Is the Syracuse falling time bounded by $12 ?$

Shalom Eliahou, Rénald Simonetto

To cite this version:

Shalom Eliahou, Rénald Simonetto. Is the Syracuse falling time bounded by 12?. 2021. hal03294829v1

HAL Id: hal-03294829
https://hal.science/hal-03294829v1
Preprint submitted on 23 Jul 2021 (v1), last revised 18 Oct 2021 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Is the Syracuse falling time bounded by $12 ?$

Shalom Eliahou* and Rénald Simonetto ${ }^{\dagger}$

Abstract

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ denote the $3 x+1$ function, defined by $T(n)=n / 2$ if n is even, $T(n)=(3 n+1) / 2$ if n is odd. As an accelerated version of T, we define the jump function $\operatorname{jp}(n)=T^{(\ell)}(n)$ for $n \geq 1$, where $\ell=$ $\left\lfloor\log _{2}(n)\right\rfloor+1=$ the number of digits of n in base 2 . Correspondingly, we define the falling time $\mathrm{ft}(n)$ for $n \geq 2$ as the least $k \geq 1$, if any, such that $\mathrm{jp}^{(k)}(n)<n$, or ∞ otherwise. The Collatz conjecture is equivalent to $\mathrm{ft}(n)<\infty$ for all $n \geq 2$. As a stronger form of it, is it conceivable that $\mathrm{ft}(n)$ be uniformly bounded? So far, the highest value of $\mathrm{ft}(n)$ we have found is 15 .

The related Syracuse function is defined on odd integers $n \geq 1$ by $\operatorname{syr}(n)=(3 n+1) / 2^{\nu}$, the largest odd factor of $3 n+1$. Correspondingly, we define the Syracuse jump function $\operatorname{sjp}(n)=\operatorname{syr}^{(\ell)}(n)$, where again $\ell=\left\lfloor\log _{2}(n)\right\rfloor+1$, and the Syracuse falling time $\operatorname{sft}(n)$ for odd $n \geq 3$, namely the least $k \geq 1$ such that $\operatorname{sjp}^{(k)}(n)<n$, or ∞ otherwise. Again, the Collatz conjecture is equivalent to $\operatorname{sft}(n)<\infty$ for all odd $n \geq 3$. So far, the highest value of $\operatorname{sft}(n)$ we have found is 10 , including among all known glide records and all $n=2^{\ell}-1$ for $\ell \geq 2$.

Based on the computational and heuristic evidence presented here, we conjecture that both $\mathrm{ft}(n)$ and $\operatorname{sft}(n)$ are uniformly bounded.

Keywords. Collatz conjecture, $3 x+1$ problem, Syracuse function, stopping time, glide records, jump function

1 Introduction

Throughout the paper, we denote by \mathbb{N} the set of nonnegative integers and by \mathbb{N}_{+}the subset of positive integers.

[^0]Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be the notorious $3 x+1$ function, defined by $T(n)=n / 2$ if n is even, $T(n)=(3 n+1) / 2$ if n is odd. For $k \geq 0$, denote by $T^{(k)}$ the k th iterate of T. The orbit of n under T is the sequence

$$
\mathcal{O}_{T}(n)=\left(n, T(n), T^{(2)}(n), \ldots\right)
$$

The famous Collatz conjecture states that for all $n \geq 1$, there exists $r \geq 1$ such that $T^{(r)}(n)=1$. The least such r is denoted $\sigma_{\infty}(n)$ and called the total stopping time of n. An equivalent version of the Collatz conjecture states that for all $n \geq 2$, there exists $s \geq 1$ such that $T^{(s)}(n)<n$. The least such s is denoted by $\sigma(n)$ and called the stopping time of n. For instance, we have

$$
\sigma(n)= \begin{cases}1 & \text { if } n \text { is even } \tag{1}\\ 2 & \text { if } n \equiv 1 \bmod 4\end{cases}
$$

as easily checked. A stopping time record is an integer $n \geq 2$ such that $\sigma(m)<\sigma(n)$ for all $2 \leq m \leq n-1$.

For the original slower version $C: \mathbb{N} \rightarrow \mathbb{N}$, where $C(n)=n / 2$ or $3 n+1$ according as n is even or odd, the analog of the stopping time is called the glide in [4]. The list of all currently known glide records, complete up to at least $2^{61.2}$, is maintained in [5]. It is quite likely that glide records and stopping time records coincide.

