with chemometric methods as amean to detect the

type and estimate the thickness of physical and chemical

clogging in drip irrigation systems. For this purpose, four

Nomenclature

CR classification rate

LV latent variables

MIR mid-infrared

NIR near infrared

OCT optical coherence tomography

PLS partial least squares

PLS-DA partial least squares with discriminant analysis

PLSR partial least squares regression

RMSEC root mean square error in calibration

RMSECV root mean square error in cross-validation

RMSEP root mean square error in prediction

SG SavitzkyeGolay

SNV standard normal variate

UV ultra violet

Vis visible
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cloggingmaterials: kaolin, bentonite and sand (responsible for

physical clogging) and calcium carbonate (responsible for

chemical clogging), were tested.

The proposed methodology attempts to provide a method

that could be potentially adapted to field conditions for

acquiring knowledge of the clogging mechanism and their

impact on drip emitters. This methodology could be used to

plan maintenance operations and help to select the most

suitable form of maintenance, and hence ensure functional

and durable drip irrigation systems.

2. Material and methods

2.1. Samples preparation

The characteristics of the clogging materials used to prepare

the samples in this study are summarised in Table 1.

As can be seen in Table 1, the studied materials represent

both physical and chemical clogging. Clays and sand are

associated with physical clogging (Adin& Sacks, 1991; Oliveira

et al., 2020) whilst calcium carbonate is a major component of

chemical clogging (Hills et al., 1989; Rizk et al., 2019). The two

clays investigated (kaolin and bentonite) were chosen because

they have different swelling properties (Luckham & Rossi,

1999), and thus have different impacts on dripper clogging

(Ait-Mouheb et al., 2019; Oliveira et al., 2020).

In order to prepare the samples, the cloggingmaterial was

placed in a 40-mm diameter and 12-mm high cylindrical

glass cup. Samples were constituted using one clogging

material among the four tested. Different thicknesses of

clogging material were prepared ranging from 50 mm to

1000 mmwith theoretical steps depending on the particle size

of the clogging material (<10 mm for clays and calcium car-

bonate and >50 mm for sand). Solutions containing clogging

material and demineralised water were prepared at different

volume concentration to constitute different thicknesses

after decantation. The solution was added to the cup so that

the total height of the sample reached approximatively

1000 mm. This sample height was chosen to imitate the

channels dimensions of the drippers (between 800 mm and

1330 mm). Optical coherence tomography (OCT) images were

used to obtain the thickness reference value of the prepared

samples. Three Vis/NIR spectra around 2 mm diameter were

acquired on each sample. A total of 94 spectra corresponding

to samples with different thicknesses were analysed: 31 from

kaolin, 23 from bentonite, 31 from calcium carbonate and 9

from sand. The difference in number of samples for each

material is caused by the particle size for sand and by the

swelling properties for bentonite that limited the number of

samples with different thicknesses.

2.2. OCT image measurement

2.2.1. Image sampling and analysis
For each sample, three-dimensional OCTmeasurements were

acquired using a Thorlabs GANYMEDE II OCT (LSM03 lens,

lateral resolution: 8 mm; Thorlabs GmbH, Lübeck, Germany).

The axial voxel size in water (n ¼ 1.333) of GANYMEDE II was

2.1 mm and the central wavelength was 930 nm. The OCT

acquisition covers an area of 0.74 cm2 that was centred ac-

cording to the area of spectral acquisition.

2.2.2. Image processing
Firstly, 3-D OCT datasets were processed in Fiji (running on

ImageJ version 1.50 b, Schindelin et al., 2012). Secondly, an in-

house code was used to detect the pixels associated with the

fouling particles using MATLAB R2018r (MathWorks, Natick,

MA, USA, version 2018b). A threshold (adapted to all datasets)

was applied to binarise the dataset and the region above the

threshold intensity losses during simple penetration. The in-

tensity contrast between the fouling pixels and the remaining

parts (water) was deliberately high to facilitate allocation of

these last areas to the back-ground (black). Thus, in the

studied OCT acquisitions, the threshold values vary between

0 and 60with noise intensity of between 0 and 15 (water) and a

signal related fouling of between 25 and 60. In addition, sus-

pended solids and outliers were removed by applying the

‘clean and majority functions’ of MATLAB.

