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Is the Syracuse falling time bounded by 12?

Shalom Eliahou∗, Jean Fromentin†and Rénald Simonetto‡

Abstract

Let T : N → N denote the 3x + 1 function, where T (n) = n/2 if
n is even, T (n) = (3n + 1)/2 if n is odd. As an accelerated version
of T , we define a jump at n ≥ 1 by jp(n) = T (`)(n), where ` is
the number of digits of n in base 2. We present computational and
heuristic evidence leading to surprising conjectures. The boldest one,
inspired by the study of 2` − 1 for ` ≤ 500 000, states that for any
n ≥ 2500, at most four jumps starting from n are needed to fall below
n, a strong form of the Collatz conjecture.

Keywords. Collatz conjecture, 3x + 1 problem, stopping time,
glide record, jump function.

1 Introduction

We denote by N the set of positive integers. Let T : N→ N be the notorious
3x + 1 function, defined by T (n) = n/2 if n is even, T (n) = (3n + 1)/2 if n
is odd. For k ≥ 0, denote by T (k) the kth iterate of T . The orbit of n under
T is the sequence

OT (n) = (n, T (n), T (2)(n), . . . ).

The famous Collatz conjecture states that for all n ≥ 1, there exists r ≥ 1
such that T (r)(n) = 1. The least such r is denoted σ∞(n) and called the total
stopping time of n. An equivalent version of the Collatz conjecture states
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that for all n ≥ 2, there exists s ≥ 1 such that T (s)(n) < n. The least such s
is denoted by σ(n) and called the stopping time of n. For instance, we have

σ(n) =

{
1 if n is even,

2 if n ≡ 1 mod 4,
(1)

as is well known and easy to check. A stopping time record is an integer
n ≥ 2 such that σ(m) < σ(n) for all 2 ≤ m ≤ n− 1.

For the original slower version C : N → N, where C(n) = n/2 or 3n + 1
according as n is even or odd, the analog of the stopping time is called the
glide in [10]. The list of all currently known glide records, complete up to
at least 260, is maintained in [11]. It is quite likely that glide records and
stopping time records coincide; we have verified it by computer up to 232.

It is well known that σ(n) is unbounded as n grows. For instance, since

T (`)(2` − 1) = 3` − 1, (2)

as follows from the formula T (2a3b − 1) = 2a−13b+1 − 1 for a ≥ 1, we have
σ(2` − 1) ≥ ` for all ` ≥ 2.

In this paper, we propose an accelerated version of the function T . The
idea, somewhat as in [13], is to apply an iterate of T to n depending on
the number of digits of n in base 2. Accordingly, we introduce the following
function.

Definition 1.1 The jump function jp : N→ N is defined for n ∈ N by

jp(n) = T (`)(n),

where ` = blog2(n) + 1c is the number of digits of n in base 2.

Example 1.2 We have jp(1) = T (1)(1) = 2, and jp(2) = T (2)(2) = 2 since 2
is of length ` = 2 in base 2. For n = 27, written 11011 in base 2, hence of
length ` = 5, we have jp(27) = T (5)(27) = 71. In turn, 71 is of length ` = 7
in base 2 since 26 ≤ 71 < 27, whence jp(71) = T (7)(71) = 137. The orbit of
27 under jumps is displayed below in (4).

Example 1.3 A single jump at n = 2` − 1 with ` ≥ 1 yields

jp(2` − 1) = 3` − 1. (3)

This follows from the equalities ` = blog2(2
` − 1) + 1c and (2).
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Example 1.4 We have jp(2n) = jp(n) for all n ≥ 1. Indeed, 2n is of length
one more than n in base 2.

In analogy with the stopping time relative to T , we now introduce the
falling time relative to jumps. As jp(1) = jp(2) = 2, we only consider n ≥ 3.

Definition 1.5 Let n ≥ 3. The falling time of n, denoted ft(n), is the least
k ≥ 1 such that jp(k)(n) < n, or ∞ if there is no such k.

Note that, for a presumed cyclic orbit under T with minimum m ≥ 3, we
would have jp(m) =∞.

There is no tight comparison between stopping time and falling time. It
may happen that σ(a) < σ(b) whereas ft(a) > ft(b). For instance, for a = 41
and b = 43, we have

σ(41) = 2 < σ(43) = 5,

ft(41) = 8 > ft(43) = 2.

