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Introduction

We denote by N the set of positive integers. Let T : N → N be the notorious 3x + 1 function, defined by T (n) = n/2 if n is even, T (n) = (3n + 1)/2 if n is odd. For k ≥ 0, denote by T (k) the kth iterate of T . The orbit of n under T is the sequence O T (n) = (n, T (n), T (2) (n), . . . ).

The famous Collatz conjecture states that for all n ≥ 1, there exists r ≥ 1 such that T (r) (n) = 1. The least such r is denoted σ ∞ (n) and called the total stopping time of n. An equivalent version of the Collatz conjecture states that for all n ≥ 2, there exists s ≥ 1 such that T (s) (n) < n. The least such s is denoted by σ(n) and called the stopping time of n. For instance, we have

σ(n) = 1 if n is even, 2 if n ≡ 1 mod 4, (1) 
as is well known and easy to check. A stopping time record is an integer n ≥ 2 such that σ(m) < σ(n) for all 2 ≤ m ≤ n -1.

For the original slower version C : N → N, where C(n) = n/2 or 3n + 1 according as n is even or odd, the analog of the stopping time is called the glide in [START_REF] Lagarias | [END_REF]. The list of all currently known glide records, complete up to at least 2 60 , is maintained in [START_REF][END_REF]. It is quite likely that glide records and stopping time records coincide; we have verified it by computer up to 2 32 .

It is well known that σ(n) is unbounded as n grows. For instance, since

T ( ) (2 -1) = 3 -1, (2) 
as follows from the formula T (2 a 3 b -1) = 2 a-1 3 b+1 -1 for a ≥ 1, we have σ(2 -1) ≥ for all ≥ 2. In this paper, we propose an accelerated version of the function T . The idea, somewhat as in [START_REF] Tao | Almost all orbits of the Collatz map attain almost bounded values[END_REF], is to apply an iterate of T to n depending on the number of digits of n in base 2. Accordingly, we introduce the following function.

Definition 1.1 The jump function jp : N → N is defined for n ∈ N by jp(n) = T ( ) (n), where = log 2 (n) + 1 is the number of digits of n in base 2.

Example 1.2 We have jp(1) = T (1) (1) = 2, and jp(2) = T (2) (2) = 2 since 2 is of length = 2 in base 2. For n = 27, written 11011 in base 2, hence of length = 5, we have jp(27) = T (5) (27) = 71. In turn, 71 is of length = 7 in base 2 since 2 6 ≤ 71 < 2 7 , whence jp(71) = T (7) (71) = 137. The orbit of 27 under jumps is displayed below in (4).

Example 1.3 A single jump at n = 2 -1 with ≥ 1 yields jp(2 -1) = 3 -1.
(

) 3 
This follows from the equalities = log 2 (2 -1) + 1 and (2).

Example 1. [START_REF] Eliahou | The 3x + 1 problem: new lower bounds on nontrivial cycle lengths[END_REF] We have jp(2n) = jp(n) for all n ≥ 1. Indeed, 2n is of length one more than n in base 2.

In analogy with the stopping time relative to T , we now introduce the falling time relative to jumps. As jp(1) = jp(2) = 2, we only consider n ≥ 3.

Definition 1.5 Let n ≥ 3. The falling time of n, denoted ft(n), is the least k ≥ 1 such that jp (k) (n) < n, or ∞ if there is no such k.
Note that, for a presumed cyclic orbit under T with minimum m ≥ 3, we would have jp(m) = ∞.

There is no tight comparison between stopping time and falling time. It may happen that σ(a) < σ(b) whereas ft(a) > ft(b). For instance, for a = 41 and b = 43, we have

σ(41) = 2 < σ(43) = 5, ft(41) = 8 > ft(43) = 2.
It may also happen that ft(n) > σ(n), as shown by the case n = 41.

Of course, the Collatz conjecture is equivalent to ft(n) < ∞ for all n ≥ 3. In Section 2, we provide computational evidence leading us to a stronger conjecture, namely that ft(n) is in fact bounded for all n ≥ 3. Specifically, all integers n we have tested so far satisfy ft(n) ≤ 16. See Conjecture 2.4. In Section 3, in analogy with the falling time, we introduce the Syracuse falling time sft(n), and corresponding conjectures, by only considering the odd terms in the orbits O T (n). In Section 4, we report surprising computational results on ft(2 -1) and sft(2 -1) for ≤ 500 000, and we formulate corresponding conjectures. In the last Section 5, inspired by the case n = 2 -1, we formulate still stronger conjectures on ft(n) and sft(n) for very large integers n. We conclude the paper with some supporting heuristics.