It is well known that $\sigma(n)$ is unbounded as n grows. For instance, since

$$
\begin{equation*}
T^{(\ell)}\left(2^{\ell}-1\right)=3^{\ell}-1 \tag{2}
\end{equation*}
$$

as follows from the formula $T\left(2^{a} 3^{b}-1\right)=2^{a-1} 3^{b+1}-1$ for $a \geq 1$, we have $\sigma\left(2^{\ell}-1\right) \geq \ell$ for all $\ell \geq 2$.

In this paper, we propose an accelerated version of the function T. The idea, somewhat as in [6], is to apply an iterate of T to n depending on the number of digits of n in base 2. Accordingly, we introduce the following function.

Definition 1.1 The jump function jp: $\mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$is defined for $n \in \mathbb{N}_{+}$by

$$
\mathrm{jp}(n)=T^{(\ell)}(n),
$$

where $\ell=\left\lfloor\log _{2}(n)\right\rfloor+1=$ the number of digits of n in base 2.

For instance, a single jump at $n=2^{\ell}-1$ yields

$$
\begin{equation*}
\mathrm{jp}\left(2^{\ell}-1\right)=3^{\ell}-1 \tag{3}
\end{equation*}
$$

This follows from the equalities $\left\lfloor\log _{2}\left(2^{\ell}-1\right)\right\rfloor+1=\ell$ and (2).
In analogy with the stopping time for T, we now introduce the falling time for jumps.

Definition 1.2 Let $n \geq 2$. The falling time of n, denoted $\mathrm{ft}(n)$, is the least $k \geq 1$, if any, such that $\mathrm{jp}^{(k)}(n)<n$, or ∞ otherwise.

There is no tight comparison between stopping time and falling time. It may happen that $\sigma(a)<\sigma(b)$ whereas $\mathrm{ft}(a)>\mathrm{ft}(b)$. For instance for $a=41$ and $b=43$, we have

$$
\begin{array}{r}
\sigma(41)=2<\sigma(43)=5, \\
\mathrm{ft}(41)=8>\mathrm{ft}(43)=2 .
\end{array}
$$

It may also happen that $\mathrm{ft}(n)>\sigma(n)$, as shown by the case $n=41$.
Of course, the Collatz conjecture is equivalent to $\mathrm{ft}(n)<\infty$ for all $n \in \mathbb{N}_{+}$. In Section 2, we provide computational evidence leading us to a stronger conjecture, namely that $\mathrm{ft}(n)$ is in fact uniformly bounded. Specifically, all integers n we have tested so far satisfy $\mathrm{ft}(n) \leq 15$. See Conjecture 2.2. In Section 3, in analogy with the falling time, we introduce the Syracuse falling time, and a corresponding conjecture, by only considering the odd terms of the orbits $\mathcal{O}_{T}(n)$. In the concluding Section 4, we provide some heuristics towards our stronger conjectures.

2 Falling time records

In this section, we only consider those positive integers n satisfying $\sigma(n) \geq 3$, i.e. such that $n \equiv 3 \bmod 4$ by (1). Let us denote by $4 \mathbb{N}+3$ the set of those integers.

Definition 2.1 A falling time record is an integer $n \in 4 \mathbb{N}+3$ such that $\mathrm{ft}(m)<\mathrm{ft}(n)$ for all $m \in 4 \mathbb{N}+3$ with $m<n$.

$n \equiv 3 \bmod 4$	$\left\lfloor\log _{2}(n)\right\rfloor+1$	$\mathrm{ft}(n)$
3	2	2
7	3	3
27	5	8
60975	16	9
1394431	21	10
6649279	23	11
63728127	26	13
12235060455	34	14

Table 1: Falling time records up to 2^{35}

The list of falling time records up to 2^{35} is given in Table 1. It was built in a few days of home computer time with Mathematica 12 [7]. For instance, we have $\mathrm{ft}(3)=2, \mathrm{ft}(7)=3$ and $\mathrm{ft}(n) \leq 3$ for all $3 \leq n<27$ such that $n \equiv 3 \bmod 4$. The value $\mathrm{ft}(27)=8$ follows from the first 9 terms of the orbit of 27 under jumps, namely

$$
\mathcal{O}_{\mathrm{jp}}(27)=(27,71,137,395,566,3644,650,53,8)
$$

Interestingly, five of these falling time records are also glide records, namely 3, 7, 27, 63728127 and 12235060455 [5].

