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Abstract

By constructing jointly a random graph and an associated exploration process, we define the dynamics
of a “parking process” on a class of uniform random graphs as a measure-valued Markov process,
representing the empirical degree distribution of non-explored nodes. We then establish a functional
law of large numbers for this process as the number of vertices grows to infinity, allowing us to assess
the jamming constant of the considered random graphs, i.e. the size of the maximal independent set
discovered by the exploration algorithm. This technique, which can be applied to any uniform random
graph with a given degree distribution, can be seen as a generalization in the space of measures, of
the differential equation method introduced by Wormald.

Keywords: Random graph; Configuration model; Parking process; Measure-valued Markov process;
Hydrodynamic limit.

1. Introduction

Consider a finite graph G for which V is the set of nodes or sites. The parking process in continuous
time on G may be described as follows. At time 0, all sites are vacant. They all have independent
exponential clocks. When the clock of a given vacant site rings and all of its neighbors are vacant,
this site turns occupied. Otherwise, nothing happens. Once occupied, a site remains so for ever. The
process goes on until all sites are either occupied or have at least one of their neighbors occupied. The
final state of the process is often referred to as the jamming limit of G, and the final proportion of
occupied sites, its jamming constant.

Our motivation to study the parking process on random graphs is twofold. On the one hand, these
dynamics are the simplest procedure to discover maximal independent sets and have been extensively
studied for some specific graphs. Explicit results have been obtained for regular graphs [24], exploiting
their very specific structure (see also [10] for graphs with large girths). In the Erdös Rényi case, a
similar differential method can be employed thanks to the great amount of independence and symmetry
of the collection of edges, to get an explicit jamming constant (see Theorem 2.2 and the references in
[16]). Hence, to look at “uniform” random graphs having a given asymptotic degree distribution, but
much less structure and symmetry, is a natural continuation of this research avenue.
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On the other hand, parking processes have received a great amount of attention in the case of
spatial structures. It has been considered on discrete structures like Zd [18, 8] and on point processes
[17, 8, 2, 22]. In physics and biological sciences, where it is usually referred to as random sequential
absorption, it models phenomena of deposition of colloidal particles or proteins on surfaces (see [7]).
In communication sciences and in wireless networks in particular, it allows to represent the number
of connections for CSMA-like algorithms in a given time-slot, for a given spatial configuration of
terminals (see [14] for a classical reference on the definition of the protocol). The general idea of
CSMA is to schedule transmissions in such a way that nodes that interfere each other would not
transmit simultaneously, see for instance [2] for a stochastic geometry-based model in which CSMA is
approximated by a Matérn-like process. Unfortunately, spatial models are in general very difficult to
study theoretically and to the best of our knowledge, there is no efficient way to compute the jamming
constant in most cases. Studying the jamming constant of uniformly chosen random graphs with a
given asymptotic degree distribution (we make this notion more precise in the sequel) allows to make
a first step in this direction, by studying a “first order” model which grasps only the bonds between
points but no further correlations. The techniques and analysis presented here are at the core of the
performance evaluation analysis of wireless systems, as developed in a companion applied paper [3].

In this paper we focus on the parking process for a class of random graphs having given deter-
ministic asymptotic degree distributions, and derive a computable characterization of the jamming
constant, as the number of vertices grows to infinity. To describe the evolution of the parking process
in a Markovian fashion, without keeping track of a too large set of information, our strategy is the
following: we start from the degree distribution of the graph, and then construct simultaneously the
random graph and the associated parking process. In both cases, the underlying (multi-)graph is
constructed similarly to the configuration model, see [25, 21, 11] and the references therein. A similar
approach was considered in [6], to construct a random social network together with a SIR process
which propagates on it.

Following these ideas, we first define these dynamics for a graph having a fixed number of nodes
n and study the time-evolution of the empirical measure of the degrees of the vacant sites, which
defines a measure-valued Markov process. Then, under the assumption that the initial empirical
measure of degrees converges to a measure having mild moment assumptions, we take n to infinity
and prove a functional law of large numbers on the evolution of the empirical measures of degrees.
We show in particular that given our assumptions on the initial random degree distribution, the
limit is unique, and defined as the solution of a non-linear infinite-dimensional system of differential
equations. This can be seen as a generalization in the space of point measures, of the differential
equation method introduced by Wormald [24], providing simple and insightful characteristics of the
random graphs under consideration, as solutions of finite-dimensional differential equations. To the
best of our knowledge, this is the first such general result, embracing in particular, several particular
cases investigated in the literature.

In the case of the Poisson distribution, we are able to explicitly compute the measure-valued flow
of unexplored nodes, which turns out to be an inhomogeneous Poisson measure. We then retrieve the
jamming constant of the Erdös-Rényi (ER) graph. (Note however that our construction does not lead
to a proper ER graph, only to a random multi-graph having the same degree distribution.) We also
retrieve a constant calculated by Rényi [9, 20] for a spatial model on Z, showing that both models
share the same jamming limit.

The proof of the functional law of large numbers is based on successive approximations for the
generator of the infinite-dimensional Markov process, relying in particular on quantifying the proba-
bility to obtain self-loops and multi-edges. Note that this difficulty is inherent to configuration model
constructions, which have the disadvantage of constructing a multi-graph rather than a simple one,
though elegant arguments have shown that with a probability independent of the size of the graph,
a simple graph is obtained [11] (see also the monograph [21]). The uniqueness of the deterministic
limiting measure-valued flow is not immediate and has to be proved using an adequate norm on the

2



spaces of solutions.

The rest of the paper is organized as follows. In Section 2, we describe the simultaneous con-
struction of the parking process and the random graph. In Section 3 we calculate the generator of
the induced measure-valued Markov process, and the corresponding semi-martingale decomposition is
introduced. In Section 4, we state our main result and its consequences. In particular we show how
the latter leads to closed-forms, or at least to computable characterizations of the jamming constant
in various cases. Section 5 is devoted to the proofs of our main results.
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.

Notation. Let us introduce the main notation used throughout the paper.

• We denote by R the set of real numbers, and R+ (respectively, R∗) the subset of non-negative
(resp., non-null) real numbers. Let also N be the set of non-negative integers and N∗, the subset
of positive integers. For any x, y ∈ R, let x ∧ y = min{x, y}, x ∨ y = max{x, y} and x+ = x ∨ 0.
Let also for any a, b ∈ N, Ja, bK = {a, a + 1, ..., b}. We denote by o(.), a function: N → R such
that nβo(n) −→

n→∞
0 for any real number β < 1.

• Let Bb be the set of Borel bounded functions: R→ R. For all φ ∈ Bb, denote

‖ φ ‖= sup
x∈R
| φ(x) | .

Denote for any Borel set A, 1lA the indicator function of A. Denote by 1, the real function
constantly equal to 1 and for any k ∈ N, χk the function x 7→ xk. For all φ ∈ Bb, we also denote
by ∆φ the discrete gradient of φ, i.e.

∆φ(i) = φ(i)− φ(i− 1), ∀ i ∈ N∗.

• Let MF (N) be the set of finite measures on N. We write µ(i) := µ({i}) for any µ ∈ MF (N)
and any i ∈ N. The null measure is denoted 0. For all µ ∈ MF (N) and all φ : R → R, 〈µ, φ〉
denotes the integral of φ with respect to µ:

〈µ, φ〉 =

∫
φ(x)µ(dx) =

∑
i∈N

φ(i)µ(i).

In this way, for any such µ and any A ⊂ N, 〈µ, 1lA〉 = µ(A) is the measure of A, 〈µ,1〉 = µ(N) is
the total mass of µ, and for any k ∈ N∗,

〈
µ, χk

〉
is the k-th moment of µ. For any µ ∈MF (N),

denote Fµ the cumulative function associated to µ and F−1
µ , its generalized inverse. For any

counting measure µ ∈MF (N), we will be led to order and index the atoms of µ as follows:

– we denote for any ` ∈ {1, ..., µ(0)}, v`(µ) the `th atom of degree 0 ranked in arbitrary order;

– by induction, for any i ∈ N and any ` ∈ J1, µ(i + 1)K, v∑i
j=1 µ(j)+` (µ), the `th atom of

degree i+ 1, in arbitrary order, in a way that

µ =

〈µ,1〉∑
j=1

δvj(µ). (1)

• For any Polish space E, D ([0, T ], E) is the Polish space of rcll functions from [0, T ] to E,
and C ([0, T ], E) is the space of continuous functions from [0, T ] to E. Both D ([0, T ], E) and
C ([0, T ], E) are equipped with the Skorokhod J1-topology.

• Unless explicitly mentioned, throughout all the random variables (r.v.’s, for short) are defined on
a common probability space (Ω,F ,P) . On the latter, let us write “⇒” for weak convergence of

r.v.’s, and “
(P)→” for convergence in probability. Finally, let us denote (〈〈M〉〉t)t≥0 the quadratic

variation of the D ([0, T ], E)-valued martingale (Mt)t≥0.
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2. Construction of the graph and Markov representation

In this section we present our construction of a random graph of prescribed degree distribution,
simultaneously with the parking process on the latter graph. The basic objects of our construction
are:

(i) a probability measure ν on N having support J0, n− 1K (where n ≥ 1), which will be referred to
as the degree distribution;

(ii) a n-independent sample d := (d(1), ..., d(n)) of the distribution ν, termed degree vector.1 The
empirical degree distribution is the following random point measure,

µ0 =

n∑
i=1

δd(i);

(iii) the set of nodes V, whose elements are denoted u0(1), ..., u0(n) (the use of this notation will
become clear in a few lines). We set a one-to-one relation between the nodes and the atoms of
µ0 as follows: to the node u0(i) is associated the element d (γ(i)), where γ is a permutation of
J1, nK arranging d in increasing order. We then say that d(γ(i)) is the degree of u0(i) and we
write du0(i) := d(γ(i)).

At time 0, all the nodes of V are disconnected: the associated graph of our construction at time 0,
denoted G0, thus consists in the set of nodes V, without any edge. At this point, the nodes are all said
unexplored (we say that they are “u-nodes”). We consider that each node has as many unmatched
half-edges as its degree - we then say that the node is the ego of its half-edges.

Let us define for all t ≥ 0, Ut, At and Bt the sets of unexplored, active and blocked nodes, respec-
tively. At t = 0, we thus fix U0 = V (hence the notation above), and set A0 = B0 = ∅. Let us also
define for all t ≥ 0,

Ht =
{

unmatched half-edges at time t
}
.

Let for any t and any j ∈ Ut, dj(Ut) denote the number of unmatched half-edges of j at time t.
Define also the following element of MF (N),

µt =
∑
j∈Ut

δdj(Ut),

termed empirical degree distribution at t. Notice that the cardinality Ut of Ut, and the cardinality Ht

of Ht can respectively be retrieved from µt by

Ut = 〈µt,1〉 and Ht = 〈µt, χ〉 .

All these time-dependent quantities will be updated, by induction on the event times, as will be
described hereafter.

Fix λ > 0, and let ξ0 be a random variable of exponential distribution of rate λn. As long as this
exponential clock does not ring, the system remains unchanged: we set µt = µ0 and likewise, Ut,At,Bt
and Ht equal their initial value, for any t ∈ [0, ξ0). The dynamics of the system is then determined
by induction, as follows: assume that a clock rings at time t. Then, several state changes occur
instantaneously at t, but following a given sequence. To represent these changes, all characteristics
of the system just before the event occurs are indexed by t− and then, to distinguish between the
different steps of the state actualization, by t−+, t−++ and finally t.

1We assume independence of the degrees for simplicity, however it should be noted that the results hereafter hold in
larger generality: for assumption (28) to hold true, we only need the convergence of the Cesàro means of the vector d
as n goes large.
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Figure 1: Step 1 - the new active node is selected.

Step 1. A node a becomes active: we draw uniformly an index i in J1, Ut−K. The corresponding node
a := ut−(i) of Ut− becomes active and we set

Ut−+ = Ut− \ {a}, At−+ = At− ∪ {a} and Bt−+ = Bt− .

Let K (µt−) = da, the number of unmatched half-edges of a at t−. As a is no longer a u-node,
we update the measure µt− as follows,

µt−+ = µt− − δK(µt−). (2)

Example 2.1. Let the measure at t− be

µt− = δ1 + 2δ3 + 2δ4 + δ5 + δ6,

so that the associated graph has n = 〈µt− ,1〉 = 7 nodes and 〈µt− , χ〉 = 26 half-edges (see Fig.
1). A clock rings at t. The new a-node a has degree K (µt−) = 5 and the measure is updated to

µt−+ = δ1 + 2δ3 + 2δ4 + δ6.

Step 2. The neighbors of a become of class b: the neighbors of the new a-node are blocked, we say
that they become b-nodes. The identity of these new b-nodes is determined by matching the
K (µt−) elements of Ht− of ego a, with half-edges of Ht− , as follows:

– a first half-edge of Ht− of ego a is matched with another one, drawn uniformly among the
〈µt− , χ〉 − 1 possible ones;

– on and on, as long as all half-edges of Ht− of ego a have not been matched, we take one of
those, and match it with another half-edge of Ht− which has not yet been matched, drawn
uniformly in the latter set.

Notice that at each step, we may match couples of half-edges emanating from a together - hence
creating self-loops around a. At the end of this procedure, we let K̃ (µt−) be the number of

6



edges linking a to other nodes. Clearly, K̃ (µt−) cannot exceed the number of half-edges of ego
a, nor the number of half-edges of Ht− of egos different from a, in other words

K̃ (µt−) ≤ K (µt−) ∧
(
〈µt− , χ〉 −K (µt−)

)
. (3)

We have thus fixed the identity of the q new b-nodes (where q ≤ K̃ (µt−)), which are the egos
ut−(i1), ut−(i2), ..., ut−(iq) different from a, of the K̃ (µt−) half-edges matched with the K̃ (µt−)
half-edges of ego a. We then set Ut

−++ = Ut−+ \ {ut−(i1), ut−(i2), ..., ut−(iq)} ;
At−++ = At−+ ;
Bt−++ = Bt−+ ∪ {ut−(i1), ut−(i2), ..., ut−(iq)} .