In order to represent the spectral acquisition spot, the ob-

tained OCT image was cropped to obtain a 2-mm-by-2-mm

square surface. For each sample, the thickness value was

calculated by averaging the thickness over this 4-mm2 area.

Next, a standard deviation was also calculated for each sam-

ple, which represents thickness variations in the area covered

by the spectral acquisition.

2.3. Spectroscopy measurement

To assess the composition and the clogging thickness of the

sample, absorbance spectroscopywas used. Figure 1 shows the

schematic diagram of the spectroscopy system. A tungsten-

halogen source (Ocean Optics HL-200-FHSA) was coupled

with a 910 mm core diameter optical fibre (Thorlabs FG910LEC,

NA 0.22, Thorlabs, Newton, NJ, USA) and a biconvex lens

(Thorlabs LB1723-B, f ¼ 60 mm, d ¼ 50.8 mm), forming a

z2 mm spot on the surface of the sample. The distance be-

tween the lens and the sample was equal to 5 cm. The sample

backscattered light was collected using a biconvex lens

(Thorlabs LB1092, f ¼ 15 mm, d ¼ 12.5 mm), coupled with a

910 mm core diameter optical fibre (Thorlabs FG910LEC, NA

0.22). This fibre was connected to a spectrometer (LabSpec1,

ASD Boulder, CO, USA). The spectral range of measurement

Table 1 e Characteristics of the clogging materials used.

Sample Particle size Clogging type Origin

Kaolin <10 mm Physical Honeywell Fluka, Charlotte, NC, USA

Bentonite <10 mm Physical VWR, part of Avantor, Radnor, PA, USA

Sand Fontainebleau 50 mme300 mm Physical VWR, part of Avantor, Radnor, PA, USA

Calcium Carbonate (CaCO3) <10 mm Chemical Fisher Scientific, Loughborough, Leics, UK
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extended from 700 nm to 2200 nm with a 1 nm step, and a

resolution of 3 nm for the range 700 nme1000 nm and 10 nm

for the range 1000 nme2500 nm. A constant angle of 40� was

maintained between the excitation and collection arms. This

angle was chosen to optimise the intensity of the reflected

beam and to avoid specular reflection.

For each sample, the intensity of the reflected light (I(l))

was measured. Dark current (In(l)) i.e. signal without light,

was recorded from all measured spectra and then subtracted.

Awhite reference (SRS99, Spectralon®) (I0(l)) wasmeasured to

standardise spectra and prevent nonlinearities of all the

instrumentation components (light source, lens, fibres and

spectrometer). From these measurements, a reflectance (R(l))

was calculated for each sample, as follows:

RðlÞ¼ IðlÞ � InðlÞ
I0ðlÞ � InðlÞ (1)

2.4. Data analysis

2.4.1. Spectral pre-processing
The recorded signal could be distorted by scattering effects

due to the presence of particles, of difference sizes, in the

measured media. Data pre-processing is usually required to

enable the extraction of chemical/physical information and

attenuate undesirable signal contributions. In the present

work, spectra were first centred by subtraction of the arith-

metic mean. Next, commonly used method for spectral pre-

processing were applied: SavitzkyeGolay (SG) (Savitzky &

Golay, 1964) and combination of SG with standard normal

variate (SNV) scaling (Barnes, Dhanoa, and Lister (1989)).

SG is a digital filter that uses the linear least squares tech-

nique for data smoothing. The smoothing parameters include

the size of smoothing window and the polynomial degree.

These parameters are selected so that the smoothing process

retained the spectral features contained in the original spectra.

Applying SNV, the individual mean value is subtracted from

each spectrum and the result is divided by the standard devi-

ation over all variables for the given sample. Consequently,

scattering effects on the measurement were reduced.

2.4.2. Chemometrics
Themain goal was to buildmultivariatemodels able to predict

the class-type (y response variables), and to estimate the

thickness of clogging materials as a function of measured

spectra (X block of predictor variables). PLSR and its modifi-

cation PLS-DA were selected for the modelling of clogging

materials.