As seen in Table 1, the number 12 and a few smaller ones are not reached by falling time records. One may wonder about the smallest $n \in 4 \mathbb{N}+3$ such that $\mathrm{ft}(n)=12$. More generally, let us define a new falling time as an integer $n \in 4 \mathbb{N}+3$ such that $\mathrm{ft}(n)$ is distinct from $\mathrm{ft}(m)$ for all smaller $m \in 4 \mathbb{N}+3$. Of course, every falling time record is a new falling time. The list of new falling times we know so far, which are not already falling time records, is given in Table 2.

$\mathrm{ft}(n)$	4	5	6	7	12
n	111	103	71	55	217740015

Table 2: Some new falling times

In Section 2.1, we show two large integers n reaching $\mathrm{ft}(n)=15$. But we do not know whether the smaller one is a falling time record. Now, is
the inequality $\mathrm{ft}(n) \geq 16$ reachable? We do not know either, but a negative answer would constitute a strong positive solution of the Collatz conjecture.

2.1 From Roosendaal's website

Eric Roosendaal maintains the list of all currently known glide records [5], complete up to at least $2^{61.2}$. At the time of writing, there are 34 of them. Denoting them by g_{1}, \ldots, g_{34}, the ten biggest are displayed in descending order in Table 3. As hinted there, it turns out that $\mathrm{ft}(n) \leq 15$ for all $n \in$ $\left\{g_{1}, \ldots, g_{34}\right\}$. Moreover, the highest value 15 is reached in only two cases, namely by g_{30} and g_{32}.

	n	$\left\lfloor\log _{2}(n)\right\rfloor+1$	glide of n	$\sigma(n)$	$\mathrm{ft}(n)$
g_{34}	2602714556700227743	61	1639	1005	13
g_{33}	1236472189813512351	60	1614	990	14
g_{32}	180352746940718527	57	1575	966	$\mathbf{1 5}$
g_{31}	118303688851791519	56	1471	902	12
g_{30}	1008932249296231	49	1445	886	$\mathbf{1 5}$
g_{29}	739448869367967	49	1187	728	12
g_{28}	70665924117439	46	1177	722	13
g_{27}	31835572457967	44	1161	712	13
g_{26}	13179928405231	43	1122	688	14
g_{25}	2081751768559	40	988	606	12

Table 3: Top ten known glide records

So far, the integers g_{30} and g_{32} are the only ones we know of satisfying $\mathrm{ft}(n) \geq 15$. This leads us to the following bold conjecture, a strong version of the Collatz conjecture.

Conjecture 2.2 There exists $B \geq 15$ such that $\mathrm{ft}(n) \leq B$ for all $n \in \mathbb{N}_{+}$.

3 The Syracuse version

Let $\mathbb{O}=2 \mathbb{N}+1$ denote the set of odd positive integers. Another well-studied version of the $3 x+1$ function is syr: $\mathbb{O} \rightarrow \mathbb{O}$, defined on any $n \in \mathbb{O}$ by

$$
\operatorname{syr}(n)=(3 n+1) / 2^{\nu}
$$

where $\nu \geq 1$ is the largest integer such that 2^{ν} divides $3 n+1$. Thus $\operatorname{syr}(n)$ is the largest odd factor of $3 n+1$. This specific version is called the Syracuse function in [6].

In analogy with the functions $\sigma(n), \operatorname{jp}(n)$ and $\mathrm{ft}(n)$ related to the $3 x+1$ function T, we now introduce the corresponding functions $\sigma_{\operatorname{syr}}(n), \operatorname{sjp}(n)$ and $\operatorname{sft}(n)$ related to the Syracuse version syr.

Definition 3.1 For $n \in \mathbb{O} \backslash\{1\}$, the Syracuse stopping time, denoted $\sigma_{\mathrm{syr}}(n)$ is the smallest $k \geq 1$, if any, such that $\operatorname{syr}^{(k)}(n)<n$, or ∞ otherwise.

Here is the jump analog for the Syracuse function.
Definition 3.2 We define the Syracuse jump function sjp: $\mathbb{O} \rightarrow \mathbb{O}$ by

$$
\operatorname{sjp}(n)= \begin{cases}1 & \text { if } n=1 \\ \operatorname{syr}^{(\ell)}(n) & \text { if } n \geq 3, \text { where } \ell=\left\lfloor\log _{2}(n)\right\rfloor+1\end{cases}
$$

And here is the corresponding falling time.
Definition 3.3 Let $n \in \mathbb{O} \backslash\{1\}$. The Syracuse falling time of n, denoted $\operatorname{sft}(n)$, is the least $k \geq 1$, if any, such that $\operatorname{sjp}^{(k)}(n)<n$, or ∞ otherwise.