It may also happen that ft(n) > σ(n), as shown by the case n = 41.

Of course, the Collatz conjecture is equivalent to ft(n) <∞ for all n ≥ 3.
In Section 2, we provide computational evidence leading us to a stronger
conjecture, namely that ft(n) is in fact bounded for all n ≥ 3. Specifically,
all integers n we have tested so far satisfy ft(n) ≤ 16. See Conjecture 2.4. In
Section 3, in analogy with the falling time, we introduce the Syracuse falling
time sft(n), and corresponding conjectures, by only considering the odd terms
in the orbits OT (n). In Section 4, we report surprising computational results
on ft(2`− 1) and sft(2`− 1) for ` ≤ 500 000, and we formulate corresponding
conjectures. In the last Section 5, inspired by the case n = 2` − 1, we
formulate still stronger conjectures on ft(n) and sft(n) for very large integers
n. We conclude the paper with some supporting heuristics.

For a wealth of information, developments and commented references
related to the 3x+1 problem, see the webpage and book of J. C. Lagarias [8,
9]. To date, the Collatz conjecture has been verified by computer up to 268

by D. Barina [1]. Using this bound, it follows from [4] that any non-trivial
cycle of T must have length at least 114 208 327 604.
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2 Falling time records

In this section, we only consider those positive integers n satisfying σ(n) ≥ 3,
i.e. such that n ≡ 3 mod 4 by (1). Let us denote by 4N + 3 the set of
those integers. Here is our first computational evidence that the falling time
remains small.

Proposition 2.1 We have ft(n) ≤ 14 for all n ∈ [1, 244 − 1] such that
n ≡ 3 mod 4.

Proof. In a few days of computing time with CALCULCO [2].

As shown in Table 1, the smallest n ∈ 4N+3 such that ft(n) ≥ 14, namely
n = 12 235 060 455, actually satisfies ft(n) = 14 and n > 233.

Definition 2.2 A falling time record is an integer n ∈ 4N + 3 such that
ft(m) < ft(n) for all m ∈ 4N + 3 with m < n.

Table 1: Falling time records up to 235

n ≡ 3 mod 4 blog2(n) + 1c ft(n)

3 2 2
7 3 3

27 5 8
60 975 16 9

1 394 431 21 10
6 649 279 23 11

63 728 127 26 13
12 235 060 455 34 14

The list of falling time records up to 235 is given in Table 1. It was built
while establishing Proposition 2.1. For instance, we have ft(3) = 2, ft(7) = 3
and ft(n) ≤ 3 for all 3 ≤ n < 27 such that n ≡ 3 mod 4. The value ft(27) = 8
follows from the fact that 8 jumps are needed from 27 to fall below it, as
shown by the orbit of 27 under jumps:

Ojp(27) = (27, 71, 137, 395, 566, 3 644, 650, 53, 8, 2, 2, . . . ). (4)
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Interestingly, five of the falling time records in Table 1 are also glide records,
namely 3, 7, 27, 63 728 127 and 12 235 060 455, as seen by consulting [11].

Table 1 shows that the number 12 and a few smaller ones fail to occur as
falling time records. One may then wonder about the smallest n ∈ 4N + 3
reaching ft(n) = 12.

The answer is to be found in Table 2. Let us define a new falling time as
an integer n ∈ 4N + 3 such that ft(n) is distinct from ft(m) for all smaller
m ∈ 4N + 3. Of course, every falling time record is a new falling time. The
list of new falling times we know so far, which are not already falling time
records, is given in Table 2.

Table 2: Some new falling times

n 111 103 71 55 217 740 015
ft(n) 4 5 6 7 12

2.1 Integers satisfying ft(n) > 14

For a, b ∈ Z, we denote by [a, b] = {n ∈ Z | a ≤ n ≤ b} the integer
interval they span. Recalling Example 1.4, namely that ft(2m) = ft(m)
for all m ≥ 3, a single integer n satisfying ft(n) > 14 yields infinitely many
integers N satisfying ft(N) > 14, namely N = 2rn for all r ≥ 1. However, the
latter numbers have stopping time equal to 1, and hence are not particularly
interesting.

Only those integers n satisfying ft(n) > 14 and having a reasonably large
stopping time are really interesting, for their apparent rarity and their rel-
evance to the Collatz conjecture. Hence, we shall restrict our search to
24-persistent integers, i.e. to those n satisfying

σ(n) ≥ 24.