For all j ∈ J1, qK, let Nj (µt−) be the number of edges shared by ut−(ij) with a. Let us define
the two following point measures,

Y (µt−) =

q∑
j=1

Nj (µt−) δdu
t− (ij)

; (4)

Ỹ (µt−) =

q∑
j=1

δdu
t− (ij)

. (5)

In other words, for any i, Ỹ (µt−) (i) (resp., Y (µt−) (i)) is the number of neighbors of a (resp., of
edges shared by a with its neighbors) having i unmatched half-edges at t−. Thus, 〈Y (µt−),1〉 =

K̃(µt−) is the number of half-edges of ego a and
〈
Ỹ (µt−),1

〉
= q is the number of neighbors of

a. As the new b-nodes are no longer unexplored, their degree must be erased from the measure
µt−+ , which is updated as follows,

µt−++ = µt−+ − Ỹ (µt−) . (6)

There remain 〈µt− , χ〉 −K (µt−)− K̃ (µt−) unmatched half-edges at this point.

Example 2.2 (Example 2.1 continued). The uniform selection of the neighbors of the new
a-node a results in a loop around it, so we have K̃ (µt−) = 3, q = 2,

Y (µt−) = δ4 + 2δ6 and Ỹ (µt−) = δ4 + δ6,

as there exists a double-edge between a and its neighbor of degree 6 (see Fig. 2). We then have

µt−++ = δ1 + 2δ3 + δ4.

Observe that K̃ (µt−) = 3 and the number of unmatched half-edges at this point is 〈µt− , χ〉 −
K (µt−) − K̃ (µt−) = 26 − 5 − 3 = 18. Between parenthesis is indicated the number of still
unmatched half-edges of the b-nodes.

Step 3. Updating of the number of unmatched half-edges: the available half-edges at this point,
i.e. the elements of Ht−++ , either emanate from b-nodes and do not point to a, or emanate from
nodes of Ut−++ . Let us denote

Hb
t−++ :=

{
half-edges of Ht−++ having ego in Bt−++

}
⊂ Ht−++ ,

and observe that

|Hb
t−++ | =

〈
Ỹ (µt−) , χ

〉
− K̃ (µt−) =

〈
Ỹ (µt−) , χ

〉
− 〈Y (µt−) ,1〉 . (7)

We now fully attach the new b-nodes to the associated graph, i.e. we match all the half-edges
of Hb

t−++ , either with other elements of Hb
t−++ , or with elements of Ht−++ having ego in Ut−++ .

This is done according to the following procedure:
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Figure 2: Step 2 - the blocked nodes are attached to the active node.

– draw an integer uniformly at random in J1, qK, say `. We match the remaining dut− (i`) −
N` (µt−) open half-edges of ut−(i`) exactly as those of a: we take these open half-edges
one by one; each time, we draw uniformly at random a match for the latter in all available
half-edges (emanating from a node of Ut−++ , another node of Bt−++ or from ut−(i`) itself),
until all half-edges of ut−(i`) are matched;

– then, draw at random another integer m in J1, qK\{`}, and match all available half-edges of
ut−(im) in the same manner, and so on... until all half-edges of Hb

t−++ have been matched,
to form edges of the associated graph.

At the end of this operation, we have possibly created edges between the new b-nodes and the
remaining u-nodes. Let us denote X (µt−) the number of such edges, in other words

X (µt−) = Card
{

half-edges of Hb
t−++ matched with half-edges of Ht−++ \ Hb

t−++

}
. (8)

To update µt−++ , we have to subtract these X (µt−) half-edges to the number of available
half-edges of the remaining u-nodes. To formalize this operation, it is convenient to index the
remaining u-nodes in the following way: for all i ∈ J1, n − 1K and all ` ∈ J1, µt−++(i)K, we let
ut−++(i, `) be the `-th node of Ut−++ having i unmatched half-edges at t−++ (if any), ranked in
an arbitrary order. Then, we define

W (µt−) (i, `) = Card
{

edges shared by ut−++(i, `) with nodes of Bt−++

}
, (9)

and observe that
n−1∑
i=1

µt−++ (i)∑
`=1

W (µt−) (i, `) = X (µt−) .

The quantity W (µt−) (i, `) has to be subtracted from the number of open half-edges of each
unexplored node ut−++(i, `), hence we finally write

µt = µt−++ −
n−1∑
i=1

µt−++ (i)∑
`=1

(
δi − δi−W(µt−)(i,`)

)
. (10)
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Figure 3: Step 3 - the new blocked nodes are connected between each other, and with remaining unexplored nodes

Example 2.3 (Example 2.1 concluded). In Fig. 3 we see that
∣∣Hb

t−++

∣∣ =
〈
Ỹ (µt+) , χ

〉
− K̃ (µt−) =

10 − 3 = 7 and X (µt−) = 3, since there are 4 half-edges emanating from b-nodes that are matched
together. The three remaining half-edges are matched with the remaining u-nodes as follows: if among
the u-nodes of degree 3, the one on the left has label 1 and that on the right has label 2, then

W (µt−) (3, 1) = 2 and W (µt−) (3, 2) = 1.

The updated measure is then
µt = 2δ1 + δ2 + δ4.

There remain 〈µt,1〉 = 4 unexplored nodes and 〈µt, χ〉 = 8 unmatched half-edges.

After Steps 1-3, we end up with a measure µt where 1 + q atoms have been erased with respect
to µt− , and whose first moment (i.e. the number of open half-edges) has the same parity as that
of µt− . The associated graph Gt equals Gt− , plus all edges that have been drawn between a and
its neighbors, between its neighbors with one another, and between its neighbors and the remaining
u-nodes. Moreover, only the remaining u-nodes still have open half-edges at t and the measure µt
provides the repartition of the latter half-edges among Ut. At this point, we re-index all elements of
Ut in the order of increasing number of open half-edges, as was done above:

Ut = {ut(1), ..., ut(Ut)} .

We now draw a new exponential r.v. ξt of parameter λUt, independently of everything else. As above,
the system remains constant until time t+ ξt, at which we re-iterate Step 1-3, and so on.

The procedure ends at the stopping time

T0 = inf
{
t ≥ 0; Ut = 0

}
,

which clearly is a.s. finite. At that instant, if
∑n
i=1 d(i) was odd there remain a single unmatched

half-edge, which we remove. At that time T0, we thus end up with µT0
= 0, UT0

= HT0
= ∅ and

|AT0
∪ BT0

| = n. The final associated graph GT0
is a multi-graph of degree vector d (up to the deletion

of a single half-edge in the case mentioned above). The set AT0
is the jamming limit of the latter

graph (and of the parking process) and |AT0 | /n, its jamming constant.
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3. Generator and semi-martingale decomposition

It follows from the construction of Section 2, that the process (µt)t≥0 is Markov in MF (N). Its
infinitesimal generator Q is defined for all F :MF (N)→ R in the domain of Q, by

QF (µ) = lim
h→0

1

h

(
E [F (µh) | µ0 = µ]− F (µ)

)
, µ ∈MF (N). (11)

Let φ : R → R be a bounded function, and denote for all µ ∈ MF (N), Πφ(µ) = 〈µ, φ〉 . We show
that Πφ belongs to the domain of Q and deduce QΠφ from (2,6,10), following Steps 1-3.

Step 1. The probability that a node of degree k is drawn, equals the proportion of atoms at level
k among all atoms of the measure µ0. In other words, for any µ and k,

PK(k | µ) := P [K(µ0) = k | µ0 = µ] =
µ(k)

〈µ,1〉
. (12)

Denote for any µ, k, and any integer k̃ ≤ k ∧ (〈µ, χ〉 − k),

PK̃(k̃ | µ, k) := P
[
K̃(µ0) = k̃ | µ0 = µ, K(µ) = k

]
(13)

and EK̃ [. | µ, k] the corresponding conditional expectation. We won’t need a precise expression of the

latter distribution, but will show instead that K̃ coincides with K with overwhelming probability as
the size n of the graph goes large. Or which is equivalent, when the number of nodes goes to infinity
the probability of choosing two half-edges of the new a-node to match together is arbitrarly small.

To see this, consider a system in which all half-edges emanating from the new a-node a are
duplicated, and where we match the K(µ0) half-edges of a uniformly, either with half-edges emanating
from the other nodes, or with their duplicata. Hence, given µ and k, in this auxiliary system the
number K̆(µ0) of half-edges of ego a matched with half-edges of other egos (and not with their
duplicata) follows an hypergeometric distribution with parameters k, 〈µ, χ〉 and 〈µ, χ〉 − k. Moreover
the probability of matching as many half-edges of ego a with half-edges of other egos as possible (i.e.
K(µ0)∧ (〈µ0, χ〉 −K(µ0)) half-edges) is clearly larger in the actual system than in the auxiliary one,
thus

P
[
the new a-node at 0 shares its K(µ0) edges with other nodes | µ0 = µ, K(µ) = k

]
= PK̃ (k | µ, k)

≥ P
[
K̆(µ0) = k | µ0 = µ, K(µ) = k

]
=

(〈µ,χ〉−k
k

)(〈µ,χ〉
k

) 1l{k≤〈µ,χ〉−k},

(14)

which will be proven to tend to 1 as n goes large.

Step 2. Conditionally to {µ0 = µ} ∩ {K (µ0) = k} ∩ {K̃ (µ0) = k̃}, Y (µ0) follows a multivariate

hypergeometrical distribution on MF (N), of parameters
(
k̃, 〈µ, χ〉 − k, n− 1, P

)
(see Appendix A),

where P is given by
P (i) = i (µ(i)− δk(i)) , i ∈ J0, n− 1K.

In other words, we have for all y ∈MF (J0, n− 1K) such that 〈y,1〉 = k̃ and y(i) ≤ P (i) for all i,
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PY (y | µ, k, k̃) := P
[
Y (µ0) = y | µ0 = µ, K (µ0) = k, K̃ (µ0) = k̃

]

=

∏
i∈J0,n−1K

(
i (µ(i)− δk(i))

y(i)

)
(〈µ,χ〉−k

k̃

) , (15)

and we denote EY
[
. | µ, k, k̃

]
the corresponding conditional expectation. For all ỹ ∈ MF (N), we

denote
PỸ (ỹ | µ, k, k̃, y) := P

[
Ỹ (µ0) = ỹ | µ0 = µ, K(µ) = k, K̃(µ) = k̃, Y (µ) = y

]
, (16)

and define EỸ
[
. | µ, k, k̃, y

]
accordingly. Here again, the precise form of this distribution is not needed

explicitly, since Ỹ (.) and Y (.) tend to coincide for large graphs, i.e. PỸ (y | µ, k, k̃, y) (the probability
that all edges between the new active node and its neighbors are simple) tends to 1 for large n. This
will be shown using the following lower-bound: recalling (1), we have that

PỸ
(
y | µ, k, k̃, y

)
=

∑
β∈({1,...,〈µ,1〉−1})k̃;
β(1) 6=β(2) 6=...6=β(k)

∏k̃
i=1 dvβ(i) (µ)

Ak̃〈µ,χ〉−k

=

∏
i∈N∗ i

y(i)

Ak̃〈µ,χ〉−k

≥ 1−
(
k̃

2

) 〈µ,1〉−1∑
`=1

dv` (µ− δk) (dv` (µ− δk)− 1)

(〈µ, χ〉 − k) (〈µ, χ〉 − k − 1)

≥ 1−
(
k̃

2

) 〈
µ, χ2

〉
(〈µ, χ〉 − k) (〈µ, χ〉 − (k + 1))

, (17)

since the number of (ordered) configurations entailing a multiple edge between a and a given u-vertex
u, is less than the number of pairs of half edges starting from u, times the number of couples of
half-edges matched with the k̃ half-edges of a.

Step 3. Let us first address the r.v. X(.) defined by (8). Denote for all y, ỹ and all integers
x ≤ 〈ỹ, χ〉 − 〈y,1〉,

PX(x | µ, k, k̃, y, ỹ) := P
[
X (µ0) = x | µ0 = µ, K (µ) = k, K̃ (µ) = k̃, Y (µ) = y, Ỹ (µ) = ỹ

]
. (18)

Again, the exact distribution is not needed, as we will see that X(µ0) tends to coincide with the
number of open half-edges emanating from the new b-nodes (in other words, the latter nodes tend
not to share any edge with one another - which would have created triangles including a). Indeed,
noticing that the total number of available half-edges after the connexion between the new a node
and its neighbors equals 〈µ0, χ〉−K (µ0)− K̃ (µ0) and using (7), we can show exactly as for (14) that

PX(〈ỹ, χ〉 − k̃ | µ, k, k̃, y, ỹ) = P
[
the new b-nodes do not share any edge with one another

| µ0 = µ, K(µ) = k, K̃(µ) = k̃, Y (µ) = y, Ỹ (µ) = ỹ
]

≥

(〈µ,χ〉−k−〈ỹ,χ〉
〈ỹ,χ〉−k̃

)
(〈µ,χ〉−k−k̃
〈ỹ,χ〉−k̃

) 1l{〈ỹ,χ〉−k̃≤〈µ,χ〉−k−〈ỹ,χ〉}, (19)

11



which is the probability that an hypergeometric random variable with parameters 〈ỹ, χ〉 − k̃, 〈µ, χ〉 −
k− 〈ỹ, χ〉 and 〈µ, χ〉 − k− k̃ takes the value 〈ỹ, χ〉 − k̃. As above, the latter quantity will be shown to
tend to one for large values of n.

Now, let µ, k, k̃, y, ỹ and x as above, and define the set

W(µ, k, k̃, y, ỹ, x) :=

{
w ∈ NJ1,n−1K2 ;

n−1∑
i=1

n−1∑
`=1

wi` = x and for all i ∈ J1, n− 1K,

w(i, `) ≤ i and w(i, `) = 0 for all ` > µ(i)− δk(i)− ỹi.

}
.