For a wealth of information, developments and commented references related to the 3x + 1 problem, see the webpage and book of J. C. Lagarias [START_REF] Lagarias | 3x + 1 problem and related problems[END_REF][START_REF]The Ultimate Challenge: The 3x + 1 Problem[END_REF]. To date, the Collatz conjecture has been verified by computer up to 2 68 by D. Barina [START_REF] Barina | Convergence verification of the Collatz problem[END_REF]. Using this bound, it follows from [START_REF] Eliahou | The 3x + 1 problem: new lower bounds on nontrivial cycle lengths[END_REF] that any non-trivial cycle of T must have length at least 114 208 327 604.

Falling time records

In this section, we only consider those positive integers n satisfying σ(n) ≥ 3, i.e. such that n ≡ 3 mod 4 by [START_REF] Barina | Convergence verification of the Collatz problem[END_REF]. Let us denote by 4N + 3 the set of those integers. Here is our first computational evidence that the falling time remains small. Proposition 2.1 We have ft(n) ≤ 14 for all n ∈ [1, 2 44 -1] such that n ≡ 3 mod 4.

Proof. In a few days of computing time with CALCULCO [START_REF] Calculco | a computing platform at Université du Littoral Côte d'Opale[END_REF]. [START_REF][END_REF].

As shown in

Table 1 shows that the number 12 and a few smaller ones fail to occur as falling time records. One may then wonder about the smallest n ∈ 4N + 3 reaching ft(n) = 12.

The answer is to be found in Table 2. Let us define a new falling time as an integer n ∈ 4N + 3 such that ft(n) is distinct from ft(m) for all smaller m ∈ 4N + 3. Of course, every falling time record is a new falling time. The list of new falling times we know so far, which are not already falling time records, is given in Table 2. for all m ≥ 3, a single integer n satisfying ft(n) > 14 yields infinitely many integers N satisfying ft(N ) > 14, namely N = 2 r n for all r ≥ 1. However, the latter numbers have stopping time equal to 1, and hence are not particularly interesting.

Only those integers n satisfying ft(n) > 14 and having a reasonably large stopping time are really interesting, for their apparent rarity and their relevance to the Collatz conjecture. Hence, we shall restrict our search to 24-persistent integers, i.e. to those n satisfying

σ(n) ≥ 24.
The property for n of being 24-persistent only depends on its class mod 2 24 . See [START_REF] Terras | A stopping time problem on the positive integers[END_REF] for more details on the description of the condition σ(n) ≥ k by classes mod 2 k . See also [START_REF] Everett | Iteration of the Number-Theoretic Function f (2n) = n, f (2n + 1) = 3n + 2[END_REF]. For k = 24, the number of 24-persistent classes mod 2 24 is exactly 286 581.

As shown below, the occurrence of ft(n) > 14 among 24-persistent numbers seems to be very rare. Here is our first computational result. Proof. In a few days of computing time with CALCULCO [START_REF] Calculco | a computing platform at Université du Littoral Côte d'Opale[END_REF].

The neighborhood of g 30

It turns out that n 0 is a glide record, and as such is listed under the name

n 0 = g 30
in Table 5 of Section 2.2. We have verified by computer that g 30 is the smallest 24-persistent integer n satisfying ft(n) > 14. However, because of the restriction σ(n) ≥ 24, we do not know whether g 30 is an actual falling time record. In a small neighborhood of g 30 in the Collatz tree, we found 11 more 24-persistent integers n satisfying ft(n) > 14. By small neighborhood of g 30 , we mean here integers m such that

T (i) (m) = T (j) (g 30 )
for some i ∈ [0, 40], j ∈ [0, 30]. It turns out that these 11 integers all satisfy ft(n) = 15, as g 30 itself. They are displayed in Table 3. 

The neighborhood of g 32

There is another glide record in Table 5 with falling time 15, namely g 32 = 180 352 746 940 718 527.

In this case, looking at a somewhat larger neighborhood of g 32 in the Collatz tree, namely at all m such that

T (i) (m) = T (j) (g 32 )
for some i ∈ [0, 50], j ∈ [0, 30], we found four 24-persistent integers n reaching ft(n) = 16. These four integers are displayed in Table 4. However, these four integers n have a small stopping time. They all satisfy σ(n) ∈ [35, 48], as compared to σ(g 32 ) = 966. Hence again, they are not particularly interesting. This leads us to the following conjecture.