Again, the Collatz conjecture is equivalent to the statement $\operatorname{sft}(n)<\infty$ for all $n \in \mathbb{O} \backslash\{1\}$. As one may expect, the inequality $\operatorname{sft}(n) \leq \operatorname{ft}(n)$ holds very often, but not always. For instance, for $n=199$, we have $\mathrm{ft}(199)=1$ but $\operatorname{sft}(199)=5$. The former equality follows from the orbit

$$
\mathcal{O}_{T}(199)=(199,299,449,674,337,506,253,380,190, \ldots)
$$

and the value $\left\lfloor\log _{2}(199)\right\rfloor+1=8$, yielding $j p(199)=190$, while the latter one follows from the orbit

$$
\mathcal{O}_{\mathrm{syr}}(199)=(199,323,395,479,577,1, \ldots)
$$

Definition 3.4 A Syracuse falling time record is an integer $n \in 4 \mathbb{N}+3$ such that $n \geq 7$ and $\operatorname{sft}(m)<\operatorname{sft}(n)$ for all $m \in 4 \mathbb{N}+3$ with $m<n$.

The list of Syracuse falling time records, complete up to 2^{35}, is displayed in Table 4. Compared with Table 1, it turns out that all current Syracuse falling time records are also falling time records. The converse does not hold, as shown by the falling time records 60975 and 1394431 in Table 1.

$n \equiv 3 \bmod 4$	$\left\lfloor\log _{2}(n)\right\rfloor+1$	$\operatorname{sft}(n)$
7	3	2
27	5	6
6649279	23	7
63728127	26	9

Table 4: Syracuse falling time records up to 2^{35}

3.1 The case $2^{\ell}-1$

In sharp contrast with the stopping time of $2^{\ell}-1$, for which $\sigma\left(2^{\ell}-1\right) \geq \ell$ for all $\ell \geq 2$, both the falling time and the Syracuse falling time of $2^{\ell}-1$ seem to remain very small for all ℓ. Indeed, consider the following surprising computational result and conjecture, stated here for sft only. For $a, b \in \mathbb{N}$, we denote the integer interval they span by $[a, b]=\{n \in \mathbb{N} \mid a \leq n \leq b\}$.

Proposition 3.5 We have $\operatorname{sft}\left(2^{\ell}-1\right) \leq 5$ for all $2 \leq \ell \leq 50000$. More precisely:

$$
\begin{aligned}
& \operatorname{sft}\left(2^{5}-1\right)=\operatorname{sft}\left(2^{6}-1\right)=5 \\
& \operatorname{sft}\left(2^{24}-1\right)=4, \\
& \operatorname{sft}\left(2^{\ell}-1\right) \in\{2,3\} \text { for all } \ell \in[2,4624] \backslash\{5,6,24\}, \\
& \operatorname{sft}\left(2^{\ell}-1\right)=2 \text { for all } \ell \in[4625,50000]
\end{aligned}
$$

Proof. With Mathematica 12 [7], in a few hours of home computer time.
This leads to the following conjecture, true up to $\ell=50000$.
Conjecture 3.6 We have $\operatorname{sft}\left(2^{\ell}-1\right)=2$ for all $\ell \geq 4625$.

3.2 Current maximum

As mentioned above, the Collatz conjecture is equivalent to the statement $\operatorname{sft}(n)<\infty$ for all $n \in \mathbb{O} \backslash\{1\}$. However, it is likely that a stronger form holds, namely that $\operatorname{sft}(n)$ is uniformly bounded. Besides the computational evidence above and below, some heuristics point to that possibility in Section 4. After Proposition 3.5, here is another computational result in that direction.

Proposition 3.7 We have $\operatorname{sft}(n) \leq 9$ for all $n \in\left[1,2^{35}-1\right]$ such that $n \equiv$ $3 \bmod 4$.