PLSR (Geladi & Kowalski, 1986) was used to estimate the

thickness of the different clogging materials investigated in

this study. This regression technique consists in using an

appropriate set of latent variables (LVs) to describe the

maximum correlation between the predictors and response

variables, whereas PLS-DA was applied to discriminate be-

tween the different types of clogging materials. This method

(Wold et al., 1984) finds the components or LVs, and seeks to

optimally discriminate different groups of samples (clogging

materials) from their spectra (X block), according to their

maximum covariance with a target class defined in the y data

block. Once the PLSR and PLS-DA models are built and vali-

dated, they can be used to predict the clogging thickness and

the class-type of unknown samples, respectively.

Before using the above-mentioned methods, the dataset

was divided into two sets of samples: training and indepen-

dent test sets. The training sets were used to build and

internally validate the models and, thus, should be comprised

of representative samples. The test sets were left for external

validation and were not used to build the models. To imple-

ment the PLSR models, the datasets of the different clogging

materialswere divided into a training and an independent test

set with a ratio of 2/3 and 1/3 respectively as detailed in Table

2. This division was made assuring a similar distribution of

thickness values in both sets. In the case of PLS-DAmodel the

training sets associated to all four materials were merged to

constitute the training set, and the same process was applied

for the test set.

Cross-validation is a useful tool for internal model valida-

tion because it removes random sample subsets from the

training set before building the model to be used to perform

sub-validation tests where the samples used for validation

were not used to construct the model. Cross-validation is also

used to determine the number of latent variables needed to

build the PLSR and PLS-DA models. The number of LVs to be

included in the model is the result of a compromise between

Fig. 1 e Schematic diagram of the spectroscopy system.

Table 2 e Number of samples in the training and
independent test set for each model.

Model Number of samples

Training set Test set Total

PLS-DA (all samples) 61 33 94

PLSR on kaolin 20 11 31

PLSR on bentonite 15 8 23

PLSR on calcium carbonate 20 11 31
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maximumefficacy and aminimumnumber of LVs. In the case

of the PLSR models, the leave-one-out cross-validation was

selected as a strategy to select the number of LVs. In this

process, a single thickness value was used to internally vali-

date the training model built with the remaining thickness

values. This was repeated such that each thickness value in

the original dataset was used only once as the validation data.

For the PLS-DA model, one sample associated to each class

(four samples in total) were used for internal validation. This

step was repeated so that all samples from the largest class

were used for cross-validation.

2.4.3. Figures of merit
The following figures of merit have been calculated to eval-

uate and validate the PLSR models: root mean square error in

calibration (RMSEC), root mean square error in cross-

validation (RMSECV) and root mean square error in predic-

tion (RMSEP) for PLSR. For the PLS-DA model, classification

rates (CR) were calculated to evaluate and validate the model.

The CR is the percentage of individuals that are attributed to

their actual classes by the model. The confusion matrix was

also calculated in PLS-DA for visualising classification results.

A confusion matrix of classification indicates how many

samples were classified in each class. It carries information

about the predicted and actual classifications of samples, with

each row showing the instances in an actual class, and each

column representing the instances in a predicted class.

All calculations were performed using R software (R Core

Team, 2017), using the rnirs package (Lesnoff, 2021) for calcu-

lation and the ggplot2 (Wickham, 2009) and gridExtra (Auguie,

2017) packages for figures production.

3. Results and discussion

3.1. Visual observation of absorbance spectra

The raw spectra from the samples of each studied material at

the different clogging thickness are presented in Fig. 2.

Two relevant peaks around 1450 nm and 1950 nm were

observed in all spectra. These peaks can be attributed to the

first overtone of the OeH stretching vibration and the com-

bination of the OeH stretching and HeOeH bending vibra-

tions of water spectrum respectively (Büning-Pfaue, 2003;

Phelan, Barlow, Kelly, Jinguji, & Callis, 1989). No other rele-

vant spectral signatures were observed, indicating that water

has a major impact on these spectra. According to Ben-Dor

and Banin (1995) and Xie et al. (2015), clay materials such as

kaolin and bentonite show absorbance peaks of approxi-

mately 1400, 1850, 1900, 2090, 2200 and 2500 nm and calcium

carbonates show peaks at 1450, 1650 and 2300 nm. However,

the water bands cover these wavelengths, making it imprac-

ticable the visually observe the characteristic spectral signa-

tures of clays and calcium carbonates.