Conjecture 2.4 There exists B ≥ 16 such that ft(n) ≤ B for all n ≥ 3.

An even bolder conjecture, based on the data we currently have, would be to take B = 16 above. Anyway, with whatever value of B, Conjecture 2.4 constitutes a strong form of the Collatz conjecture.

Glide records

Eric Roosendaal maintains the list of all currently known glide records [START_REF][END_REF], complete up to at least 2 60 . At the time of writing, there are 34 of them, denoted g 1 , . . . , g 34 below. As noted in [START_REF][END_REF], only the first 32 ones have been independently checked. The ten biggest are displayed in descending order in Table 5. It turns out that ft(g 1 ), . . . , ft(g 34 ) ≤ 15.

Moreover, among them, the highest value ft(n) = 15 is only reached by g 30 and g 32 . Table 4 displays four 24-persistent integers n satisfying ft(n) = 16 in the neighborhood of g 32 . We do not know whether ft(n) ≥ 17 is at all reachable. 

Falling time distribution

In three distinct graphics, we display the distribution of the values taken by the falling time function in large integer intervals. These graphics show that the proportion of the case ft(n) ≥ 3 in the integer intervals [2 , 2 +1 -1] tends to 0 as grows.

• Figure 1 displays the proportion of the occurrence of ft(n) = 1, ft(n) = 2 and ft(n) ≥ 3, respectively, among all odd integers in the integer intervals [2 , 2 +1 -1] for 2 ≤ ≤ 40.

• Figure 2 does the same but separates the cases n ≡ 1 mod 4 and n ≡ 3 mod 4. The purpose is to show that the former case, with stopping time 2, behaves like the more interesting latter case, and so may be safely ignored.

• Finally, Figure 3 is restricted to 24-persistent integers in the integer intervals [2 , 2 +1 -1] for 24 ≤ ≤ 50. 

A variant of jumps

Let h ∈ N. For all n ∈ N, we define

jp h (n) = T (h ) (n)
where, as before, is the number of digits of n in base 2. This is not the same, of course, as the h-iterate jp (h) (n). Note also that for h = 1, we recover i.e. jp 1 (n) = jp(n). For n ≥ 3, the h-falling time ft h (n) is defined correspondingly, as the smallest k ≥ 1, if any, such that ft

(k) h (n) < n.
It turns out that for h = 18, and for the glide records g 1 , . . . , g 34 , we have ft 18 (g i ) = 1 for all 1 ≤ i ≤ 34. In view of that fact, is it true that ft 18 (n) = 1 for all n ≥ 3? We do not know. But we have verified it up to n ≤ 2 30 , and it cannot be outright dismissed, given the conjectural behavior of ft(n) for very large n as discussed in Section 5. Of course, a positive answer would imply the Collatz conjecture. On the other hand, uncovering any counterexample would be quite a feat. where ν ≥ 1 is the largest integer such that 2 ν divides 3x + 1. That is, syr(x) is the largest odd factor of 3x + 1. This specific version is called the Syracuse function in [START_REF] Tao | Almost all orbits of the Collatz map attain almost bounded values[END_REF]. It has been amply investigated in the past, though under different notation or names. For instance in [START_REF] Crandall | On the " 3x + 1" Problem[END_REF], where lower bounds on the length of presumed nontrivial cycles of syr(x) are given in terms of the convergents p n /q n to log 2 (3); or in [START_REF] Kontorovich | Benfords law, values of L-functions, and the 3x + 1 problem[END_REF][START_REF] Kontorovich | Structure Theorem for (d, g, h)maps[END_REF][START_REF] Ya | Statistical (3x + 1)-Problem[END_REF], where statistical properties of syr(x) and related maps are studied using the Structure theorem of Sinai, which we briefly recall in Section 3.2 below.

In analogy with the functions jp(n) and ft(n) related to the 3x+1 function T (x), we now introduce the corresponding functions sjp(n) and sft(n) related to the Syracuse version syr(x). Here is the corresponding Syracuse falling time. As one may expect, the inequality sft(n) ≤ ft(n) holds very often, but not always. For instance, for n = 199, we have ft(199) = 1 but sft(199) = 5. The former equality follows from the orbit O T (199) = (199, 299, 449, 674, 337, 506, 253, 380, 190, . . . ) and the value log 2 (199) + 1 = 8, yielding jp(199) = 190, while the latter one follows from the orbit O syr (199) = (199, 323, 395, 479, 577, 1, . . . ). Definition 3.5 A Syracuse falling time record is an integer n ∈ 4N + 3 such that n ≥ 7 and sft(m) < sft(n) for all m ∈ 4N + 3 with m < n.