Clearly, the double-indexed sequence W (µ) defined by (9) is drawn according to an hypergeometric
choice among the “bunches” of half-edges represented by the remaining u-nodes. So we obtain readily
that for all w ∈ W(µ, k, k̃, y, ỹ, x),

PW (w | µ, k, k̃, y, ỹ, x)

= P
[
W (µ0) = w | µ0 = µ, K (µ0) = k, K̃ (µ0) = k̃, Y (µ0) = y, Ỹ (µ0) = ỹ, X (µ0) = x

]
=

∏
i∈J1,n−1K

∏µ(i)−δk(i)−ỹ(i)
`=1

(
i
wi`

)(〈µ,χ〉−k−〈ỹ,χ〉
x

) . (20)

We also need to introduce the following probability,

QW
(
µ, k, k̃, y, ỹ, x

)
=

∑
w;w(i,`)≤1∀i,`

PW (w | µ, k, x, y)

= P

[
no new b-vertex at 0 has a multiple edge towards a remaining u-node

∣∣∣∣µn0 = µ, K (µ0) = k, K̃ (µ0) = k̃, Y (µ0) = y Ỹ (µ0) = ỹ, X (µn0 ) = x

]
. (21)

Just as (17), we obtain that

QW
(
µ, k, k̃, y, ỹ, x

)
≥ 1−

(
x

2

) 〈µ,1〉−1−k∑
`=1

dv`

(
µ− δk −

∑
i ỹ(i)δi

)(
dv`

(
µ− δk −

∑
i ỹ(i)δi

)
−1
)

(〈µ, χ〉 − k − 〈y, χ〉) (〈µ, χ〉 − k − 〈y, χ〉 − 1)

≥ 1−
(
x

2

) 〈
µ, χ2

〉
(〈µ, χ〉 − k − 〈y, χ〉) (〈µ, χ〉 − k − 〈y, χ〉 − 1)

. (22)

We finally introduce, for all i ∈ J1, n− 1K,

Z (µ0) (i) =

n−1∑
`=1

W (i, `) (µ0) , (23)

the number of half-edges of u-nodes having initially i unmatched half-edges, that have been matched
with half-edges emanating from the new b-nodes. It then follows from (20) that, given µ, k, k̃, y, ỹ
and x, the integer measure Z (µ0) follows a multivariate hypergeometric distribution of parameters
(x, 〈µ, χ〉 − k − 〈ỹ, χ〉 , n− 1, P ′), where

P ′(i) = i (µ(i)− δk(i)− ỹ(i)) , i ∈ J1, n− 1K.

12



In other words, for all z ∈MF (N),

PW
(
Z(µ) = z|µ, k, k̃, y, ỹ, x

)
= P

[
Z(µ0) = z | µ0 = µ, K (µ0) = k, K̃ (µ0) = k̃, Y (µ0) = y, Ỹ (µ0) = ỹ, X (µ0) = x

]

=

∏
i∈J1,n−1K

(
i (µ(i)− δk(i)− ỹ(i))

z(i)

)
(〈µ,χ〉−k−〈ỹ,χ〉

x

) · (24)

Therefore, for all h > 0, from (2,6,10) and (12) we obtain that for all µ ∈MF (N),

QΠφ(µ) = lim
h→0

1

h
E
[
(〈µh, φ〉 − 〈µ, φ〉) 1l{ξ0<h} | µ0 = µ

]
= λ 〈µ,1〉

[
−
∑
k∈N

µ(k)

〈µ,1〉

×

φ(k) +
∑

k̃∈J0,kK

PK̃(k̃|µ, k)
∑

y∈MF (N);

〈y,1〉=k̃

PY (y | µ, k, k̃)
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k̃, y)

×
n−1∑
i=1

(
ỹ(i)φ(i)

+
∑
x∈N∗

PX(x | µ, k, k̃, y, ỹ)
∑

w∈NJ1,n−1K2

PW (w | µ, k, k̃, y, ỹ, x)

n−1∑
`=1

(φ(i)− φ(i− w(i, `)))

)}]

= λ

[
−〈µ, φ〉 −

∑
k∈N

µ(k)

×


∑

k̃∈J0,kK

PK̃(k̃|µ, k)
∑

y∈MF (N);

〈y,1〉=k̃

PY (y | µ, k, k̃)
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k̃, y)

×
n−1∑
i=1

(
ỹ(i)φ(i)

+
∑
x∈N∗

PX(x | µ, k, k̃, y, ỹ)
∑

w∈NJ1,n−1K2

PW (w | µ, k, k̃, y, ỹ, x)

n−1∑
`=1

(φ(i)− φ(i− w(i, `)))

)}]
, (25)

where PK̃(k̃|µ, k), PY (y | µ, k, k̃), PỸ (ỹ | µ, k, k̃, y), PX(x | µ, k, k̃, y, ỹ) and PW (w | µ, k, k̃, y, ỹ, x) are
respectively defined by (13), (15), (16), (18) and (20).

Semi-martingale decomposition

Let (Ft)t≥0 be the natural filtration of (µt)t≥0. From (25) it is easy to check using Lemma 3.5.1
and Corollary 3.5.2 of [5] that (µt)t≥0 is a Feller-Dynkin process of the space D ([0,∞),MF (N)). It
then follows from standard stochastic calculus that for any bounded φ : R → R, the following is a
F-martingale:
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t 7→M(φ)t = 〈µt, φ〉 − 〈µ0, φ〉 −
∫ t

0

QΠφ (µs) ds, (26)

of quadratic variation process given by

t 7→ 〈〈M(φ)〉〉t =

∫ t

0

(
Q (Πφ)

2
(µs)− 2Πφ(µs)QΠφ (µs)

)
ds

= λ

∫ t

0

∑
k∈N

µs(k)

φ(k) +
∑

k̃∈J0,kK

PK̃(k̃|µs, k)
∑

y∈MF (N)

PY (y | µs, k)

×
n−1∑
i=1

 ∑
ỹ∈MF (N)

PỸ (ỹ | µs, k, y)ỹ(i)φ(i)

+
∑
x∈N∗

PX(x | µs, k, y)
∑

w∈NJ1,n−1K2

PW (w | µs, k, x, y)

n−1∑
`=1

(φ(i)− φ(i− wi,`))

)
2
 ds. (27)

4. Main results and consequences

4.1. Hydrodynamic limit

We are interested in the behavior of the measure-valued process (µt)t≥0 as the size of the graph
grows to infinity. We consider a sequence of models, where the size of the n-th graph equals n, and
add a superscript n to all parameters and processes relative to the n-th system. Then, we scale the
n-th process of empirical degree distributions as follows:

µ̄nt =
1

n
µnt , t ≥ 0

and we denote the normalized versions of the derived processes accordingly, i.e. for all t ≥ 0,

Ūnt =
Unt
n

; H̄n
t =

Hn
t

n
; M̄n(φ)t =

1

n
Mn(φ)t, φ ∈ Bb.

Our main result is the following.

Theorem 4.1. Assume that for all φ ∈ Bb ∪ {χ6},

〈µ̄n0 , φ〉
(P)−→
n→∞

〈ζ, φ〉 , (28)

where ζ is a deterministic element of MF (N) such that

0 < 〈ζ, χ〉 and
〈
ζ, χ6

〉
<∞. (29)

Then, for all T and all φ ∈ Bb we have

sup
t∈[0,T ]

|〈µ̄nt , φ〉 − 〈µ̄t, φ〉|
(P)−→
n→∞

0,

14



where µ̄ is the unique element of C (R+,MF (N)) satisfying the following infinite dimensional differ-
ential system: for all t ≥ 0 and all bounded φ,

〈µ̄0, φ〉 = 〈ζ, φ〉 ;
d

dt
〈µ̄t, φ〉 = 〈Ψ (µ̄)t , φ〉

:=

 −λ
[
〈µ̄t, (1 + χ)φ〉+ 〈µ̄t, χ∆φ〉

(
〈µ̄t,χ2〉
〈µ̄t,χ〉 − 1

)]
if 〈µ̄t, χ〉 > 0;

−λµ̄t(0)φ(0) if 〈µ̄t, χ〉 = 0.
(30)

Remark 4.2. A consequence of the proof of this theorem is the existence of a solution to (30). Its
uniqueness is proved separately.

Remark 4.3. By our very assumptions, 〈µn0 ,1〉 = n and thus 〈µ̄n0 ,1〉 = 1 for all n. It thus follows
from (28) and (29) that µ̄0 is a probability measure. In particular we have

〈µ̄0,1〉 ∨
〈
µ̄0, χ

6
〉
<∞,

a fact that will be used at several points of the proofs.

4.2. Main characteristics, and the jamming constant

It follows from Theorem 4.1 that the sequence {Ūn} tends uniformly over compact time sets to
the deterministic functions ū given for all t by ūt = 〈µ̄t,1〉 and which, from (30), satisfies

˙̄ut = −λ
(
ūt + h̄t

)
, t ≥ 0. (31)

On another hand, as a simple consequence of Theorem 4.1, we have the weak convergence

µ̄n ⇒ µ̄ in D (R+,MF (N)) .

It then follows from the continuity of the mapping{
D (R+,MF (N)) −→ D (R+,R)

µ 7−→ 〈µ., χ〉

and from the Continuous Mapping Theorem, that H̄n ⇒ h̄ in D ([0, T ],R), where h̄t = 〈µ̄t, χ〉 for all
t ≥ 0. Again from (30), we can easily check that

˙̄ht = −2λ
〈
µ̄t, χ

2
〉
, t ≥ 0.

Jamming constant. Denote for all n ∈ N∗ and all t ≥ 0,

Jnt := |Ant | (32)

the number of active nodes at t. The jamming constant J̄n of the associated graph, is the proportion
of active nodes at the ending time Tn0 of the exploration process. In other words, it is given by

J̄n =
JnTn0
n
. (33)

The following result can be deduced from Theorem 4.1. Its proof is provided in section 5.5.
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Corollary 4.4 (Jamming constant of random graphs). Under the assumption of Theorem 4.1, we
have that

J̄n −→
n→∞

cζ in L1,

where

cζ = λ

∫ ∞
0

ūt dt = λ

∫ ∞
0

〈µ̄t,1〉 dt (34)

and (µ̄t)t≥0 is the only solution to (30).

Remark 4.5. As expected, it readily follows from (34) and (31) that cζ =
∫∞

0
ūt/λ dt does not depend

on λ - we hence fix λ = 1 in section 4.4 without loss of generality.

4.3. Connexion with the configuration model

As far as the structure of the associated random graph is concerned, our construction mimics
the so-called configuration model (or uniform model). More precisely, denote CM(n,dn) the random
(multi-)graph obtained by the uniform mapping of half-edges in a graph of n nodes having degree
vector dn, as described in [21, 25]. We have the following.

Proposition 4.6. The associated random multi-graph constructed jointly with the exploration process
in Section 2 equals CM(n,dn) in distribution.

Proof. The result follows from the so-called independence property of the configuration model (see
e.g. [25]): choosing whatever rule for matching the half-edges as long as a given half-edge is matched
uniformly among all the unmatched half-edges at each step, provides a realization of CM(n,dn). This
is exactly what is done here: at each step, first all half-edges of the new active node a are matched
with other half-edges that are chosen uniformly among available ones (including other half-edges of
a), and then all the remaining open half-edges of the neighbors b1, and then b2, b3,...and finally bq (q
being the number of neigbors of a) are matched according to the same rule. Therefore, at the end of
the algorithm the associated multi-graph we have drawn is nothing but a realization of CM(n,dn). 2

We can now link our construction with the more usual one, consisting in fixing the graph before-
hand, and then building an independent set on the latter. The parking process on a uniform graph,
mentioned in the introduction, can be formalized as follows: we first fix G̃, a realization of CM(n,dn).
We then construct sequentially the independent set on G̃ according to the following procedure,

(i) At time 0, set all nodes of G̃ as unexplored, and initiate an exponential clock of intensity λn;

(ii) Each time an exponential clock rings, select a new active node a uniformly at random among
all unexplored nodes;

(iii) The neighbors of a in G̃ all become of class b;

(iv) We set another clock of intensity λU , where U is the cardinality of the set of unexplored nodes
at that instant, and go to step (ii).

The algorithm is terminated as soon as the set of unexplored nodes of G̃ is empty, and the jamming
constant of the graph is obtained as the proportion of active nodes at that time.

Let for all t, Ũnt the set of unexplored nodes at t and for any j ∈ Ũnt , dj

(
Ũnt
)

the number of

neighbors of j in Ũnt at t. Let also the following random point measure,

µ̃nt =
∑
j∈Ũnt

δdj(Ũnt ). (35)
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Observe that only the order of exploration of the nodes differs in the present construction with
respect to ours, this order being itself drawn according to a uniform choice on the set of unexplored
nodes at each time in both cases. Therefore, as a simple consequence of the invariance in distribution
of any permutation of the coordinates of dn, and of Proposition 4.6,

Corollary 4.7. The sequence of measure-valued processes {µ̃n} defined by (35) coincides in distribu-
tion with {µn}, and so do the jamming constants of the two models.

It is significant that, although the two processes µn and µ̃n have the same distribution, the first
one is Markov but the second one is not, since the knowledge of the multi-graph G̃ is needed.

4.4. Jamming constants of particular graphs

Characterizing the jamming constant of parking problems has a long history in mathematics, see
e.g. [17]. One of the most studied problem in the field is the so-called random sequential absorption
on discrete structures. We show hereafter how our result can be adapted to regular graphs, i.e. graphs
with fixed degree. We then focus on the case of the Poisson distribution, and relate our approach to
the Erdös-Rényi graph.

Regular graph of degree 2. When for any n, the root degree distributions νn (and therefore, ζ) is
deterministic and equal to δ2, we can solve exactly the three-dimensional limiting differential system:

d
dt µ̄t(2) = −µ̄t(2)(1 + 2L(µ̄t));

d
dt µ̄t(1) = −µ̄t(1)(1 + L(µ̄t)) + 2(L(µ̄t)− 1)µ̄t(2);

d
dt µ̄t(0) = −µ̄t(0) + (L(µ̄t)− 1)µ̄t(1),

(36)

with

L(µ̄t) =

〈
µ̄t, χ

2
〉

〈µ̄t, χ〉
=

4µ̄t(2) + µ̄t(1)

2µ̄t(2) + µ̄t(1)
, t ≥ 0.

After tedious but simple calculus, one obtains µ̄t(2) = e−3t−2+2e−t ;
µ̄t(1) = 2(et − 1)µ̄t(2);
µ̄t(0) = (et − 1)2µ̄t(2).

Therefore the jamming constant for δ2 equals

cδ2 =

∫ ∞
0

2∑
i=0

µ̄t(i)dt =

∫ ∞
0

e−t−2+2e−tdt =
1− e−2

2
,

which coincides with the famous Rényi parking constant of Z (see [9] Section 5.3.1). Informally, this
can be explained by the fact that in the resulting configuration graph with distribution δ2, only cycles
of different sizes can appear while the number of small cycles (say smaller than a given constant)
present in the resulting random graph is going to be very small compared to n with overwhelming
probability. We do not go further into these calculations, which are beyond the scope of this paper.
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Regular graphs for d ≥ 3. More generally, jamming constants of regular graphs for d ≥ 3 have been

shown to be asymptotically equivalent to 1−(d−1)
− 2
d−2

2 , for a random graph CM(n,dn) of degree
distribution νn = δd (i.e. dn = (d, d, ..., d)), see [24].