The property for n of being 24-persistent only depends on its class mod 224.
See [14] for more details on the description of the condition σ(n) ≥ k by
classes mod 2k. See also [5]. For k = 24, the number of 24-persistent classes
mod 224 is exactly 286 581.

As shown below, the occurrence of ft(n) > 14 among 24-persistent num-
bers seems to be very rare. Here is our first computational result.
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Proposition 2.3 The smallest 24-persistent integer n such that ft(n) > 14
is

n0 = 1 008 932 249 296 231.

It satisfies ft(n0) = 15, σ(n0) = 886 and blog2(n0) + 1c = 50.

Proof. In a few days of computing time with CALCULCO [2].

2.1.1 The neighborhood of g30

It turns out that n0 is a glide record, and as such is listed under the name

n0 = g30

in Table 5 of Section 2.2. We have verified by computer that g30 is the
smallest 24-persistent integer n satisfying ft(n) > 14. However, because of
the restriction σ(n) ≥ 24, we do not know whether g30 is an actual falling
time record.

In a small neighborhood of g30 in the Collatz tree, we found 11 more
24-persistent integers n satisfying ft(n) > 14. By small neighborhood of g30,
we mean here integers m such that

T (i)(m) = T (j)(g30)

for some i ∈ [0, 40], j ∈ [0, 30]. It turns out that these 11 integers all satisfy
ft(n) = 15, as g30 itself. They are displayed in Table 3.

Table 3: 24-persistent integers satisfying ft(n) = 15.

1 513 398 373 944 347, 1 702 573 170 687 391, 2 017 864 498 592 463,

2 553 859 756 031 087, 3 405 146 341 374 783, 3 830 789 634 046 631,

5107719512062175, 5 746 184 451 069 947, 6 464 457 507 453 691,

7 272 514 695 885 403, 22 370 169 558 105 279.
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2.1.2 The neighborhood of g32

There is another glide record in Table 5 with falling time 15, namely

g32 = 180 352 746 940 718 527.

In this case, looking at a somewhat larger neighborhood of g32 in the Collatz
tree, namely at all m such that

T (i)(m) = T (j)(g32)

for some i ∈ [0, 50], j ∈ [0, 30], we found four 24-persistent integers n reaching
ft(n) = 16. These four integers are displayed in Table 4.

Table 4: 24-persistent integers satisfying ft(n) = 16.

49 312 2600 554 790 303, 739 683 900 832 185 455,

986 245 201 109 580 607, 1 479 367 801 664 370 911.

However, these four integers n have a small stopping time. They all
satisfy σ(n) ∈ [35, 48], as compared to σ(g32) = 966. Hence again, they are
not particularly interesting.

This leads us to the following conjecture.

Conjecture 2.4 There exists B ≥ 16 such that ft(n) ≤ B for all n ≥ 3.

An even bolder conjecture, based on the data we currently have, would
be to take B = 16 above. Anyway, with whatever value of B, Conjecture 2.4
constitutes a strong form of the Collatz conjecture.

2.2 Glide records

Eric Roosendaal maintains the list of all currently known glide records [11],
complete up to at least 260. At the time of writing, there are 34 of them,
denoted g1, . . . , g34 below. As noted in [11], only the first 32 ones have been
independently checked. The ten biggest are displayed in descending order in
Table 5. It turns out that

ft(g1), . . . , ft(g34) ≤ 15.
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Moreover, among them, the highest value ft(n) = 15 is only reached by g30
and g32. Table 4 displays four 24-persistent integers n satisfying ft(n) = 16
in the neighborhood of g32. We do not know whether ft(n) ≥ 17 is at all
reachable.

Table 5: Top ten known glide records

n blog2(n) + 1c glide of n σ(n) ft(n)

g34 2 602 714 556 700 227 743 62 1 639 1005 13
g33 1 236 472 189 813 512 351 61 1 614 990 14
g32 180 352 746 940 718 527 58 1 575 966 15
g31 118 303 688 851 791 519 57 1 471 902 12
g30 1 008 932 249 296 231 50 1 445 886 15
g29 739 448 869 367 967 50 1 187 728 12
g28 70 665 924 117 439 47 1 177 722 13
g27 31 835 572 457 967 45 1 161 712 13
g26 13 179 928 405 231 44 1 122 688 14
g25 2 081 751 768 559 41 988 606 12

2.3 Falling time distribution

In three distinct graphics, we display the distribution of the values taken by
the falling time function in large integer intervals. These graphics show that
the proportion of the case ft(n) ≥ 3 in the integer intervals [2`, 2`+1−1] tends
to 0 as ` grows.