Definition 3.3 Let n ∈ O \{1}. The Syracuse falling time of n, denoted sft(n), is the least k ≥ 1 such that sjp (k) (n) < n, or ∞ if there is no such k.
The complete list of Syracuse falling time records up to 2 35 is displayed in Table 6. Compared with Table 1, it turns out that all current Syracuse falling time records are also falling time records. The converse does not hold, as shown by the falling time records 60 975 and 1 394 431 in Table 1. 

Current maximum

The Collatz conjecture is equivalent to the statement sft(n) < ∞ for all n ∈ O \{1}. Again, it is likely that a stronger form holds, namely that sft(n) is bounded on O \{1}. Besides the computational evidence above and below, some heuristics point to that possibility in Section 5. Similarly to Proposition 2.1, here is a computational result in that direction.

Proposition 3.6 We have sft(n) ≤ 9 for all n ∈ [3, 2 35 -1] such that n ≡ 3 mod 4.
Proof. By computer with CALCULCO [START_REF] Calculco | a computing platform at Université du Littoral Côte d'Opale[END_REF].

As yet another hint pointing to the same direction, it turns out that sft(g 1 ), . . . , sft(g 34 ) ≤ 10

for the 34 currently known glide records. For definiteness, Table 7 displays the Syracuse falling times of the top ten glide records as listed in Table 5. Among the g i , and as in Section 2.2 for the falling time, only g 30 and g 32 reach the current maximum of the Syracuse falling time, namely sft(n) = 10. Interestingly, the biggest currently known glide record, namely n = g 34 , only satisfies sft(n) = 8. With Proposition 3.6 and (5) in the background, here is our formal conjecture. Again, the truth of this conjecture would yield a strong positive solution of the Collatz conjecture. At the time of writing, no single positive integer n ≡ 3 mod 4 is known to satisfy sft(n) ≥ 11. Thus, a still bolder conjecture would be to take C = 10 in Conjecture 3.7, or C = 12 to be on a safer side. Whence the title of this paper.

A variant of Syracuse jumps

As in Section 2.4 for jumps, we propose here an accelerated variant of Syracuse jumps. Let h ∈ N. For all n ∈ O, we define

sjp h (n) = syr (h ) (n),
where is the number of digits of n in base 2. Of course, sjp 1 (n) = sjp(n). For n ≥ 3, the Syracuse h-falling time sft h (n) is defined correspondingly, as the smallest k ≥ 1, if any, such that sft (k) h (n) < n. It turns out that for h = 12, and for the glide records g 1 , . . . , g 34 , we have sft 12 (g i ) = 1 for all 1 ≤ i ≤ 34. Again, we may ask whether sft 12 (n) = 1 holds for all odd n ≥ 3. A positive answer would imply the Collatz conjecture. We have verified it up to n ≤ 2 30 , and our semi-random search did not yield any counterexample.

Anyway, the occurrence of sft 12 (n) = 1 as n grows to infinity is probably overwhelming; and, just possibly, tools such as Sinai's structure theorem and its applications [START_REF] Kontorovich | Benfords law, values of L-functions, and the 3x + 1 problem[END_REF][START_REF] Kontorovich | Structure Theorem for (d, g, h)maps[END_REF][START_REF] Ya | Statistical (3x + 1)-Problem[END_REF] might help prove that this is indeed the case. But we shall not pursue here this line of investigation.

For convenience, let us briefly recall the statement of that theorem. Given x ∈ 6N + {1, 5}, let x i = syr (i) (x) for all i ≥ 0, and let k i ≥ 1 be such that

x i = (3x i-1 + 1)/2 k i for all i ≥ 1. Moreover, for m ≥ 1, set γ m (x) = (k 1 , . . . , k m ).
Sinai's structure theorem states that given any (k 1 , . . . , k m ) ∈ N m , the set of all x ∈ 6N + {1, 5} such that γ m (x) = (k 1 , . . . , k m ) consists of a unique and full congruence class mod 6

• 2 k 1 +•••+km in N.

The case 2 -1

In sharp contrast with the stopping time of 2 -1, for which σ(2 -1) ≥ for all ≥ 2, the falling time and the Syracuse falling time of 2 -1 seem to remain very small as grows. Here is some strong computational evidence. Proof. In a few days of computing time with CALCULCO [START_REF] Calculco | a computing platform at Université du Littoral Côte d'Opale[END_REF].