Let us quickly reformulate in our terminology the approach in [24], and compare it with ours.
The algorithm of random pairing as termed in [24] is similar to the one that is presented here, the
main difference in the construction of CM(n,dn) being that at any time, all unexplored nodes have
exactly d available half-edges. This is obtained as follows: each time a new active node is selected
(uniformly at random among all unexplored nodes), its d half-edges are matched uniformly at random
with d other ones, exactly as we do so. At this point, according to the method of deferred decisions
(see [15]), and unlike our construction, the connectivity of the neighbors of the new active node with
the rest of the graph is not completed yet. At the following instant, a new active node is selected
among all unexplored nodes, and the same procedure is reiterated on and on, until there is no more
unexplored node. It is important to observe that, at the end of this algorithm, only the edges between
active and blocked nodes have been build in the associated graph, and that the blocked nodes may
have unmatched half-edges (precisely as many as d minus the number of edges they share with their
active neighbor). Then, the associated graph is completed by creating edges between blocked nodes in
arbitrary order, following uniform choices of half-edges (which does not change the jamming constant
of the graph). Under such a dynamics, it appears clearly that the process ((Jnt , U

n
t )) is Markov (recall

the notation 32). In particular, using the fact that the possible neighbors of the new active node must
have d available half-edges, it is easy to observe that whenever a node becomes active in [t, t+ h) we
have that

E
[
Unt+h − Unt | (Jnt , Unt )

]
= −1− d Unt

n− 2Jnt
, (37)

which leads to a simple one-dimensional asymptotic ODE for t 7→ Unt , that is solved explicitly.

However, for a general degree distribution the relation (37) no longer holds, and the process
((Jnt , U

n
t )) is no longer Markov. In fact, one can observe that the measure-valued process (µnt ) itself is

not Markov, when constructing the graph as is done in [24], since one needs to know which nodes are
active and which are blocked in the associated graph, to complete the connectivity of the new active
node at each instant - which is why we need to complete the neighboring between blocked nodes at
each step.

The price to pay for working in such generality, is that, due to a more intricate dynamics we do not
obtain a closed-form formula for the function t 7→ ūt in the particular case of regular graphs. However,
though an exact computation of (ūt) becomes more and more involved when the degree d grows, we
can easily retrieve the asymptotic value of [24] by solving numerically the system corresponding to
(36), as is shown for d = 3 and 4 in Table 1.

The Poisson distribution. In the case where the asymptotic initial empirical degree distribution is
Poisson, we obtain a closed-form expression for the function t 7→ µ̄t.

Proposition 4.8. If ζ is a Poisson distribution with parameter p (we denote ζ = P(p)), then

µ̄t(i) = vt
(pvt)

i

i!
exp(−pvt), t ≥ 0, i ∈ N,

where v is the solution of the differential equation

v̇ = −v(1 + pv).

Moreover the jamming constant reads

cP(p) =
1

p
log(1 + p).
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Proof. Let us define the following Poisson measures for all t,

κt(i) =
(pvt)

i

i!
exp(−pvt), i ∈ N.

For all t ≥ 0, using the definition of vt and µ̄t we obtain

d

dt
〈µ̄t, φ〉 = v̇t exp(−pvt)

∑
i≥0

(i+ 1)
pi

i!
vitφ(i)− p

∑
i≥0

pi

i!
vi+1
t φ(i)

 ,
= −λvt(1 + pvt)

〈κt, (1 + χ)φ〉 −
∑
i≥0

(i+ 1)κt(i+ 1)φ(i)

 ,
= −(1 + pvt)

〈µ̄t, (1 + χ)φ〉 −
∑
j≥1

jµ̄t(j)φ(j − 1)

 ,
= −

〈µ̄t, (1 + χ)φ〉+ pvt 〈µ̄t, χ∆φ〉+ pvt 〈µ̄t, φ〉 −
∑
j≥1

jµ̄t(j)φ(j − 1)

 ,
= −

[
〈µ̄t, (1 + χ)φ〉+

(〈
µ̄t, χ

2
〉

〈µ̄t, χ〉
− 1

)
〈µ̄t, χ∆φ〉

]
,

where we use in the last identity that

pvt =

〈
µ̄t, χ

2
〉

〈µ̄t, χ〉
− 1

and

pvt 〈µ̄t, φ〉 =
∑
i≥0

(i+ 1)
pi+1

(i+ 1)!
vi+1
t exp(−pvt)φ(i) =

∑
j≥1

j
pj

j!
vjt exp(−pvt)φ(j−1) =

∑
j≥1

jµ̄t(j)φ(j−1).

The jamming constant then simply follows by integration of t 7→ vt.

2

The asymptotic empirical degree measure of unexplored nodes thus turns out to be an inhomoge-
neous Poisson measure. A typical example where Proposition 4.8 applies is that of a binomial degree
distribution νn = Bin (n− 1, pn) for all n (as is the case for Erdös-Rényi graphs), where npn −→

n→∞
p.

It is then interesting to observe that we retrieve the jamming constant of the Erdös-Rényi graph of
parameter p, which was given in [16]. Notice however that we do not construct a proper Erdös-Rényi
graph and in fact, no uniform construction based on a prescribed degree distribution can do so, since
the independence assumption for the existence of the various edges cannot be fulfilled.

Table 1 gathers in the middle column, our results for several jamming constants (exact for ζ = P(1)
and δ2, and numerically computed for exponential, δ3 and δ4).
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Degree distribution JC of Random Graphs JC of specific deterministic Graphs

Exponential (1/2) 0.7599203270
Poisson (1) log(2) = 0.6931472

δ2
1−e−2

2 = 0.4323323583 1−e−2

2 (Z)
δ3 3/8 0.37913944 (Honeycomb)
δ4 1/3 0.3641323 (Z2)

Table 1: Jamming constants for different degree distributions and their counterparts on deterministic graphs (simulation
values for deterministic graphs are taken from [23]).

5. Proof of Theorem 4.1

From (29), there exists two real numbers α > 0 and M > 1 such that〈
ζ, χ6

〉
< M ; (38)

〈ζ, χ〉 > α, (39)

where ζ is defined by (28). Let us define the following subsets of MF (N):

Mα,M =

{
µ ∈MF (N); 〈µ,1〉 ∨

〈
µ, χ6

〉
< M and 〈µ, χ〉 > α

}
(40)

and for all n ∈ N∗,

nMα,M =

{
µ ∈MF (N);

1

n
µ ∈Mα,M

}
.

The strategy of the proof is as follows. After showing that the generator can be approximated for
large n by the (non-linear) application Ψ (at least on the subset nMα,M ), we show uniqueness of
the possible limit - which is solution of the deterministic system of equations (30) - and finally the
convergence in probability towards this limit.

5.1. Generator approximations

Recall the definition of the map Ψ : C (R+,MF (N))→ C (R+,MF (N)) in (30). We show that the
finite variation part 1

nQnΠφ (µn) of {µ̄n} can be approximated by Ψ (µ̄n) as long as µ̄n takes values
in Mα,M . To show this, we first write for all n, t and φ,

Ψ (µ̄n)t =: −λ

{
〈µ̄nt , φ〉+

〈
Ān (µnt ) , φ

〉
+
〈
B̄n (µnt ) , φ

〉}
, (41)

where for all µ such that 〈µ, χ〉 > 0,〈
Ān (µ) , φ

〉
=

1

n
〈µ, χφ〉 ; (42)

〈
B̄n (µ) , φ

〉
=

1

n
〈µ, χ∆φ〉

(〈
µ, χ2

〉
〈µ, χ〉

− 1

)
. (43)

Then, we decompose the rescaled generator into two terms Ā n and B̄n that will be shown to get
close to Ān and B̄n as n goes large, when applied to a measure µ ∈ nMα,M . For doing so, the
combinatorial approximation arguments for large n will turn out to be valid only if the first moment
of the measure remains ‘of order n’ after the transformation corresponding to the deletion of the new
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a-vertex and the new b-vertices. We thus have to tease apart the cases where the degrees of the latter
vertices are too big, which correspond to a third term C̄ n that will be proven to vanish for large n.
More precisely, we write for all n, µ ∈MF (N) and all φ ∈ Bb,

1

n
QnΠφ(µ) =: −λ

{
1

n
〈µ, φ〉+

〈
Ā n(µ), φ

〉
+
〈
B̄n(µ), φ

〉
+
〈
C̄ n(µ), φ

〉}
, (44)

where〈
Ā n (µ) , φ

〉
=

1

n

∑
k∈N∗;
k≤nα/2

µ(k)
∑

k̃∈J0,kK

PK̃(k̃|µ, k)
∑

y∈MF (N);
〈y,1〉=k

PY (y | µ, k, k̃)

×
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k̃, y) 〈ỹ, φ〉 ; (45)

〈
B̄n (µ) , φ

〉
=

1

n

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

k̃∈J0,kK

PK̃(k̃|µ, k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k̃)
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k̃, y)

×
n−1∑
i=1

∑
x∈N∗

PX(x | µ, k, k̃, y, ỹ)
∑

w∈NJ1,n−1K2

PW (w | µ, k, k̃, y, ỹ, x)

n−1∑
`=1

(φ(i)− φ(i− w(i, `))) ; (46)

〈
C̄ n (µ) , φ

〉
=

1

n

 ∑
k∈N∗;
k>nα/2

µ(k)
∑

k̃∈J0,kK

PK̃(k̃|µ, k)
∑

y∈MF (N);

〈y,1〉=k̃

PY (y | µ, k, k̃)

×
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k̃, y) 〈ỹ, φ〉



+
1

n


∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

k̃∈J0,kK

PK̃(k̃|µ, k)
∑

y∈MF (N);

〈y,1〉=k̃;
〈y,χ〉>nα/2

PY (y | µ, k, k̃)
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k, y)

×
n−1∑
i=1

∑
x∈N∗

PX(x | µ, k, k̃, y, ỹ)
∑

w∈NJ1,n−1K2

PW (w | µ, k, k̃, y, ỹ, x)

n−1∑
`=1

(φ(i)− φ(i− w(i, `)))



+
1

n

 ∑
k∈N∗;

k>〈µ,χ〉/4

µ(k)
∑

k̃∈J0,kK

PK̃(k̃|µ, k)
∑

y∈MF (N);

〈y,1〉=k̃

PY (y | µ, k, k̃)
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k, y)

×
n−1∑
i=1

∑
x∈N∗

PX(x | µ, k, k̃, y, ỹ)
∑

w∈NJ1,n−1K2

PW (w | µ, k, k̃, y, ỹ, x)

n−1∑
`=1

(φ(i)− φ(i− w(i, `)))


=:
〈
C̄ n

1 (µ) , φ
〉

+
〈
C̄ n

2 (µ) , φ
〉

+
〈
C̄ n

3 (µ) , φ
〉
. (47)
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We first have the following.

Lemma 5.1. For all sufficiently large n, all µ ∈ nMα,M and all bounded φ,〈
C̄ n (µ) , φ

〉
= o(n).

Proof. Fix φ, n > 4
3α and µ ∈ nMα,M throughout the proof. Firs, observe that

〈
C̄ n

1 (µ), φ
〉
≤ ‖ φ ‖

n

∑
k∈N∗;
k>nα/2

µ(k)k ≤ ‖ φ ‖
n

2

nα

∑
k∈N∗;
k>nα/2

µ(k)k2 ≤ 2 ‖ φ ‖
n2α

〈
µ, χ2

〉
≤ 2 ‖ φ ‖M

nα
. (48)

Second, as 〈µ, χ〉 > nα we have that

k ≤ 〈µ, χ〉
4
⇒ 〈µ, χ〉 − k ≥ 3nα

4
. (49)

Hence, in view of the distribution of Y (.) in (15) and from (A.3), we obtain that for all k and k̃,

EY
[
〈Y (µ), χ〉2 | µ, k, k̃

]
≤ k(k − 1) 〈µ, χ〉2

(〈µ, χ〉 − k) (〈µ, χ〉 − (k + 1))
≤ k(k − 1)

16M2

3α (3α− 4/n)
. (50)

Therefore,〈
C̄ n

2 (µ), φ
〉
≤ 2

n
‖ φ ‖

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

k̃∈J0,kK

PK̃(k̃|µ, k)
∑

y∈MF (N);

〈y,1〉=k̃;
〈y,χ〉>nα/2

PY (y | µ, k) < y, χ >

≤ 2

n
‖ φ ‖

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
2

nα
EY
[
〈Y (µ), χ〉2 | µ, k, k̃

]

≤ 64 ‖ φ ‖M2

3nα2(3α− 4/n)

1

n

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)k(k − 1) ≤ 64 ‖ φ ‖M3

3nα2(3α− 4/n)
, (51)

where we reason as for (48) in the second upper-bound.

Last, as for all k and y, 〈µ, χ〉 − k − 〈y, χ〉 ≥ 0, we have that

k > 〈µ, χ〉 /4⇒ 〈y, χ〉 ≤ 3 〈µ, χ〉
4

< 3k. (52)

Therefore,〈
C̄ n

3 (µ), φ
〉
≤ 2 ‖ φ ‖ 1

n

∑
k∈N∗;

k>〈µ,χ〉/4

µ(k)
∑

k̃∈J0,kK

PK̃(k̃|µ, k)
∑

y∈MF (N);

〈y,1〉=k̃

PY (y | µ, k, k̃) 〈y, χ〉

≤ 2 ‖ φ ‖ 1

n

∑
k∈N∗;

k>〈µ,χ〉/4

µ(k)3k ≤ 2 ‖ φ ‖ 1

n

∑
k∈N∗;
k>nα/4

µ(k)3k ≤ 24 ‖ φ ‖M
nα

, (53)

applying again the same argument as for (48). The proof is complete by gathering (48), (51) and (53).
2

We now turn to the terms Ā n and B̄n.
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Lemma 5.2. For all sufficient large n, all µ ∈ nMα,M and all bounded φ,∣∣〈Ā n(µ), φ
〉
−
〈
Ān(µ), φ

〉∣∣ = o(n).