• Figure 1 displays the proportion of the occurrence of ft(n) = 1, ft(n) =
2 and ft(n) ≥ 3, respectively, among all odd integers in the integer
intervals [2`, 2`+1 − 1] for 2 ≤ ` ≤ 40.

• Figure 2 does the same but separates the cases n ≡ 1 mod 4 and n ≡
3 mod 4. The purpose is to show that the former case, with stopping
time 2, behaves like the more interesting latter case, and so may be
safely ignored.

• Finally, Figure 3 is restricted to 24-persistent integers in the integer
intervals [2`, 2`+1 − 1] for 24 ≤ ` ≤ 50.
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Figure 1: Proportion of odd integers in [2`, 2`+1 − 1] with falling time equal
to 1, 2 and greater than 2, respectively. The integer ` goes from 2 to 40
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2.4 A variant of jumps

Let h ∈ N. For all n ∈ N, we define

jph(n) = T (h`)(n)

where, as before, ` is the number of digits of n in base 2. This is not the
same, of course, as the h-iterate jp(h)(n). Note also that for h = 1, we recover
jumps, i.e. jp1(n) = jp(n). For n ≥ 3, the h-falling time fth(n) is defined

correspondingly, as the smallest k ≥ 1, if any, such that ft
(k)
h (n) < n.

It turns out that for h = 18, and for the glide records g1, . . . , g34, we have

ft18(gi) = 1

for all 1 ≤ i ≤ 34. In view of that fact, is it true that ft18(n) = 1 for all
n ≥ 3? We do not know. But we have verified it up to n ≤ 230, and it
cannot be outright dismissed, given the conjectural behavior of ft(n) for very
large n as discussed in Section 5. Of course, a positive answer would imply
the Collatz conjecture. On the other hand, uncovering any counterexample
would be quite a feat.
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Figure 2: Same plot as for Figure 1 except that integers are separated with
respect to their class 1 or 3 modulo 4. Gray curves are for integers congruent
to 1 modulo 4 while black ones are for those congruent to 3 modulo 4.
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3 The Syracuse version

Let O = 2N+ 1 denote the set of odd positive integers. Another well-studied
version of the 3x+ 1 function is syr : O→ O, defined on any x ∈ O by

syr(x) = (3x+ 1)/2ν ,

where ν ≥ 1 is the largest integer such that 2ν divides 3x + 1. That is,
syr(x) is the largest odd factor of 3x + 1. This specific version is called the
Syracuse function in [13]. It has been amply investigated in the past, though
under different notation or names. For instance in [3], where lower bounds
on the length of presumed nontrivial cycles of syr(x) are given in terms of
the convergents pn/qn to log2(3); or in [6, 7, 12], where statistical properties
of syr(x) and related maps are studied using the Structure theorem of Sinai,
which we briefly recall in Section 3.2 below.

In analogy with the functions jp(n) and ft(n) related to the 3x+1 function
T (x), we now introduce the corresponding functions sjp(n) and sft(n) related
to the Syracuse version syr(x).

Definition 3.1 We define the Syracuse jump function sjp : O→ O by

sjp(n) = syr(`)(n), where ` = blog2(n) + 1c.

Example 3.2 We have sjp(1) = 1, sjp(3) = 1 and sjp(27) = syr(5)(27) =
107.

10



Figure 3: Proportion of 24-persistent integers in [2`, 2`+1−1] with falling time
equal to 1, 2 and greater than 2, respectively. The integer ` goes from 24
to 50
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Here is the corresponding Syracuse falling time.

Definition 3.3 Let n ∈ O \{1}. The Syracuse falling time of n, denoted
sft(n), is the least k ≥ 1 such that sjp(k)(n) < n, or ∞ if there is no such k.

Example 3.4 We have sft(27) = 6, as witnessed by the orbit of 27 under
Syracuse jumps, namely

Osjp(27) = (27, 107, 233, 377, 911, 53, 1, 1, . . . ).