Moreover, the value ft(2 -1) = 5 seems to occur finitely many times only, the last one being presumably at = 132. In turn, the value ft(2 -1) = 4 seems to occur infinitely often. Whence the following conjecture, verified by computer up to = 500 000. Proof. In a few days of computing time with CALCULCO [START_REF] Calculco | a computing platform at Université du Littoral Côte d'Opale[END_REF].

This leads us to the following conjecture, true up to ≤ 500 000. 

For very large n

As hinted by the computational evidence and conjectures of Section 4 on the case n = 2 -1, by intensive semi-random search, and by the heuristics below, it appears to be increasingly difficult for integers n to satisfy ft(n) ≥ 5 or sft(n) ≥ 3 as they grow very large. Here then are still bolder conjectures. However, this integer is congruent to 3 mod 16 and hence has stopping time equal to 4 only.

Here is the analogous conjecture for the Syracuse falling time. Its threshold of 2 5000 is similarly inspired by Proposition 4. 

Heuristics

Besides the computational evidence leading to Conjectures 2.4, 3.7, 4.2, 4.4, 5.1 and 5.2, a heuristic argument would run as follows. It is well known that the Collatz conjecture is equivalent to the statement that, starting with any integer n ≥ 1, the probability for T (k) (n) to be even or odd tends to 1/2 as k grows to infinity. Thus, even if n written in base 2 is a highly structured binary string, as e.g. for n = 2 -1, one may expect that for = the length of that string, then T ( ) (n) in base 2 will already look more random. That is, a single jump or Syracuse jump at n ≥ 3 should already introduce a good dosis of randomness, all the more so as n grows very large. And therefore, a bounded number of jumps or Syracuse jumps at n might well suffice to fall below n.

A challenge

We hope that the experts in highly efficient computation of the 3x+1 function will tackle the challenge of probing these conjectures to much higher levels than the ones reported here. For instance, as both a challenge and a request to the reader, and in view of Conjecture 5.1, if you do find any n ≥ 2 500 satisfying ft(n) ≥ 5, please e-mail it to the authors. Your solution will be duly recorded on a dedicated webpage.
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  a, b ∈ Z, we denote by [a, b] = {n ∈ Z | a ≤ n ≤ b} the integer interval they span. Recalling Example 1.4, namely that ft(2m) = ft(m)

Proposition 2 . 3

 23 The smallest 24-persistent integer n such that ft(n) > 14 is n 0 = 1 008 932 249 296 231.It satisfies ft(n 0 ) = 15, σ(n 0 ) = 886 and log 2 (n 0 ) + 1 = 50.

Figure 1 :

 1 Figure 1: Proportion of odd integers in [2 , 2 +1 -1] with falling time equal to 1, 2 and greater than 2, respectively. The integer goes from 2 to 40

Figure 2 :

 2 Figure 2: Same plot as for Figure 1 except that integers are separated with respect to their class 1 or 3 modulo 4. Gray curves are for integers congruent to 1 modulo 4 while black ones are for those congruent to 3 modulo 4.
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 3 The Syracuse version Let O = 2N + 1 denote the set of odd positive integers. Another well-studied version of the 3x + 1 function is syr : O → O, defined on any x ∈ O by syr(x) = (3x + 1)/2 ν ,

Definition 3 . 1 Example 3 . 2

 3132 We define the Syracuse jump function sjp : O → O by sjp(n) = syr ( ) (n), where = log 2 (n) + 1 . We have sjp(1) = 1, sjp(3) = 1 and sjp(27) = syr (5) (27) = 107.

Figure 3 :

 3 Figure 3: Proportion of 24-persistent integers in [2 , 2 +1 -1] with falling time equal to 1, 2 and greater than 2, respectively. The integer goes from 24 to 50

Example 3 . 4

 34 We have sft(27) = 6, as witnessed by the orbit of 27 under Syracuse jumps, namely O sjp (27) = (27, 107, 233, 377, 911, 53, 1, 1, . . . ).

Conjecture 3 . 7

 37 There exists C ≥ 10 such that sft(n) ≤ C for all n ≡ 3 mod 4.

Proposition 4 . 1

 41 Besides ft(2 5 -1) = ft(2 6 -1) = 8, we have ft(2 -1) ≤ 5 for all 2 ≤ ≤ 500 000 with / ∈ {5, 6}.

Conjecture 4 . 2 Proposition 4 . 3

 4243 We have ft(2 -1) ≤ 4 for all ≥ 133. Here are the analogous statement and conjecture for the Syracuse falling time. Besides sft(2 5 -1) = sft(2 6 -1) = 5, and sft(2 24 -1) = 4, we have sft(2 -1) ∈ {2, 3} for all ∈ [2, 4 624] \ {5, 6, 24}, sft(2 -1) = 2 for all ∈ [4 625, 500 000].