Proof. Fix φ, n > 2
α and µ ∈ nMα,M throughout the proof. First, for all k such that k ≤ nα/2 we

have that
〈µ, χ〉 − k ≥ nα

2
,

which will be used in several steps of this proof. In particular, from (17) we clearly have that

PỸ (y|µ, k, k, y) ≥ 1−
(
k

2

)
4

M

nα
(
α− 2

n

) · (54)

Recall (14), and let us rewrite〈
Ā n (µ) , φ

〉
=

1

n

∑
k∈N∗;
k≤nα/2

µ(k)PK̃(k | µ, k)
∑

y∈MF (N);
〈y,1〉=k

PY (y | µ, k, k)
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k, y) 〈ỹ, φ〉

+
1

n

∑
k∈N∗;
k≤nα/2

µ(k)
∑

k̃∈J0,k−1K

PK̃(k̃|µ, k)
∑

y∈MF (N);

〈y,1〉=k̃

PY (y | µ, k, k̃)
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k̃, y) 〈ỹ, φ〉

=
1

n

∑
k∈N∗;
k≤nα/2

µ(k)
∑

y∈MF (N);
〈y,1〉=k

PY (y | µ, k, k)
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k, y) 〈ỹ, φ〉

+
1

n

∑
k∈N∗;
k≤nα/2

µ(k) (PK̃(k | µ, k)− 1)
∑

y∈MF (N);
〈y,1〉=k

PY (y | µ, k, k)
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k, y) 〈ỹ, φ〉

+
1

n

∑
k∈N∗;
k≤nα/2

µ(k)
∑

k̃∈J0,k−1K

PK̃(k̃|µ, k)
∑

y∈MF (N);

〈y,1〉=k̃

PY (y | µ, k, k̃)
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k̃, y) 〈ỹ, φ〉

=:
〈
Ā n

1 (µ), φ
〉

+
〈
Ā n

2 (µ), φ
〉

+
〈
Ā n

3 (µ), φ
〉
. (55)

The last two terms vanish as a consequence of the fact that K̃(µ) and K(µ) tend to coincide as the
size of the graph goes large. To see this, from (14) we have that for all k ≤ nα/2,

PK̃(k | µ, k) ≥
(〈µ,χ〉−k

k

)(〈µ,χ〉
k

) 1l{k≤〈µ,χ〉−k}

=

(〈µ,χ〉−k
k

)(〈µ,χ〉
k

)
=

(〈µ, χ〉 − k) .... (〈µ, χ〉 − 2k + 1)

(〈µ, χ〉) .... (〈µ, χ〉 − k + 1)

≥
(

1− k

〈µ, χ〉 − k + 1

)k
≥ 1− k2

〈µ, χ〉 − k + 1
. (56)

Therefore, as 〈ỹ,1〉 ≤ k for any k, k̃ and ỹ we have that∣∣〈Ā n
2 (µ), φ

〉
+
〈
Ā n

3 (µ), φ
〉∣∣ ≤ 2

n

∑
k∈N∗;
k≤nα/2

µ(k)k (1− PK̃(k | µ, k)) ≤ 2

n

〈
µ, χ3

〉
〈µ, χ〉 − k + 1

≤ 4M

nα
. (57)
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Let us now address the term Ā n
1 . We have

〈
Ā n

1 (µ), φ
〉

=
1

n

∑
k∈N∗;
k≤nα/2

µ(k)
∑

y∈MF (N);
〈y,1〉=k

PY (y | µ, k)EỸ
[〈
Ỹ (µ), φ

〉
1l{Ỹ (µ)6=y} | µ, k, y

]

+
1

n

∑
k∈N∗;
k≤nα/2

µ(k)
∑

y∈MF (N)

PY (y | µ, k)PỸ (y | µ, k, k, y) 〈y, φ〉

=
1

n


∑
k∈N∗;
k≤nα/2

µ(k)
∑

y∈MF (N);
〈y,1〉=k

PY (y | µ, k)

×

(
EỸ
[〈
Ỹ (µ), φ

〉
1l{Ỹ (µ)6=y} | µ, k, y

]
+ 〈y, φ〉

(
PỸ (y | µ, k, k, y)− 1

))}

+
1

n

∑
k∈N∗;
k≤nα/2

µ(k)EY [〈Y (µ), φ〉 | µ, k]

=:
〈
Ā n

11(µ), φ
〉

+
〈
Ā n

12(µ), φ
〉
. (58)

First, as 〈y,1〉 ≤ k, from (54) we have that

∣∣〈Ā n
11(µ), φ

〉∣∣ ≤ 2 ‖ φ ‖
n

∑
k∈N∗;
k≤nα/2

µ(k)
∑

y∈MF (N)

PY (y | µ, k)
(

1− PỸ (y | µ, k, k, y)
)
k

≤ 2 ‖ φ ‖
n

∑
k∈N∗;
k≤nα/2

µ(k)

(
k

2

)
4

M

nα
(
α− 2

n

)k ≤ 4 ‖ φ ‖M2

nα
(
α− 2

n

) . (59)

Second, using again the hypergeometric distribution of Y (.) and (A.1) we have that

∣∣〈Ā n
12(µ), φ

〉
−
〈
Ān(µ), φ

〉∣∣ =
1

n

∣∣∣∣∣∣∣∣
∑
k∈N∗;
k≤nα/2

µ(k)

n−1∑
i=1

φ(i)EY [Y (µ)(i) | µ, k]− 〈µ, φχ〉

∣∣∣∣∣∣∣∣
=

1

n

∣∣∣∣∣∣∣∣
∑
k∈N∗;
k≤nα/2

µ(k)

n−1∑
i=1

φ(i)k
iµ(i)− iδk(i)

〈µ, χ〉 − k
− 〈µ, φχ〉

∣∣∣∣∣∣∣∣
≤ 1

n

∑
k∈N∗;
k≤nα/2

µ(k)
‖ φ ‖ k
〈µ, χ〉 − k

+
〈µ, φχ〉
n

∣∣∣∣∣∣∣∣
∑
k∈N∗;
k≤nα/2

µ(k)k

〈µ, χ〉 − k
− 1

∣∣∣∣∣∣∣∣
≤ 2M ‖ φ ‖

nα
+
〈µ, φχ〉
n

∑
k∈N∗;
k≤nα/2

µ(k)k2

〈µ, χ〉 (〈µ, χ〉 − k)
+
〈µ, φχ〉
n

∑
k∈N∗;
k>nα/2

µ(k)k

〈µ, χ〉

≤ 2M ‖ φ ‖
nα

+
2M2 ‖ φ ‖

nα2
+
M ‖ φ ‖

α

2M

nα
,
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where the upper-bound of the third term of the last inequality follows from the same argument as for
(48). This, together with (59) in (58), and then with (57) in (55), concludes the proof. 2

Lemma 5.3. For all n, all µ ∈ nMα,M and all bounded φ,∣∣〈B̄n(µ), φ
〉
−
〈
B̄n (µ) , φ

〉∣∣ = o(n).

Proof. Fix φ ∈ Bb, n > 4
α and µ ∈ nMα,M . We split B̄n as follows:

〈
B̄n (µ) , φ

〉
=

4∑
i=1

〈
B̄n
i (µ) , φ

〉
, (60)

where

〈
B̄n

1 (µ) , φ
〉

=
1

n


∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)
∑
x∈N∗

PX(x | µ, k, k, y, y)

×
∑

w∈NJ1,n−1K2

PW (w | µ, k, k, y, y, x)

n−1∑
i=1

Z(µ)(i)∆φ (i)

 ; (61)

〈
B̄n

2 (µ) , φ
〉

=
1

n


∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)
∑
x∈N∗

PX(x | µ, k, k, y, y)

×
∑

w∈NJ1,n−1K2 ;
∃(i0,`0)∈J1,n−1K2;w(i,`0)≥2

PW (w | µ, k, k, y, y, x)

n−1∑
i=1

(
n−1∑
`=1

(φ(i)− φ(i− w(i, `)))− Z(µ)(i)∆φ (i)

) ;

(62)
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〈
B̄n

3 (µ) , φ
〉

=
1

n


∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k) (PỸ (y | µ, k, k, y)− 1)

×
∑
x∈N∗

PX(x | µ, k, k, y, y)
∑

w∈NJ1,n−1K2

PW (w | µ, k, k, y, y, x)

n−1∑
i=1

n−1∑
`=1

(φ(i)− φ(i− w(i, `)))



+
1

n


∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)
∑

ỹ∈MF (N);
ỹ 6=y

PỸ (ỹ | µ, k, k, y)

×
∑
x∈N∗

PX(x | µ, k, k, y, ỹ)
∑

w∈NJ1,n−1K2

PW (w | µ, k, k, y, ỹ, x)

n−1∑
i=1

n−1∑
`=1

(φ(i)− φ(i− w(i, `)))

 ; (63)

〈
B̄n

4 (µ) , φ
〉

=
1

n


∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k) (PK̃(k|µ, k)− 1)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k̃, y)

×
∑
x∈N∗

PX(x | µ, k, k, y, ỹ)
∑

w∈NJ1,n−1K2

PW (w | µ, k, k, y, ỹ, x)

n−1∑
i=1

n−1∑
`=1

(φ(i)− φ(i− w(i, `)))



+
1

n


∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

k̃∈J0,k−1K

PK̃(k̃|µ, k)
∑

y∈MF (N);

〈y,1〉=k̃;
〈y,χ〉≤nα/2

PY (y | µ, k, k̃)
∑

ỹ∈MF (N)

PỸ (ỹ | µ, k, k̃, y)

×
∑
x∈N∗

PX(x | µ, k, k̃, y, ỹ)
∑

w∈NJ1,n−1K2

PW (w | µ, k, k̃, y, ỹ, x)

n−1∑
i=1

n−1∑
`=1

(φ(i)− φ(i− w(i, `)))

 . (64)

In the latter partition, the last three terms B̄n
4 (.), B̄n

3 (.) and B̄n
2 (.), which gather respectively the

cases of existence of self-loops around the new a-node, of multiple edges between the new a-node and
the new b-nodes, and of multi-edges between the new b-nodes and the remaining u-nodes, will be
shown to be small w.r.t. n. Only the term B̄n

1 (.) is non degenerate, and as we will prove, is at a
distance to B̄n (.) which is also small w.r.t. n.

To prove this, let us first recall the definition of Z(µ) in (23) and its distribution in (24): for any
i, there are at most Z(µ)(i) indexes ` ∈ J1, n − 1K such that W (µ)(i, `) differs from zero. Therefore
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we have that

n−1∑
i=1

n−1∑
`=1

(φ(i)− φ(i− w(i, `))) ≤ 2 ‖ φ ‖
n−1∑
i=1

Z(µ)(i)

≤ 2 ‖ φ ‖ X(µ) ≤ 2 ‖ φ ‖ (〈Y (µ), χ〉 −K(µ)) . (65)

On another hand, notice that for all k,∑
y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k) (〈y, χ〉 − k)

= EY [〈Y (µ), χ〉 − k | µ, k]−
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉>nα/2

PY (y | µ, k) (〈y, χ〉 − k)

=

n−1∑
i=1

ik
i (µ(i)− δk(i))

〈µ, χ〉 − k
− k −

∑
y∈MF (N);
〈y,1〉=k;
〈y,χ〉>nα/2

PY (y | µ, k) (〈y, χ〉 − k)

= k

( 〈
µ, χ2

〉
〈µ, χ〉 − k

− 1

)
− k3

〈µ, χ〉 − k
−

∑
y∈MF (N);
〈y,1〉=k;
〈y,χ〉>nα/2

PY (y | µ, k) (〈y, χ〉 − k)

= k

( 〈
µ, χ2

〉
〈µ, χ〉 − k

− 1

)
+ k3o3(n) + k(k − 1)o4(n), (66)

where the equivalent o4(n) follows from (50), just as in (51). Clearly, (66) implies in particular that∑
y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k) (〈y, χ〉 − k) ≤ k 4M

3α
. (67)

We are now in position to address the vanishing terms in the decomposition (60), from bottom to
top. First, as for (57), the term B̄n

4 (.) vanishes since K̃(µ) and K(µ) tend to coincide. More precisely,
we have with (65) that

∣∣〈B̄n
4 (µ), φ

〉∣∣ ≤ 4 ‖ φ ‖
n

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k) (1− PK̃(k|µ, k))
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)(〈y, χ〉 − k)

≤ 4 ‖ φ ‖
n

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
k2

〈µ, χ〉 − k + 1

∑
y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)(〈y, χ〉 − k)

≤ 4 ‖ φ ‖
n

2

2nα+ 1

4M

3α

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)k3 ≤ 4 ‖ φ ‖ 2

2nα+ 1

4M2

3α
, (68)

where we use (56) in the second upper-bound and (67) in the last one.

27



The term B̄n
3 (.) can be treated analogously. Applying again (65) and then (54), we have that∣∣〈B̄n

3 (µ), φ
〉∣∣ ≤ 4 ‖ φ ‖

n

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k) (1− PỸ (y | µ, k, k, y)) (〈y, χ〉 − k)

≤ 4 ‖ φ ‖
n

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)

(
k

2

)
4

M

nα
(
α− 2

n

) ∑
y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)(〈y, χ〉 − k)

≤ 8 ‖ φ ‖
n

M

nα
(
α− 2

n

) 4M

3α

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)k2 ≤ 32 ‖ φ ‖
3n

M3

α2
(
α− 2

n

) , (69)

where we use again (67) in the third upper-bound.

We now examine the term B̄n
2 (.) defined by (62). For all k ≤ 〈µ, χ〉 /4 and y such that 〈y, χ〉 ≤ nα

2 ,
we have that

〈µ, χ〉 − (k + 〈y, χ〉) ≥ nα

4
. (70)

Thus, likewise (54), from (22) we have that

QW (µ, k, k, y, y, x) ≥ 1−
(
x

2

)
M

nα
4

(
α
4 −

1
n

) =: 1− x2o1(n).

Therefore, from the second inequality in (65) we have that

∣∣〈B̄n
2 (µ), φ

〉∣∣ ≤ 2 ‖ φ ‖
n


∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)

×
∑
x∈N∗

PX(x | µ, k, k, y, y) (1−QW (µ, k, k, y, y, x)) 2x

)

≤ 4 ‖ φ ‖
n

o1(n)
1

n

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)EY
[
〈Y (µ), χ〉3 | µ, k, k

]
.