As one may expect, the inequality sft(n) ≤ ft(n) holds very often, but
not always. For instance, for n = 199, we have ft(199) = 1 but sft(199) = 5.
The former equality follows from the orbit

OT (199) = (199, 299, 449, 674, 337, 506, 253, 380, 190, . . . )

and the value blog2(199) + 1c = 8, yielding jp(199) = 190, while the latter
one follows from the orbit

Osyr(199) = (199, 323, 395, 479, 577, 1, . . . ).

Definition 3.5 A Syracuse falling time record is an integer n ∈ 4N+3 such
that n ≥ 7 and sft(m) < sft(n) for all m ∈ 4N + 3 with m < n.

The complete list of Syracuse falling time records up to 235 is displayed
in Table 6. Compared with Table 1, it turns out that all current Syracuse
falling time records are also falling time records. The converse does not hold,
as shown by the falling time records 60 975 and 1 394 431 in Table 1.
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Table 6: Syracuse falling time records up to 235

n ≡ 3 mod 4 blog2(n) + 1c sft(n)

7 3 2
27 5 6

6 649 279 23 7
63 728 127 26 9

3.1 Current maximum

The Collatz conjecture is equivalent to the statement sft(n) < ∞ for all
n ∈ O \{1}. Again, it is likely that a stronger form holds, namely that
sft(n) is bounded on O \{1}. Besides the computational evidence above and
below, some heuristics point to that possibility in Section 5. Similarly to
Proposition 2.1, here is a computational result in that direction.

Proposition 3.6 We have sft(n) ≤ 9 for all n ∈ [3, 235 − 1] such that n ≡
3 mod 4.

Proof. By computer with CALCULCO [2].

As yet another hint pointing to the same direction, it turns out that

sft(g1), . . . , sft(g34) ≤ 10 (5)

for the 34 currently known glide records. For definiteness, Table 7 displays
the Syracuse falling times of the top ten glide records as listed in Table 5.

Table 7: Syracuse falling times of top ten glide records

n g25 g26 g27 g28 g29 g30 g31 g32 g33 g34

sft(n) 9 8 8 8 8 10 8 10 9 8

Among the gi, and as in Section 2.2 for the falling time, only g30 and g32
reach the current maximum of the Syracuse falling time, namely sft(n) = 10.
Interestingly, the biggest currently known glide record, namely n = g34, only
satisfies sft(n) = 8. With Proposition 3.6 and (5) in the background, here is
our formal conjecture.
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Conjecture 3.7 There exists C ≥ 10 such that sft(n) ≤ C for all n ≡
3 mod 4.

Again, the truth of this conjecture would yield a strong positive solution
of the Collatz conjecture. At the time of writing, no single positive integer
n ≡ 3 mod 4 is known to satisfy sft(n) ≥ 11. Thus, a still bolder conjecture
would be to take C = 10 in Conjecture 3.7, or C = 12 to be on a safer side.
Whence the title of this paper.

3.2 A variant of Syracuse jumps

As in Section 2.4 for jumps, we propose here an accelerated variant of Syra-
cuse jumps. Let h ∈ N. For all n ∈ O, we define

sjph(n) = syr(h`)(n),

where ` is the number of digits of n in base 2. Of course, sjp1(n) = sjp(n).
For n ≥ 3, the Syracuse h-falling time sfth(n) is defined correspondingly, as

the smallest k ≥ 1, if any, such that sft
(k)
h (n) < n. It turns out that for

h = 12, and for the glide records g1, . . . , g34, we have

sft12(gi) = 1

for all 1 ≤ i ≤ 34. Again, we may ask whether sft12(n) = 1 holds for all
odd n ≥ 3. A positive answer would imply the Collatz conjecture. We have
verified it up to n ≤ 230, and our semi-random search did not yield any
counterexample.

Anyway, the occurrence of sft12(n) = 1 as n grows to infinity is probably
overwhelming; and, just possibly, tools such as Sinai’s structure theorem and
its applications [6, 7, 12] might help prove that this is indeed the case. But
we shall not pursue here this line of investigation.

For convenience, let us briefly recall the statement of that theorem. Given
x ∈ 6N + {1, 5}, let xi = syr(i)(x) for all i ≥ 0, and let ki ≥ 1 be such that
xi = (3xi−1 + 1)/2ki for all i ≥ 1. Moreover, for m ≥ 1, set

γm(x) = (k1, . . . , km).