Conjecture 4 . 4

 44 We have sft(2 -1) = 2 for all ≥ 4 625.

Conjecture 5 . 1

 51 We have ft(n) ≤ 4 for all n ≥ 2 500 . This threshold of 2 500 is inspired by Conjecture 4.2, of course with a margin for safety. It cannot be significantly lowered, since ft(2 132 -1) = 5 as noted before Proposition 4.1. Moreover, intensive random search revealed one integer n ∈ [2 70 , 2 71 -1] satisfying ft(n) = 5, namely n = 1 884 032 044 420 885 877 201 579 449 071 924 925 072 300 117 065 411.

  3 and Conjecture 4.4. Conjecture 5.2 We have sft(n) ≤ 2 for all odd n ≥ 2 5000 .

Table 1 ,

 1 the smallest n ∈ 4N+3 such that ft(n) ≥ 14, namely n = 12 235 060 455, actually satisfies ft(n) = 14 and n > 2 33 .

	Definition 2.2 A falling time record is an integer n ∈ 4N + 3 such that
	ft(m) < ft(n) for all m ∈ 4N + 3 with m < n.

Table 1 :

 1 Falling time records up to 235 

	n ≡ 3 mod 4 log 2 (n) + 1 ft(n)
	3	2	2
	7	3	3
	27	5	8
	60 975	16	9
	1 394 431	21	10
	6 649 279	23	11
	63 728 127	26	13
	12 235 060 455	34	14
	The list of falling time records up to 2 35 is given in Table 1. It was built
	while establishing Proposition 2.1. For instance, we have ft(3) = 2, ft(7) = 3
	and ft(n) ≤ 3 for all 3 ≤ n < 27 such that n ≡ 3 mod 4. The value ft(27) = 8
	follows from the fact that 8 jumps are needed from 27 to fall below it, as
	shown by the orbit of 27 under jumps:		
	O jp (27) = (27, 71, 137, 395, 566, 3 644, 650, 53, 8, 2, 2, . . . ).	(4)

Table 2 :

 2 Some new falling times

	n	111 103 71 55 217 740 015
	ft(n)	4	5	6 7	12

2.1 Integers satisfying ft(n) > 14

Table 3 :

 3 24-persistent integers satisfying ft(n) = 15.

	1 513 398 373 944 347, 1 702 573 170 687 391, 2 017 864 498 592 463,
	2 553 859 756 031 087, 3 405 146 341 374 783, 3 830 789 634 046 631,
	5107719512062175, 5 746 184 451 069 947, 6 464 457 507 453 691,
	7 272 514 695 885 403, 22 370 169 558 105 279.

Table 4 :

 4 24-persistent integers satisfying ft(n) = 16.

	49 312 2600 554 790 303, 739 683 900 832 185 455,
	986 245 201 109 580 607, 1 479 367 801 664 370 911.

Table 5 :

 5 Top ten known glide records

	n		log 2 (n) + 1 glide of n σ(n) ft(n)
	g 34 2 602 714 556 700 227 743	62	1 639	1005	13
	g 33 1 236 472 189 813 512 351	61	1 614	990	14
	g 32	180 352 746 940 718 527	58	1 575	966 15
	g 31	118 303 688 851 791 519	57	1 471	902	12
	g 30	1 008 932 249 296 231	50	1 445	886 15
	g 29	739 448 869 367 967	50	1 187	728	12
	g 28	70 665 924 117 439	47	1 177	722	13
	g 27	31 835 572 457 967	45	1 161	712	13
	g 26	13 179 928 405 231	44	1 122	688	14
	g 25	2 081 751 768 559	41	988	606	12

Table 6 :

 6 Syracuse falling time records up to 2 35

	n ≡ 3 mod 4 log 2 (n) + 1 sft(n)
	7	3	2
	27	5	6
	6 649 279	23	7
	63 728 127	26	9

Table 7 :

 7 Syracuse falling times of top ten glide records n g 25 g 26 g 27 g 28 g 29 g 30 g 31 g 32 g 33 g 34

	sft(n)	9	8	8	8	8 10 8 10 9	8
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