But (A.2) implies that

EY
[
〈Y (µ), χ〉3 | µ, k, k

]
≤

3k5 〈µ,1〉2
〈
µ, χ6

〉
(〈µ, χ〉 − k)

3 +
3k4 〈µ,1〉

〈
µ, χ5

〉
(〈µ, χ〉 − k)

2 +
3k3

〈
µ, χ4

〉
〈µ, χ〉 − k

≤ 3k5M343

α3
+

3k4M242

α2
+

12k3M

α
,

so injecting this in (71) we obtain that∣∣〈B̄n
2 (µ), φ

〉∣∣ ≤ 4 ‖ φ ‖ Co1(n), (71)

where the constant C is given by

C =
3M443

α3
+

3M342

α2
+

12M2

α
.
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Let us finally focus on the first term (61). Recalling the distribution of Z(.) in (24) and using
(A.1), the latter can be rewritten as follows,〈

B̄n
1 (µ), φ

〉
=

1

n

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)EX [X(µ) | µ, k, k, y, y]

n−1∑
i=1

∆φ(i)
i (µ(i)− δk(i)− y(i))

〈µ, χ〉 − 〈y, χ〉 − k

=
1

n

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)(〈Y (µ), χ〉 − k)

n−1∑
i=1

∆φ(i)
i (µ(i)− δk(i)− y(i))

〈µ, χ〉 − 〈y, χ〉 − k

+
1

n

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)

n−1∑
i=1

∆φ(i)
i (µ(i)− δk(i)− y(i))

〈µ, χ〉 − 〈y, χ〉 − k

×

(
EX

[
X(µ)1l{X(µ)6=〈y,χ〉−k} | µ, k, k, y, y

]
+ (〈y, χ〉 − k)

(
PX (〈y, χ〉 − k|µ, k, k, y, y)− 1

))
=:
〈
B̄n

11(µ), φ
〉

+
〈
B̄n

12(µ), φ
〉
. (72)

Let us prove that
〈
B̄n

12(µ), φ
〉

also vanishes. Likewise (56), we have that for all k and y,

PX (〈y, χ〉 − k|µ, k, k, y, y) ≥ 1− (〈y, χ〉 − k)2

〈µ, χ〉 − 〈y, χ〉 − k + 1
.

This implies using (70) that

〈
B̄n

12(µ), φ
〉
≤ 4 ‖ φ ‖

n

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)
(〈y, χ〉 − k)2

〈µ, χ〉 − 〈y, χ〉 − k + 1
(〈y, χ〉 − k)

≤ 16 ‖ φ ‖
n(nα+ 4)

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)EY
[
〈Y (µ), χ〉3 |µ, k, k

]
, (73)

which is again a o(n), just as (71). It only remains to prove that
∣∣〈B̄n

11(µ), φ
〉
−
〈
B̄n(µ), φ

〉∣∣ also is a
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o(n). We have∣∣〈B̄n
11(µ), φ

〉
−
〈
B̄n(µ), φ

〉∣∣
≤ 1

n

∣∣∣∣∣∣∣∣∣∣∣
〈µ, χ∆φ〉

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)

(
〈y, χ〉 − k

〈µ, χ〉 − 〈y, χ〉 − k

)
−

(〈
µ, χ2

〉
〈µ, χ〉

− 1

)∣∣∣∣∣∣∣∣∣∣∣
+

1

n

∣∣∣∣∣∣∣∣
∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N); 〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k) (〈y, χ〉 − k)

n−1∑
i=1

∆φ(i)
i (δk(i) + y(i))

〈µ, χ〉 − 〈y, χ〉 − k

∣∣∣∣∣∣∣∣

≤ 1

n

∣∣∣∣∣∣∣∣∣∣∣
〈µ, χ∆φ〉

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)
〈y, χ〉 − k

〈µ, χ〉 − 〈y, χ〉 − k
− 〈y, χ〉 − k
〈µ, χ〉

∣∣∣∣∣∣∣∣∣∣∣
+

1

n

∣∣∣∣∣∣∣∣∣∣∣
〈µ, χ∆φ〉

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)
〈y, χ〉 − k
〈µ, χ〉

−

(〈
µ, χ2

〉
〈µ, χ〉

− 1

)∣∣∣∣∣∣∣∣∣∣∣
+

2 ‖ φ ‖
n

∣∣∣∣∣∣∣∣∣∣∣
∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k) (〈y, χ〉 − k)
k + 〈y, χ〉

〈µ, χ〉 − 〈y, χ〉 − k

∣∣∣∣∣∣∣∣∣∣∣
:=
〈
B̄n

111(µ), φ
〉

+
〈
B̄n

112(µ), φ
〉

+
〈
B̄n

113(µ), φ
〉
. (74)

We first have that

〈
B̄n

111(µ), φ
〉
≤ 2M ‖ φ ‖

∣∣∣∣∣∣∣∣∣∣∣
∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)
〈y, χ〉2

〈µ, χ〉 (〈µ, χ〉 − 〈y, χ〉 − k)

∣∣∣∣∣∣∣∣∣∣∣
+ 2M ‖ φ ‖

∣∣∣∣∣∣∣∣∣∣∣
∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)
k2

〈µ, χ〉 (〈µ, χ〉 − 〈y, χ〉 − k)

∣∣∣∣∣∣∣∣∣∣∣
= o(n),

(75)
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since∣∣∣∣∣∣∣∣
∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N); 〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)
k2

〈µ, χ〉 (〈µ, χ〉 − 〈y, χ〉 − k)

∣∣∣∣∣∣∣∣ ≤
4

(nα)2

〈
µ, χ2

〉
≤ 4

nα2
M

and∣∣∣∣∣∣∣∣
∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N); 〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)
〈y, χ〉2

〈µ, χ〉 (〈µ, χ〉 − 〈y, χ〉 − k)

∣∣∣∣∣∣∣∣
≤ 4

(nα)2

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)E(〈Y (µ), χ〉2) ≤ 4

(nα)2

16M2

3α(3α− 4/n)

∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)k2 ≤ 4

nα2

16M3

3α(3α− 4/n)
,

where we also used (50). We now focus on the second term of (74). From (66) we have that〈
B̄n

112(µ), φ
〉

≤ 2M ‖ φ ‖

∣∣∣∣∣∣∣∣
∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)

〈µ, χ〉

(
k

( 〈
µ, χ2

〉
〈µ, χ〉 − k

− 1

)
+ k3o3(n) + k(k − 1)o4(n)

)
−

(〈
µ, χ2

〉
〈µ, χ〉

− 1

)∣∣∣∣∣∣∣∣
≤ 2M ‖ φ ‖

 ∑
k∈N∗;

k≤〈µ,χ〉/4

kµ(k)

〈µ, χ〉

∣∣∣∣∣
〈
µ, χ2

〉
〈µ, χ〉 − k

−
〈
µ, χ2

〉
〈µ, χ〉

∣∣∣∣∣+
1

α
Mo3(n) +

1

α
Mo4(n)

+
∑
k∈N∗;

k>〈µ,χ〉/4

kµ(k)

〈µ, χ〉

∣∣∣∣∣
〈
µ, χ2

〉
〈µ, χ〉

− 1

∣∣∣∣∣


≤ 2M ‖ φ ‖

 ∑
k∈N∗;

k≤〈µ,χ〉/4

kµ(k)

〈µ, χ〉
k
〈
µ, χ2

〉
〈µ, χ〉 (〈µ, χ〉 − k)

+
1

α
M(o3(n) + o4(n)) +

M

(nα2)

4

(nα)2
M


≤ 2M ‖ φ ‖

(
4M2

3nα3
+

1

α
M(o3(n) + o4(n)) +

4M2

nα3

)
, (76)

where we have used the same argument as for (48) for the last term. Finally,

〈
B̄n

113(µ), φ
〉
≤ 2 ‖ φ ‖

n

∣∣∣∣∣∣∣∣∣∣∣
∑
k∈N∗;

k≤〈µ,χ〉/4

µ(k)
∑

y∈MF (N);
〈y,1〉=k;
〈y,χ〉≤nα/2

PY (y | µ, k, k)
〈y, χ〉2 − k2

〈µ, χ〉 − 〈y, χ〉 − k

∣∣∣∣∣∣∣∣∣∣∣
≤ 2 ‖ φ ‖

n

(
4

nα

16M2

3α(3α− 4/n)
+

4M

α

)
,

which also follows from (50). This, together with (75) and (76) in (74), concludes the proof. 2
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5.2. Tightness

Proposition 5.4. The sequence of measure-valued processes
{

(µ̄nt )t≥0

}
N∗

is tight in D([0, T ],MF (N)).

Proof. First fix t ≥ 0. It is clear that the family of random measure {µ̄nt }n∈N∗ is tight. Indeed
we have almost surely for any finite subset A of N, µnt (A) ≤ µn0 (A) for all N. Hence, the family of
random variables {µ̄nt (A)}n∈N∗ is tight for all such A, which implies in turn that the family of random
measures {µ̄nt }n∈N∗ is tight (see Lemma 14.15 in [13]).

Therefore, from Roelly’s criterion [19], it suffices to show that
{

(〈µ̄nt , φ〉t)t≥0

}
n∈N∗

is tight in

D ([0, T ],R) for all φ ∈ Bb. For this, we exploit the semi-martingale decomposition (26) as in Joffe and
Métivier (Corollary 2.3.3 in [12]) and apply Rebolledo-Aldous’s criterion ([1]) for the finite variation
part 1

n

∫ .
0
QΠφ (µns ) ds and the quadratic variation process 〈〈M̄n(φ)〉〉. In detail, we aim at showing

that for all ε > 0 and η > 0, there exists δ > 0 and n0 such that

sup
n≥n0

P

[∣∣∣∣ 1n
∫ τn

σn

QΠφ (µns ) ds

∣∣∣∣ ≥ η] ≤ ε; (77)

sup
n≥n0

P
[∣∣〈〈M̄n(φ)〉〉τn − 〈〈M̄n(φ)〉〉σn

∣∣ ≥ η] ≤ ε, (78)

for any two sequences {τn}n∈N∗ and {σn}n∈N∗ of stopping times such that τn < σn < τn + δ for all
n ∈ N∗. First, it readily follows from (44) and (26) that for all such n ∈ N∗,

P

[∣∣∣∣ 1n
∫ τn

σn

QΠφ (µns ) ds

∣∣∣∣ ≥ η]

≤
E

[
1

n

∫ τn

σn

|QΠφ (µns )| ds
]

η

≤ λ

η
E

[∫ τn

σn

〈µ̄ns , φ〉 ds+

∫ τn

σn

〈
Ā n(µn)s, φ

〉
ds

+

∫ τn

σn

〈
B̄n(µn)s, φ

〉
ds+

∫ τn

σn

〈
C̄ n(µn)s, φ

〉
ds

]

≤ λ ‖ φ ‖
η

E

[∫ τn

σn

∑
k

µ̄ns (k)

{
1 + EY [〈Y (µns ),1〉 | µns , k] + EY [〈Y (µns ), χ〉 | µns , k]

}
ds

]

≤ λ ‖ φ ‖
η

E

[
(τn − σn)

(
〈µ̄n0 ,1〉+ 〈µ̄n0 , χ〉+ 〈µ̄n0 , χ〉

〈
µ̄n0 , χ

2
〉)]

≤
λ ‖ φ ‖

(
2M +M2

)
η

E [τn − σn] , (79)

using successively Markov’s inequality and the hard bounds in the proofs of Lemmas 5.2 and 5.3. All
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the same, using (27) we obtain that for some constant C,

P
[∣∣〈〈M̄n(φ)〉〉τn − 〈〈M̄n(φ)〉〉σn

∣∣ ≥ η]
≤ Cλ ‖ φ ‖2

nη
E

[∫ τn

σn

∑
k

µ̄ns (k)

{
1 + (EY [〈Y (µns ),1〉 | µns , k])

2

+ (EY [〈Y (µns ), χ〉 | µns , k])
2

}
ds

]

≤ Cλ ‖ φ ‖2

nη
E

[
(τn − σn)

(
〈µ̄n0 ,1〉+

〈
µ̄n0 , χ

2
〉

+
〈
µ̄n0 , χ

2
〉 (〈

µ̄n0 , χ
2
〉)2)]

≤
Cλ ‖ φ ‖2

(
2M +M3

)
nη

E [τn − σn] . (80)

Clearly, from (79) and (80) we can choose δ small enough so that (77) and (78) hold for n0 = 1,
which concludes the proof.

2

5.3. Uniqueness

Let (µ̄t)t≥0 and (ν̄t)t≥0, two solutions of (30) in C (R+,MF (N)), with the same initial condition
ζ, and let us denote γt = µ̄t − ν̄t for all t. Denote also for all β such that 0 < β < α,

tµβ = sup
{
t ≥ 0; 〈µ̄t, χ〉 > β

}
;

tνβ = sup
{
t ≥ 0; 〈ν̄t, χ〉 > β

}
.

Recall, that in view of (38) we have that〈
µ̄t, χ

5
〉
∨
〈
ν̄t, χ

5
〉
≤M, t ≥ 0.

Thus, denoting again for all µ ∈MF (N), L(µ) =
〈µ,χ2〉
〈µ,χ〉 we have that

L (µ̄t) ∨ L (ν̄t) ≤
M

β
, t ∈

[
0, tµβ ∧ t

ν
β

]
.

Let for all t ≥ 0,

Γt =
∑
i≥0

i8γt(i)
2.
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Fix β such that 0 < β < α and t ∈
[
0, tµβ ∧ tνβ

]
. From (30), we have that

d

dt
Γt =

∑
i≥0

i8
d

dt
γt(i)

2

= 2
∑
i≥0

i8γt(i)
d

dt
γt(i)

= 2λ
∑
i≥0

{
(i+ 1) (L(µ̄t)− 1) γt(i)γt(i+ 1)− i8 (1 + iL(µ̄t)) (γt(i))

2

}

− 2λ
∑
i≥0

{
(L(ν̄t)− L(µ̄t)) i

8γt(i)(iν̄t(i)− (i+ 1)ν̄t(i+ 1))

}
= At +Bt. (81)

We first deal with the term At. Using that

(i+ 1)γt(i+ 1)γt(i) =
1

2
(i+ 1)γt(i+ 1)2 +

1

2
(i+ 1)γt(i)

2 − 1

2

(√
i+ 1γt(i+ 1)−

√
i+ 1γt(i)

)2

,

we get ∑
i≥0

i8(i+ 1)γt(i+ 1)γt(i) ≤
1

2

∑
i≥0

i8(i+ 1)γt(i+ 1)2 +
1

2

∑
i≥0

i8(i+ 1)γt(i)
2

≤ 1

2

∑
i≥0

(i+ 1)9γt(i+ 1)2 +
1

2

∑
i≥0

i9γt(i)
2 +

1

2

∑
i≥0

i8γt(i)
2

≤
∑
i≥0

i9γt(i)
2 +

1

2

∑
i≥0

i8γt(i)
2.