Sinai’s structure theorem states that given any (k1, . . . , km) ∈ Nm, the set of
all x ∈ 6N + {1, 5} such that γm(x) = (k1, . . . , km) consists of a unique and
full congruence class mod 6 · 2k1+···+km in N.
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4 The case 2` − 1

In sharp contrast with the stopping time of 2` − 1, for which σ(2` − 1) ≥ `
for all ` ≥ 2, the falling time and the Syracuse falling time of 2` − 1 seem to
remain very small as ` grows. Here is some strong computational evidence.

Proposition 4.1 Besides ft(25− 1) = ft(26− 1) = 8, we have ft(2`− 1) ≤ 5
for all 2 ≤ ` ≤ 500 000 with ` /∈ {5, 6}.

Proof. In a few days of computing time with CALCULCO [2].

Moreover, the value ft(2`−1) = 5 seems to occur finitely many times only,
the last one being presumably at ` = 132. In turn, the value ft(2` − 1) = 4
seems to occur infinitely often. Whence the following conjecture, verified by
computer up to ` = 500 000.

Conjecture 4.2 We have ft(2` − 1) ≤ 4 for all ` ≥ 133.

Here are the analogous statement and conjecture for the Syracuse falling
time.

Proposition 4.3 Besides sft(25− 1) = sft(26− 1) = 5, and sft(224− 1) = 4,
we have

sft(2` − 1) ∈ {2, 3} for all ` ∈ [2, 4 624] \ {5, 6, 24},
sft(2` − 1) = 2 for all ` ∈ [4 625, 500 000].

Proof. In a few days of computing time with CALCULCO [2].

This leads us to the following conjecture, true up to ` ≤ 500 000.

Conjecture 4.4 We have sft(2` − 1) = 2 for all ` ≥ 4 625.

5 For very large n

As hinted by the computational evidence and conjectures of Section 4 on
the case n = 2` − 1, by intensive semi-random search, and by the heuristics
below, it appears to be increasingly difficult for integers n to satisfy ft(n) ≥ 5
or sft(n) ≥ 3 as they grow very large. Here then are still bolder conjectures.
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Conjecture 5.1 We have ft(n) ≤ 4 for all n ≥ 2500.

This threshold of 2500 is inspired by Conjecture 4.2, of course with a mar-
gin for safety. It cannot be significantly lowered, since ft(2132 − 1) = 5 as
noted before Proposition 4.1. Moreover, intensive random search revealed
one integer n ∈ [270, 271 − 1] satisfying ft(n) = 5, namely

n = 1 884 032 044 420 885 877 201 579 449 071 924 925 072 300 117 065 411.

However, this integer is congruent to 3 mod 16 and hence has stopping time
equal to 4 only.

Here is the analogous conjecture for the Syracuse falling time. Its thresh-
old of 25000 is similarly inspired by Proposition 4.3 and Conjecture 4.4.

Conjecture 5.2 We have sft(n) ≤ 2 for all odd n ≥ 25000.

5.1 Heuristics

Besides the computational evidence leading to Conjectures 2.4, 3.7, 4.2,
4.4, 5.1 and 5.2, a heuristic argument would run as follows. It is well known
that the Collatz conjecture is equivalent to the statement that, starting with
any integer n ≥ 1, the probability for T (k)(n) to be even or odd tends to 1/2
as k grows to infinity. Thus, even if n written in base 2 is a highly structured
binary string, as e.g. for n = 2` − 1, one may expect that for ` = the length
of that string, then T (`)(n) in base 2 will already look more random. That
is, a single jump or Syracuse jump at n ≥ 3 should already introduce a good
dosis of randomness, all the more so as n grows very large. And therefore, a
bounded number of jumps or Syracuse jumps at n might well suffice to fall
below n.

5.2 A challenge

We hope that the experts in highly efficient computation of the 3x+1 function
will tackle the challenge of probing these conjectures to much higher levels
than the ones reported here. For instance, as both a challenge and a request
to the reader, and in view of Conjecture 5.1, if you do find any n ≥ 2500

satisfying ft(n) ≥ 5, please e-mail it to the authors. Your solution will be
duly recorded on a dedicated webpage.
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