A difference in global spectrum intensities was observed for

all clogging materials. This difference is a clear indication of

scattering effects. These effects weremore significant in kaolin

and calcium carbonate samples. Kaolin and calcium carbonate

structures are scarcely influenced by the presence of water.

Therefore, their particles could reflect light, thus engendering

strong scattering effects. Conversely, bentonite is a swelling

clay (Luckham& Rossi, 1999) and thus, its structural properties

significantly change in the presence of water. When bentonite

swells, it usually form a very homogenous structure that is less

sensitive to scattering effects. Finally, sand in water decant to

form a uniform layer that may account for the absence of

significant scattering effects in its spectra.

A strong background noise caused by the strong absorption of

water around 1450 nm and in the 1800e2200 nm region was

observed in all spectra. Since the noise and the scattering effects

before observed are usually detrimental for further modelling,

the data was pre-processed as discussed in section 2.4.1.

A SavitzkyeGolay filter was used to reduce noise. For all

samples, the smoothing window was set at 5 nm to keep the

original shape of the spectra and a second order polynomial

was used for calculation. For calcium carbonate, SNV was

applied after the SG filter to reduce the scattering effect. The

SNV method was not used on kaolin spectra because most of

the scattering effects were corrected after centring the

spectra. After pre-processing, the global shapes of the spectra

were retained, as only the noise and the scattering effects

were reduced (see Fig. 3).

As stated above, visual inspection of those spectra was

insufficient to discriminate between the different types of

clogging materials due to the significant impact of water on

their spectra. Therefore, multivariate analysis methods were

required to predict the nature of these clogging materials.

Moreover, these methods will also help estimate the clogging

thickness of these materials when coupled with the thickness

measurements obtained using OCT images.

3.2. Discrimination between the different types of
clogging material using PLS-DA

As mentioned previously, PLS-DA was performed to discrim-

inate the four clogging materials studied: kaolin, bentonite,

calcium carbonate and sand. The classification rate (CR) is

used as a quality criterion of the developedmodel (see section

2.3 for more detailed information about model evaluation and

model development). Nine LVs were chosen, giving the high-

est CR value (92.06%) after internal cross-validation.

Once the optimal number of LVs was selected, the calcu-

lation of the PLS-DA model on the entire training set was

carried out selecting nine LVs. In Table 3, figures of merit ob-

tained with the training set and in cross-validation are

collected. All clogging materials were correctly classified into

their corresponding classes with an accuracy rate of over 92%

in both calibration and cross-validation. The CR was lower in

cross-validation than the one obtained with the training set.

As the cross-validation step is performed using a leave-one-

out algorithm, it would appear that some specific samples in

the training set were not well handled by the model.

Although these results with high CR in training and cross-

validation appear encouraging, the true predictive perfor-

mance of the model requires assessment using an indepen-

dent test set. Figures of merit from the independent test set

confirm the same classification performance (see Table 3) with

a CR of 96.97%. The CR of the independent test set is higher

than the cross-validation CR indicating that the samples in the

independent test set are generally well discriminated by the
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Fig. 2 e Raw absorbance spectra of samples of kaolin, calcium carbonate, bentonite, and sand at different clogging

thicknesses.

Fig. 3 e Pre-processed absorbance spectra of samples of kaolin, calcium carbonate, bentonite, and sand at different clogging

thicknesses.
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model compared to some samples in cross-validation. Classi-

fication results obtained in the test set are satisfactory

compared to those obtained in the literature: Xie et al. (2015)

and Lopo et al. (2018) obtained CR of 90% when discrimi-

nating clays, sand and calcium carbonate in soil samples. This

means that the PLS-DA model can be considered suitable for

sample classification for the four studied classes.

Furthermore, it is remarkable that almost all samples are

correctly classified in their corresponding classes, as can be

identified in the confusion matrix of clogging class prediction

(see Table 4).

It can be observed that only one kaolin samplewas notwell

classified, as it is mistakenly attributed to the calcium car-

bonate class. This confusion could be attributed to the fact

that these two classes show similar spectra, especially in the

1700 nme2200 nm region (see Figs. 2 and 3). No misclassifi-

cation between kaolin and bentonite clays was observed.