Hence, as L(µ̄t) ≥ 1,

At = 2λ
∑
i

{
i8 (L(µ̄t)− 1) (i+ 1)γt(i+ 1)γt(i) + i8 (1 + iL (µ̄t)) (γt(i))

2

}

≤ 2λ(L(µ̄t)− 1)

∑
i≥0

i9γt(i)
2 +

1

2

∑
i≥0

i8γt(i)
2

− 2λL(µ̄t)
∑
i≥0

i9γt(i)
2

≤ λL (µ̄t)
∑
i

i8γt(i)
2

≤ λM

β
Γt. (82)

Let us now deal with Bt. First observe that

|L(µ̄t)− L(ν̄t)|

=

∣∣∣∣∑i i
2µ̄t(i)

∑
i iν̄t(i)−

∑
i iµ̄t(i)

∑
i i

2ν̄t(i)∑
i iµ̄t(i)

∑
i iν̄t(i)

∣∣∣∣
=

∣∣∣∣∑i i
2γt(i)

∑
i iν̄t(i) +

∑
i i

2ν̄t(i)
∑
i iν̄t(i)−

∑
i iγt(i)

∑
i i

2ν̄t(i)−
∑
i i

2ν̄t(i)
∑
i iν̄t(i)∑

i iµ̄t(i)
∑
i iν̄t(i)

∣∣∣∣
≤
∑
i i

2|γt(i)|
∑
i iν̄t(i) +

∑
i i|γt(i)|

∑
i i

2ν̄t(i)∑
i iµ̄t(i)

∑
i iν̄t(i)

≤ 2M

β2

∑
i

i2|γt(i)|.
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Hence,

|L(µ̄t)− L(ν̄t)| ≤
2M

β2

∑
i

i2|γt(i)|,

≤ 2M

β2

(
sup
i
i4|γt(i)|

)∑
i

i−2

≤ Mπ2

3β2

(
sup
i
i8|γt(i)|2

)1/2

≤ Mπ2

3β2

(∑
i8|γt(i)|2

)1/2

. (83)

On the other hand, using Cauchy Schwartz inequality,∑
i

ν̄(i)i9|γt(i)| =
∑
i

i5ν̄t(i)i
4|γt(i)|

≤

(∑
i

i10ν̄t(i)
2

)1/2(∑
i

i8γt(i)
2

)1/2

≤

(∑
i

i5ν̄t(i)

)(∑
i

i8γt(i)
2

)1/2

≤M

(∑
i

i8γt(i)
2

)1/2

, (84)

where in the second inequality we used the fact that for a finite series x having positive terms,

∑
i∈N

x2
i ≤

(∑
i∈N

xi

)2

.

All the same, we have that∑
i

ν̄t(i+ 1)(i+ 1)i8|γt(i)| =
∑
i

(i+ 1)5ν̄t(i+ 1)i4|γt(i)|

≤

(∑
i

(i+ 1)10ν̄t(i+ 1)2

)1/2(∑
i

i8γt(i)
2

)1/2

≤

(∑
i

i10ν̄t(i)
2

)1/2(∑
i

i8γt(i)
2

)1/2

≤M

(∑
i

i8γt(i)
2

)1/2

. (85)

Hence, using (83), (84) and (85) we obtain that

B ≤ 2λ|L(µ̄t)− L(ν̄t)|
∑
i

ν̄t(i)i
9|γt(i)|+ ν̄t(i+ 1)i8(i+ 1)|γt(i)|

≤ 4λM2π2

3β2

(∑
i

i8|γt(i)|2
)
. (86)
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Finally, using (82) and (86) in (81), we obtain that for some positive constant C, for all t ≤ tµβ ∧ tνβ ,

d

dt
Γt ≤ CΓt.

Since G(0) = 0, G is a positive function and tµβ ∧ tνβ > 0, this shows using Gronwall’s Lemma that

Γt = 0 for all such t. Therefore, tµβ = tνβ =: tβ , and µ̄t and ν̄t coincide up to tβ . In other words there
is at most one solution to (30) up to time tβ . Since this is true for all β, and since the only solution
µ̄ is such that t → 〈µ̄t, χ〉 is continuous, there is at most one solution up to the (positive, in view of
(29)) instant

t0 = sup {tβ ; β > 0} . (87)

The proof of uniqueness is completed by noticing that whenever t0 < ∞, the only solution µ̄ to (30)
can be extended uniquely after t0, as follows:

µ̄t = µt0(0)e−λ(t−t0)δ0, t ≥ t0. (88)

5.4. Convergence

Recall that ζ ∈ Mf (N), M > 1 and α > 0 are respectively defined by (28), (38) and (39). Fix
T > 0.

Convergence before reaching a given positive threshold.

We first prove the following result.

Proposition 5.5. For all φ ∈ Bb,

sup
t∈[0,t2α]

|〈µ̄nt , φ〉 − 〈µ̄t, φ〉|
(P)−→
n→∞

0,

where (µ̄t)t≥0 is the unique solution of (30) on C ([0, t2α],MF (N)).

Proof. For all n ∈ N∗, we define the stopping times

τnα = sup {t ≥ 0; 〈µnt , χ〉 ≥ nα}

and denote for all t,

µ̄
n,τnα
t = µ̄nt∧τnα .

Clearly, from Proposition 5.4 the sequence of stopped processes
{
µ̄n,τ

n
α

}
is also relatively compact for

the topology of weak convergence, and we let µ̄∗ be a sub-sequential limit. Define

τ2α = sup
{
t ≥ 0; 〈µ̄∗t , χ〉 > 2α

}
.

Notice that the process µ̄∗ and hence the instant τ2α, are a priori random. Fix φ ∈ Bb throughout
the proof. Let n ∈ N∗. We have for all t ∈ [0, T ],

∫ t∧τ2α∧τnα

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds =

(∫ t∧τ2α

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds

)
1l{τnα>τ2α∧T}

+

(∫ t∧τnα

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds

)
1l{τnα≤τ2α∧T}. (89)
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On the one hand, in view of Lemma A.5 of ([6]), the following map is continuous for the Skorokhod
topology: {

D ([0, T ],Mα,M ) −→ D ([0, T ],R)
µ 7−→ 〈µ., χ〉 ,

and so does {
D ([0, T ],R) −→ R

x. 7−→ inft∈[0,T ] xt.

Therefore, from the Continuous Mapping Theorem ([4]), along the latter subsequence the following
convergence in distribution holds:

inf
t∈[0,T ]

〈
µ̄
n,τnα
t∧τ2α , χ

〉
⇒ inf

t∈[0,T ]

〈
µ̄∗t∧τ2α , χ

〉
.

Hence, from Fatou’s Lemma,

1 = P

[
inf

t∈[0,T ]

〈
µ̄∗t∧τ2α , χ

〉
> α

]
≤ lim
n→∞

P

[
inf

t∈[0,T ]

〈
µ̄
n,τnα
t∧τ2α , χ

〉
> α

]
≤ lim
n→∞

P [T ∧ τ2α < τnα ] . (90)

Therefore, (∫ t∧τnα

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds

)
1l{τnα≤τ2α∧T}

(P)−→
n→∞

0. (91)

Now, it follows again from Lemma A.5 of ([6]) that the following mappings are continuous for the
Skorokhod topology: 

D ([0, T ],Mα,M ) −→ D ([0, T ],R)
µ 7−→ 〈µ., χ〉 ;〈

µ., χ
2
〉

;
〈µ., (1 + χ)φ〉 ;
〈µ., χ∆φ〉 ,

and it is a classical result that the followings map is also continuous:{
D ([0, T ],R× R∗) −→ D ([0, T ],R)

(x., y.) 7−→ x.
y.
.

So from the Continuous Mapping Theorem, the map{
D ([0, T ],Mα,M ) −→ D ([0, T ],R)

µ 7−→ 〈Ψ(µ)t, φ〉

is itself continuous, and it follows from the continuity of the map{
D ([0, T ],R) −→ C ([0, T ],R)

x. 7−→
∫ .

0
xs ds,

together with (89), (90) and (91), that along the same sub-sequence∫ .∧τ2α∧τnα

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds =⇒

∫ .∧τ2α

0

〈Ψ (µ̄∗)s , φ〉 ds in C ([0, T ],R) . (92)

On the other hand, whenever µ̄n0 ∈ Mα,M we clearly have that µ̄
n,τnα
t∧τ2α ∈ Mα,M for all t. Therefore,

as a consequence of Lemmas 5.1, 5.2 and 5.3 together with (29), (26), (41) and (44), we have a.s. for
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all n ∈ N∗ and t ≥ 0,

〈
µ̄
n,τnα
t∧τ2α , φ

〉
= 〈µ̄n0 , φ〉+

(∫ t∧τnα∧τ2α

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds+ on,αt

)
1l{µ̄n0∈Mα,M}

+

(
1

n

∫ t∧τnα∧τ2α

0

QnΠφ (µns ) ds

)
1l{µ̄n0 6∈Mα,M} + M̄n(φ)t∧τnα∧τ2α , (93)

where on,α is a process converging to 0 in probability and uniformly over compact sets.

Now, applying Doob’s inequality to the stopped martingale M̄n(φ).∧τnα∧τ2α and using (27) as in (80)
yields that

sup
t∈[0,T ]

∣∣M̄n(φ)t∧τnα
∣∣ (P)−→
n→∞

0. (94)

Moreover, for all n, t and all ε we have that

P

[
sup
t∈[0,T ]

(
1

n

∫ t∧τnα∧τ2α

0

QnΠφ (µns ) ds

)
1l{µ̄n0 6∈Mα,M} > ε

]

= P

[
sup
t∈[0,T ]

1

n

∫ t∧τnα∧τ2α

0

QnΠφ (µns ) ds > ε, µ̄n0 6∈ Mα,M

]
≤ P [µ̄n0 6∈ Mα,M ]

≤ P [〈µ̄n0 , χ〉 ≤ α] + P
[〈
µ̄n0 , χ

6
〉
≥M

]
≤ P

[
〈µ̄n0 , χ〉 < 〈µ̄0, χ〉 −

〈µ̄0, χ〉 − α
2

]
+ P

[〈
µ̄n0 , χ

6
〉
>
〈
µ̄0, χ

6
〉

+
M −

〈
µ̄0, χ

6
〉

2

]
−→
n→∞

0, (95)

in view of (28) and (29). Plugging (28) together with (92), (94) and (95) into (93), and using Skorokhod
Representation Theorem implies that on some probability space, almost surely

〈
µ̄∗t∧τ2α , φ

〉
= 〈µ̄0, φ〉+

∫ t∧τ2α

0

〈Ψ (µ̄∗)s , φ〉 ds, t ≥ 0.

In other words, µ̄∗ is a C ([0, T ],MF (N))-valued process having initial deterministic value ζ, and
solving (30) on [0, T ∧ τ2α]. As the solution of the latter, if any, is unique, we conclude (i) that τ2α is
deterministic, hence (ii) that there exists a solution µ̄ to (30) on [0, T ∧ τ2α], with which µ̄∗ coincides
almost surely and (iii) that τ2α = t2α, where

t2α = sup
{
t ≥ 0; 〈µ̄t, χ〉 > 2α

}
. (96)

In particular, as the tightness of {µ̄n,τnα } clearly implies that of
{∫ .∧τ2α∧τnα

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds
}

, we

deduce from (92) that∫ .∧t2α∧τnα

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds =⇒

∫ .∧t2α

0

〈Ψ (µ̄)s , φ〉 ds in C ([0, T ],R) .

Using once again the Representation Theorem we obtain that on some probability space,∫ .∧t2α∧τnα

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds −→

n→∞

∫ .∧t2α

0

〈Ψ (µ̄)s , φ〉 ds a.s. in C ([0, T ],R)
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which, as the Skorokhod topology and the uniform topology coincide on C ([0, T ],R) (see [4], p.112),
implies that

sup
t∈[0,T ]

∣∣∣∣∣
∫ t∧t2α∧τnα

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds−

∫ t∧t2α

0

〈Ψ (µ̄)s , φ〉 ds

∣∣∣∣∣ −→n→∞ 0 a.s.

and therefore,

sup
t∈[0,T ]

∣∣∣∣∣
∫ t∧t2α∧τnα

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds−

∫ t∧t2α

0

〈Ψ (µ̄)s , φ〉 ds

∣∣∣∣∣ (P)−→
n→∞

0.

As the latter holds true for all T > 0, we obtain that

sup
t∈[0,t2α]

∣∣∣∣∣
∫ t∧τnα

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds−

∫ t

0

〈Ψ (µ̄)s , φ〉 ds

∣∣∣∣∣ (P)−→
n→∞

0. (97)

Consequently, from (93) we obtain that for all ε > 0,

P

[
sup

t∈[0,t2α]

|〈µ̄nt , φ〉 − 〈µ̄t, φ〉| > ε

]

≤ P

[{
sup

t∈[0,t2α]

∣∣∣∣∣
∫ t∧τnα

0

〈
Ψ
(
µ̄n,τ

n
α

)
s
, φ
〉
ds−

∫ t

0

〈Ψ (µ̄)s , φ〉 ds

∣∣∣∣∣ > ε

3

}⋂
{τnα > t2α}

]

+ P

[
sup

t∈[0,t2α]

∣∣M̄n(φ)t∧τnα + on,αt
∣∣ > ε

3

]
+ P

[∣∣∣〈µ̄n,τnα0 , φ
〉
− 〈µ̄0, φ〉

∣∣∣ > ε

3

]
+ P [τnα ≤ t2α] .

The first term on the r.h.s. vanishes for large n thanks to (97), the second one from Doob’s inequality,
the third one in view of (28) and the last one from (90). This concludes the proof. 2

Existence of the solution on R+. A consequence of Proposition 5.5 is the existence of a solution
(µ̄t)t≥0 of (30) until t2α. As a matter of fact, it appears clearly that the latter result can be ex-
tended to any 0 < β < α. Therefore, by its continuity the solution (µ̄t)t≥0 can be extended at least
until t0, the hitting time of 0 defined by (87). The existence of the solution (µ̄t)t≥0 after t0 then
follows from the explicit form (88).

Asymptotics of the mass at the origin . We now focus on the mass concentrated at 0 in the hydrody-
namic limit. Let us first give the following result,

Lemma 5.6. For all t ≥ t2α,

λ

∫ t∧t0

t2α

µ̄s(1)

(〈
µ̄s, χ

2
〉

〈µ̄s, χ〉
− 1

)
ds ≤ 〈µ̄t2α , χ〉 ,

where (µ̄t)t≥0 is the only solution to (30) on R+ and t2α is defined by (96).