Proof. With Mathematica 12, in a few days of home computer time.
As yet another hint pointing to the same direction, it turns out that

$$
\begin{equation*}
\operatorname{sft}\left(g_{1}\right), \ldots, \operatorname{sft}\left(g_{34}\right) \leq 10 \tag{4}
\end{equation*}
$$

for the 34 currently known glide records. For definiteness, Table 5 displays the Syracuse falling times of the top ten glide records as listed in Table 3.

n	g_{25}	g_{26}	g_{27}	g_{28}	g_{29}	g_{30}	g_{31}	g_{32}	g_{33}	g_{34}
$\operatorname{sft}(n)$	9	8	8	8	8	$\mathbf{1 0}$	8	$\mathbf{1 0}$	9	8

Table 5: Syracuse falling times of top ten glide records

Among the g_{i}, and as in Section 2.1 for the falling time, only g_{30} and g_{32} reach the current maximum of the Syracuse falling time, namely $\operatorname{sft}(n)=10$. Interestingly, the biggest currently known glide record $n=g_{34}$ only satisfies $\operatorname{sft}(n)=8$. With Proposition 3.7 and (4) in the background, here is our formal conjecture.

Conjecture 3.8 There exists $C \geq 10$ such that $\operatorname{sft}(n) \leq C$ for all $n \equiv$ $3 \bmod 4$.

Again, its truth would yield a strong positive solution of the Collatz conjecture. At the time of writing, no single positive integer $n \equiv 3 \bmod 4$ is known to satisfy $\operatorname{sft}(n) \geq 11$. Thus, a still bolder conjecture would be to take $C=10$ in Conjecture 3.8, or $C=12$ to be on a safer side.

We hope that the experts in highly efficient computation of the $3 x+1$ function will tackle the challenge of probing these conjectures to much higher levels.

4 Concluding remarks

One may accelerate the jump function jp as follows. Given $h \in \mathbb{N}_{+}$, we define

$$
\mathrm{jp}_{h}: \mathbb{N} \rightarrow \mathbb{N}
$$

by $\operatorname{jp}_{h}(n)=T^{(h \ell)}$ where, as for jumps, ℓ is the number of digits of n in base 2. This is not the same, of course, as the h-iterate jp ${ }^{(h)}$. Note also that for
$h=1$ we recover jumps, i.e. $\mathrm{jp}_{1}=\mathrm{jp}$. The h-falling time ft_{h} can be defined correspondingly. It turns out that for $h=18$, all 34 known glide records n satisfy $\mathrm{ft}_{18}(n)=1$.

Besides the computational evidence for Conjectures 2.2, 3.6 and 3.8 provided in this paper, a heuristic argument would run as follows. It is well known that the Collatz conjecture is equivalent to the statement that, starting with any integer $n \geq 1$, the probability for $T^{(k)}(n)$ to be even or odd tends to $1 / 2$ as k grows to infinity. Thus, even if n written in base 2 is a highly structured binary string, as e.g. for $n=2^{\ell}-1$, one may expect that for $\ell=$ the length of that string, then $T^{(\ell)}(n)$ in base 2 will already look more random. That is, a single jump or Syracuse jump at n should already introduce a good dosis of randomness. And therefore, a bounded number of jumps or Syracuse jumps on $n \geq 3$ might well suffice to fall under n.

References

[1] D. Barina, Convergence verification of the Collatz problem, The Journal of Supercomputing 77 (2021) 2681-2688.
[2] S. Eliahou, The $3 x+1$ problem: new lower bounds on nontrivial cycle lengths, Discrete Math. 11 (1993) 45-56.
[3] J. C. Lagarias, $3 x+1$ problem and related problems, https://dept. math.lsa.umich.edu/~lagarias//3x+1.html
[4] E. Roosendaal, www.ericr.nl/wondrous
[5] E. Roosendaal, www.ericr.nl/wondrous/glidrecs.html
[6] T. Tao, Almost all orbits of the Collatz map attain almost bounded values (2019) arXiv:1909. 03562
[7] Wolfram Research, Inc., Mathematica, Version 12, Champaign, IL (2019).

Authors' addresses:

Shalom Eliahou ${ }^{\text {a,b }}$ and Rénald Simonetto ${ }^{\text {a,b,c }}$
${ }^{\text {a }}$ Univ. Littoral Côte d'Opale, UR 2597 - LMPA - Laboratoire de Mathématiques
Pures et Appliquées Joseph Liouville, F-62100 Calais, France
${ }^{\mathrm{b}}$ CNRS, FR2037, France
${ }^{\text {c Microsoft France, }} 37$ Quai du Président Roosevelt, 92130 Issy-les-Moulineaux, France

[^0]: *eliahou@univ-littoral.fr
 †renalds@microsoft.com