Bentonite is known to be a swelling clay and kaolin a more

inert clay. Therefore, since the samples contain water, the

swelling properties of bentonite appear to make a difference

in the spectra and thus in the predictionmodel. The two clays

have a different impact on dripper clogging (Ait-Mouheb et al.,

2019; Oliveira et al., 2020), and being able to discriminate be-

tween the two is of major interest for clogging studies. Simi-

larly, the ability to discriminate chemical materials such as

calcium carbonate from physical materials is of great interest

in drip irrigation. Moreover, the presence of water in all

samples and its effect on the spectra does not seems to alter

the discrimination ability of this model. This aspect is also

important for further application on drip irrigation where the

equipment always containswater, evenwhen it is no longer in

operation (Tarchitzky et al., 2013).

In conclusion, these figures of merit demonstrate that this

analysis strategy can be applied to complex multi-class prob-

lems related to clogging research. It should be mentioned that

the number of samples were limited, and larger datasets would

be required to build more robust PLS models. In particular, the

number of sand samples was not sufficient to consider the

model efficient for classification of sand samples. Nevertheless,

the model presented appears to be very efficient in predicting

the clogging nature among the four studied materials. These

results are very encouraging regarding the potential of Vis/NIR

spectroscopy in combination with PLS-DA models to differen-

tiate this type of materials. Therefore, this methodology can be

proposed as an effective tool for the comprehensive study of

clogging monitoring. Furthermore, this approach could also be

useful for the maintenance of drip irrigation systems as it

would help to select the most suitable cleaning protocol

depending on the clogging type detected (Lamm et al., 2006).

3.3. Estimation of clogging material thickness with PLSR

This section shows the results of the PLSR models for esti-

mating the clogging thickness of the studied materials. PLSR

method was not applied to sand due to the limited number of

available sand samples.

3.3.1. Thickness measurements
As explained in section 2.2, the average thickness and its

standard deviation were calculated for each sample. The

thickness of the clogging materials in the different samples

measured with OCT ranging between 80 mm and 1050 mm. The

deviation in thicknessmeasurements should be taken account

when evaluating the predictive accuracy of PLSR models.

3.3.2. PLSR results
Individual PLSR models were developed for each clogging

material. The number of LVs chosen and the figures of merit

associated to the calibration (training set), cross-validation and

prediction (independent test set) are shown in Table 5 (see

section 2.4.3. for more details about figures of merit for PLSR).

For the bentonite and calcium carbonate models, the

RMSEC and RMSECV were close, so the models show stability.

For kaolin, the difference is higher as the datamay have outlier

spectra and the robustness of themodel may be lower. For the

Table 3 e Classification rates (CR) of PLS-DA model
calculations.

LV Training set
CR (%)

Cross-validation
CR (%)

Test set
CR (%)

9 98.41 92.06 96.97

Table 4 e Confusion matrix of clogging class prediction (33 individuals).

n ¼ 33 Predicted classes Well predicted classes (%)

Kaolin Bentonite Calcium carbonate Sand

Actual classes Kaolin 10 0 1 0 90,9%

Bentonite 0 8 0 0 100%

Calcium carbonate 0 0 11 0 100%

Sand 0 0 0 3 100%

Table 5e Figures ofmerit of the calibration and validation
steps of the PLSR models developed for thickness
estimation of kaolin, bentonite, calcium carbonate and
sand deposits.

Class LVs Training
set

Cross
-validation

Test
set

RMSECa

(mm)
RMSECVb

(mm)
RMSEPc

(mm)

Kaolin 4 186 274 159

Bentonite 2 121 180 132

Calcium carbonate 4 91 154 164

a Root mean square error in calibration.
b Root mean square error in cross-validation.
c Root mean square error in prediction.
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three different materials, the number of LVs was low, indi-

cating that the variability between the samples ecaused by

variations in thickness e is well handled by the models, and

that the models were therefore robust.

Once a model was developed, it was applied to the inde-

pendent test set. The RMSEP values indicate the prediction

error of the model. For all samples, the values of RMSEC and

RMSEP were close, indicating that the models were stable. In

this study, dripper channel depths ranged between 800 mm

and 1330 mm (Lequette et al., 2020; Yang et al., 2020), thus the

obtained RMSEP values represent between 10 and 21% of the

channel height. This means that the current PLSR models can

detect and estimate clogging thickness starting at 10% or 21%

of clogging depending on the clogging nature and the size of

the dripper channel. At such early stages of clogging devel-

opment, it is nearly impossible to detect the clogging as the

discharge of the emitters does not vary (Lequette et al., 2021;

Oliveira et al., 2020), and that makes current clogging esti-

mation based on discharge measurement inefficient. There-

fore, this method could allow early clogging detection, and

thus greatly help in planning maintenance operations.