Proof. Let t ≥ t2α. Plainly, applying (30) to φ := χ leads to

〈µ̄t, χ〉 = 〈µ̄t2α , χ〉 − λ
{∫ t

t2α

〈µ̄s, χ〉 ds+

∫ t∧t0

t2α

〈
µ̄s, χ

2
〉
ds

+

∫ t∧t0

t2α

〈µ̄s, χ∆χ〉

(〈
µ̄s, χ

2
〉

〈µ̄s, χ〉
− 1

)
ds

}
.
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Therefore, as 〈µ̄t, χ〉 ≥ 0 we obtain that

〈µ̄t2α , χ〉 ≥ λ
∫ t∧t0

t2α

〈µ̄s, χ∆χ〉

(〈
µ̄s, χ

2
〉

〈µ̄s, χ〉
− 1

)
ds.

The proof is completed by noticing that for all s,

〈µ̄s, χ∆χ〉 =
∑
i∈N

µ̄s(i)i (i− (i− 1)) =
∑
i∈N

µ̄s(i)i ≥ µ̄s(1).

2

Now, let for all n ∈ N∗ and all t ≥ t2α,

Xn,α
t = Card

{
u-vertices of degree 0 at t2α that have become a before time t

}
;

Y n,αt = Card
{
u-vertices of degree ≥ 1 at t2α,

having become of degree 0 at time t and being still u at t
}
.

Denote also X̄n,α
t = 1

nX
n,α
t and Ȳ n,αt = 1

nY
n,α
t for all n and t. Then, clearly

µ̄nt (0) = µ̄nt2α (0)− X̄n,α
t + Ȳ n,αt , t ≥ t2α. (98)

As the u-vertices of degree 0 are independent of the rest of the graph and eventually all become
a-vertices, it is clear that for any n, the process Xn,α is Markov on N. It has rcll paths, its generator
clearly reads

Q̃F (x) = λ
(
µnt2α(0)− x

)
for all functions F : R→ R and all x ∈ N, so it is routine to check that for all n ∈ N∗, for some square
integrable martingale M̄n,α, for all t ≥ t2α,

X̄n,α
t = λ

∫ t

t2α

(
µ̄nt2α(0)− X̄n,α

s

)
ds+ M̄n,α

t . (99)

Therefore, with (98), we obtain that

µ̄nt (0) = µ̄nt2α(0)− λ
∫ t

t2α

(
µ̄nt2α(0)− X̄n,α

s

)
ds− M̄n,α

t + Ȳ n,αt

= µ̄nt2α(0)− λ
∫ t

t2α

(
µ̄ns (0)− Ȳ n,αs

)
ds− M̄n,α

t + Ȳ n,αt . (100)

It also readily follows once again by Doob’s inequality that the martingale term vanishes uniformly
in L2, and in particular, that for all t ≥ t2α,

sup
s∈[t2α,t]

∣∣M̄n,α
s

∣∣ (P)−→
n→∞

0. (101)

On the other hand, applying (30) to φ ≡ 1l0, and observing that for all i ∈ N,

χ(i)∆1l0(i) = −1l1(i),

we get that

µ̄t(0) = µ̄t2α(0)− λ

{∫ t

t2α

µ̄s(0) ds−
∫ t∧t0

t2α

µ̄s(1)

(〈
µ̄s, χ

2
〉

〈µ̄s, χ〉
− 1

)
du

}
, t ≥ t2α.
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Combining this with (100) leads for all n to

|µ̄nt (0)− µ̄t(0)| ≤
∣∣µ̄nt2α(0)− µ̄t2α(0)

∣∣+ λ

∫ t

t2α

|µ̄ns (0)− µ̄s(0)| ds+
∣∣M̄n,α

t

∣∣
+ Ȳ n,αt + λ

∫ t

t2α

Ȳ n,αs ds+ λ

∫ t

t2α

µ̄s(1)

(〈
µ̄s, χ

2
〉

〈µ̄s, χ〉
− 1

)
ds. (102)

But by its very definition, we have that for all s ≥ t2α and all n,

Ȳ n,αs ≤ µ̄nt2α(1) ≤
〈
µ̄nt2α , χ

〉
.

Plugging this together with Lemma 5.6 in (102) yields to

|µ̄nt (0)− µ̄t(0)| ≤
∣∣µ̄nt2α(0)− µ̄t2α(0)

∣∣+ λ

∫ t

t2α

|µ̄ns (0)− µ̄s(0)| ds+
∣∣M̄n,α

t

∣∣
+ (1 + λ(t− t2α))

〈
µ̄nt2α , χ

〉
+ 〈µ̄t2α , χ〉 .

Therefore, from Gronwall’s Lemma we conclude that for all n ∈ N∗ and all t ≥ t2α,

|µ̄nt (0)− µ̄t(0)| ≤
(∣∣µ̄nt2α(0)− µ̄t2α(0)

∣∣+
∣∣M̄n,α

t

∣∣+ (1 + λ(t− t2α))
〈
µ̄nt2α , χ

〉
+ 2α

)
eλ(t−t2α). (103)

Proof of Theorem 4.1. We are now in position to prove Theorem 4.1. Fix T > 0. First consider a
function φ ∈ Bb such that φ(0) 6= 0. Let ε > 0. We can chose α small enough in (39), and small
enough positive numbers δ, η and ξ so that(

δ + η +
(
1 + λ(T − t2α)+

)
(α+ ξ) + 2α

)
eλ(T−t2α)+ <

ε

2 | φ(0) |
; (104)

4α+ ξ <
ε

2 ‖ φ ‖
. (105)

First, if T ≤ t2α, Proposition 5.5 trivially implies that

P

[
sup
t∈[0,T ]

|〈µ̄nt , φ〉 − 〈µ̄t, φ〉| > ε

]
−→
n→∞

0.

If T > t2α, define the following events for all n ∈ N∗,

Ωnα,δ =
{

sup
t∈(0,t2α]

|µ̄nt (0)− µ̄t(0)| ≤ δ
}

;

Ωnα,η =
{

sup
t∈(t2α,T ]

∣∣M̄n,α
t

∣∣ ≤ η};

Ωnα,ξ =
{

sup
t∈(0,t2α]

|〈µ̄nt , χ〉 − 〈µ̄t, χ〉| ≤ ξ
}
,
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where M̄n,α is the martingale defined by (99). We have for all n,

P

[
sup

t∈(t2α,T ]

|〈µ̄nt , φ〉 − 〈µ̄t, φ〉| > ε

]

≤ P

[
sup

t∈(t2α,T ]

|φ(0)| |µ̄nt (0)− µ̄t(0)| > ε

2

]
+ P

[
sup

t∈(t2α,T ]

‖ φ ‖ |〈µ̄nt , 1lN∗〉 − 〈µ̄t, 1lN∗〉| >
ε

2

]

≤ P

[{
sup

t∈(t2α,T ]

|µ̄nt (0)− µ̄t(0)| > ε

2 | φ(0) |

}
∩ Ωnα,δ ∩ Ωnα,η ∩ Ωnα,ξ

]
+ P

[(
Ωnα,δ

)c]
+ P

[(
Ωnα,η

)c]
+ 2P

[(
Ωnα,ξ

)c]
+ P

[{
sup

t∈(t2α,T ]

|〈µ̄nt , 1lN∗〉 − 〈µ̄t, 1lN∗〉| >
ε

2 ‖ φ ‖

}
∩ Ωnα,ξ

]
. (106)

Clearly, from (103) and (104), for all n ∈ N∗,

P

[{
sup

t∈(t2α,T ]

|µ̄nt (0)− µ̄t(0)| > ε

2 | φ(0) |

}
∩ Ωnα,δ ∩ Ωnα,η ∩ Ωnα,ξ

]
= 0. (107)

On another hand, applying (101) and Proposition 5.5 respectively to φ = 1l0 and φ = χ yields that

P
[(

Ωnα,δ
)c]

+ P
[(

Ωnα,η
)c]

+ 2P
[(

Ωnα,ξ
)c] −→

n→∞
0. (108)

Finally, notice that for all t ≥ t2α and for all n,

|〈µ̄nt , 1lN∗〉 − 〈µ̄t, 1lN∗〉| ≤
〈
µ̄nt2α , 1lN∗

〉
+ 〈µ̄t2α , 1lN∗〉 ≤

〈
µ̄nt2α , χ

〉
+ 〈µ̄t2α , χ〉 ≤

〈
µ̄nt2α , χ

〉
+ 2α,

and therefore with (105),

P

[{
sup

t∈(t2α,T ]

|〈µ̄nt , 1lN∗〉 − 〈µ̄t, 1lN∗〉| >
ε

2 ‖ φ ‖

}
∩ Ωnα,ξ

]
= 0.

This together with (107) and (108) in (106), concludes the proof for all φ ∈ Bb such that φ(0) 6= 0.

Only the case where φ(0) = 0 remains to be treated. For this, we fix ε > 0 and let α > 0 small
enough in (39), and ξ > 0 small enough so that

4α+ ξ < ε.

Here again, if T ≤ t2α then Proposition 5.5 implies that

P

[
sup
t∈[0,T ]

|〈µ̄nt , φ〉 − 〈µ̄t, φ〉| > ε

]
−→
n→∞

0.

If T > t2α, just write that for all n,

P

[
sup

t∈(t2α,T ]

|〈µ̄nt , φ〉 − 〈µ̄t, φ〉| > ε

]

≤ P

[{
sup

t∈(t2α,T ]

|〈µ̄nt , φ〉 − 〈µ̄t, φ〉| > ε

}
∩ Ωnα,ξ

]
+ P

[(
Ωnα,ξ

)c]
. (109)
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But then, we have for all t ≥ t2α that

|〈µ̄nt , φ〉 − 〈µ̄t, φ〉| ≤‖ φ ‖
(〈
µ̄nt2α , χ

〉
+ 2α

)
,

and hence

P

[{
sup

t∈(t2α,T ]

|〈µ̄nt , φ〉 − 〈µ̄t, φ〉| > ε

}
∩ Ωnα,ξ

]
= 0

which, together with (108) in (109), concludes the proof. 2

5.5. Proof of Corollary 4.4

We conclude with the proof of Corollary 4.4. Recall the definitions (32) and (33). Let for all t ≥ 0,

ctζ = λ

∫ t

0

〈µ̄s,1〉 ds.

Let ε > 0. Using simple manipulations of the limiting differential system, we have that for all t ≥ 0,
〈µ̄t,1〉 ≤ exp(−λt). Similarly, applying (26) to φ ≡ 1 and taking expectations yields that for any
t ≥ 0 and n ∈ N∗,

d

dt
E [〈µnt ,1〉] ≤ −λE [〈µnt ,1〉] .

Consequently, there exists S > 0 such that for all n ∈ N∗,

max

{∫ ∞
S

〈µ̄t,1〉 dt;
∫ ∞
S

E [〈µ̄nt ,1〉] dt
}
≤ ε

4λ
. (110)

Observe now that for all n, (µn, Jn) is a Markov jump process on MF (N) × N, whose infinitesimal
generator can be readily deduced from (25). Applying Dynkin’s lemma to the test function

F :

{
MF (N)× R → R
(µ, x) 7→ x

clearly entails that for all n ∈ N∗ and t ≥ 0,

Jnt
n

= λ

∫ t

0

〈µ̄ns ,1〉 ds+
Nn
t

n
,

where Nn is a Fnt -martingale such that, uniformly over compact time sets

Nn

n
−→
n→∞

0 in L2,

as can be proven using Doob’s inequality. We obtain that for n large enough,

E
[∣∣J̄n − cζ∣∣] ≤ E

[∣∣∣∣JnSn − cSζ
∣∣∣∣]+ λ

∫ ∞
S

〈µ̄t,1〉 dt+ λE

[∫ ∞
S

〈µ̄nt ,1〉 dt
]

≤ E

[∣∣∣∣∣λ
∫ S

0

〈µ̄nt ,1〉 dt− cSζ

∣∣∣∣∣
]

+

(
E

[(
Nn
S

n

)2
])1/2

+ ε/2

≤ ε.

In the latter, the second inequality follows from (110), the third one from the martingale convergence

and from Theorem 4.1 applied to φ ≡ 1, and by observing that the family of r.v.’s

{∫ S

0

〈µ̄nt ,1〉 dt; n ∈ N∗
}

is bounded by S, and hence uniformly integrable. 2
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Appendix A. Combinatorial results

Let us fix the probability space (Ω,F ,P). We first introduce the definition, and several basic
properties which are used in section 5.1, for the so called hypergeometrical distribution:

Definition Appendix A.1. Let n,N and p be three integers such that p ≥ 1 and N ≥ 1. Let
P := (P (1), ..., P (p)) ∈ Np such that

∑p
i=1 P (i) = N . We say that the measure-valued random

variable Y ∈ MF (N) follows a multivariate hypergeometrical distribution of parameters (n,N, p, P )

if for all y ∈MF (N) of support in J1, pK such that y(i) ≤ P (i) for all i and
p∑
i=1

y(i) = n,

P [Y = y] =

∏p
i=1

(
P (i)
y(i)

)(
N
n

) .

The following main characteristics are well-known and easily calculated:

E [Y (i)] =
nP (i)

N
, i ∈ N ∩ [1, n− 1] (A.1)

Cov (Y (i), Y (j)) =
nP (i)P (j)

N2

N − n
N − 1

, i, j ∈ N ∩ [1, n− 1],

E
[
Y (i)3

]
= n(n− 1)(n− 2)

P (i)3

N3
+ 3n(n− 1)

P (i)2

N2
+
nP (i)

N
, i ∈ N ∩ [1, n− 1]. (A.2)

In particular, we readily deduce from the latter that

E
[
〈Y, χ〉2

]
=
∑
i

∑
j

ijE [y(i)y(j)]

=
∑
i

∑
j

ij

{
Cov (y(i), y(j))−E [y(i)] E [y(j)]

}

=
∑
i

∑
j

ij

{
nP (i)P (j)

N2

N − n
N − 1

− n2P (i)P (j)

N2

}
=
∑
i

∑
j

ij
n(n− 1)P (i)P (j)

N(N − 1)
. (A.3)

On another hand, as there are at most p integers i such that y(i) > 0, a simple computation gives

E
[
〈Y, χ〉3

]
=

∑
(i,j,`)∈[1,n−1]∩N

ij`E [y(i)y(j)y(`)] ≤ 3n2
∑
i

i3E
[
Y (i)3

]
.

So with (A.2), we obtain

E
[
〈Y, χ〉3

]
≤ 3n5

N3

∑
i∈[1,n−1]∩N

i3P (i)3 +
3n4

N2

∑
i∈[1,n−1]

i3P (i)2 +
3n3

N

∑
i∈[1,n−1]

i3P (i). (A.4)
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