For all clogging materials, the predicted thickness values

obtained with the PLSR models were close to the observed

values (see Fig. 4). For kaolin, the deviation between the

regression line and the identity linewas greater for thicknesses

>500 mm. This indicates that kaolin thickness predictions tend

to be less accurate formedium and high thicknesses. Thismay

be caused by the low number of samples with high thicknesses

in the training set. For bentonite, the prediction seems to be

accurate for all thicknesses. However, for this material, the

number of spectra is lower, thus reducing the possibility of

incorrect prediction. Then, for calcium carbonate, two samples

with thicknesses of below 300 mmare far from the identity line,

indicating a significant difference between prediction and OCT

measurements. It is remarkable that these samples have a

high deviation on thickness measurement with OCT. Thus, a

high heterogeneity in sample thickness have a negative effect

on the thickness predicted using this model.

The ability of the PLSR models to predict the thickness of

kaolin, bentonite and calcium carbonate in the presence of

water based on Vis/NIR absorbance spectra is encouraging.

Increasing the number of samples in the training set would

improve the robustness of the models and lead to more ac-

curate thickness estimation. Indeed, increasing the number of

samples would reduce the prediction error and thus clogging

detection limits. The presence of water does not seem to have

a significant effect on thickness prediction, and this confirms

the relevance of this method for drip irrigation. Therefore, the

use of spectroscopy coupled with multivariate analysis for

clogging thickness estimation seems to be a very promising

method. However, a larger number of samples is required to

obtain better results.

To summarise, the combination of Vis/NIR spectroscopy

and chemometric methods has proven to be efficient at

detecting and distinguishing the studied materials. However,

some further aspects should be taken into consideration to

guarantee its feasibility in field applications.

In future works, the physical size of the spectral mea-

surement sensor must be reduced to better fit emitter di-

mensions. Presently, the spectra acquisition covers an area of

4 mm2 and is therefore too large for a real application. The

location of the measurement should be also considered as

clogging is always a heterogeneous phenomenon that is

highly dependent on channel design. Moreover, the detection

of biological clogging still requires investigation. This cause

of clogging is widely observed when treated wastewater is

used (Tarchitzky et al., 2013; Rizk et al., 2019; Lequette et al.,

2020) and with surface water as the presence of physical

and chemical clogging can favour the attachment of biofilm

in the dripper.

Fig. 4 e Thicknesses measured using OCT vs predicted

thicknesses obtained using the PLSR models on kaolin,

bentonite, calcium carbonate and sand in the independent

test set. Regression line (black) and identity line (red) are

shown. Error bars are obtained from the standard

deviation in OCT thickness and from the RMSEP values for

predicted thickness.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

Please cite this article as: Petit, J et al., Potential of visible/near infrared spectroscopy coupled with chemometric methods for
discriminating and estimating the thickness of clogging in drip-irrigation, Biosystems Engineering, https://doi.org/10.1016/
j.biosystemseng.2021.07.013



4. Conclusions

This work confirms the potential of Vis/NIR spectroscopy

combined with chemometric methods for clogging studies

related to drip irrigation systems. PLSR and PLS-DA methods

proved to be useful tools for the detection and the discrimi-

nation of four clogging materials associated to physical and

chemical clogging. The established PLS-DA model was able to

predict with 96.97% accuracy the clogging type from among

the four studied materials. Results from PLS models showed

that clogging thickness can be estimated when at least 10%e

21% of the total depth of the dripper channel is filled with

clogging material. These results are promising as they could

be used to define a threshold above which the user can be

notified that they should launch a maintenance operation.

This is a service that no method currently offers.

The conclusions reached in this work justify further efforts

in evaluating the feasibility of this approach in the field.

Nevertheless, Vis/NIR spectroscopy spectra coupled with the

proposed chemometric analysis methods has already proven

to be a valuable tool for the monitoring of clogging in drip

irrigation systems from a control perspective.
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