Sagar Verma

Jean-Christophe Pesquet

Sparsifying Networks via Subdifferential Inclusion

Introduction

Deep neural networks have evolved to the state-of-the-art techniques in a wide array of applications: computer vision [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Huang | Densely connected convolutional networks[END_REF], automatic speech recognition [START_REF] Hannun | Deepspeech: Scaling up end-toend speech recognition[END_REF][START_REF] Dong | Speech-transformer: A no-recurrence sequence-to-sequence model for speech recognition[END_REF][START_REF] Li | An end-to-end convolutional neural acoustic model[END_REF][START_REF] Watanabe | Espnet: End-to-end speech processing toolkit[END_REF][START_REF] Hayashi | ESPnet-TTS: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit[END_REF][START_REF] Inaguma | ESPnet-ST: All-in-one speech translation toolkit[END_REF], natural language processing [START_REF] Turc | Well-read students learn better: On the importance of pre-training compact models[END_REF][START_REF] Radford | Language models are unsupervised multitask learners[END_REF]Dai et al., 2019b;[START_REF] Brown | Language models are few-shot learners[END_REF], and time series forecasting [START_REF] Oreshkin | Neural basis expansion analysis for interpretable time series forecasting[END_REF]. While their performance in various applications has matched and often exceeded human capabilities, neural networks may remain difficult to apply in real-world scenarios. Deep neural networks leverage the power of Graphical Processing Units (GPUs), which are power-hungry. Using GPUs to make billions of predictions per day, thus comes with a substantial energy cost. In addition, despite their quite fast response time, deep neural networks are not yet suitable for most real-time applications where memory-limited low-cost architectures need to be used. For all those reasons, compression and efficiency have become a topic of high interest in the deep learning community.

Sparsity in DNNs has been an active research topic generating numerous approaches. DNNs achieving the stateof-the-art in a given problem usually have a large number of layers with non-uniform parameter distribution across layers. Most sparsification methods are based on a global approach, which may result in a sub-optimal compression for a reduced accuracy. This may occur because layers with a smaller number of parameters may remain dense, although they may contribute more in terms of computational complexity (e.g., for convolutional layers). Some methods, also known as magnitude pruning, use a hard or soft-thresholding to remove less significant parameters. Soft thresholding techniques achieve a good sparsity-accuracy trade-off at the cost of additional parameters and increased computation time during training [START_REF] Kusupati | Soft threshold weight reparameterization for learnable sparsity[END_REF]. Searching for a hardware efficient network is another area that has been proven quite useful, but it requires a huge amount of computational resources. Convex optimization techniques such as those used in [START_REF] Aghasi | Nettrim: Convex pruning of deep neural networks with performance guarantee[END_REF] often rely upon fixed point iterations that make use of the proximity operator [START_REF] Moreau | Fonctions convexes duales et points proximaux dans un espace hilbertien[END_REF]. The related concepts are fundamental for tackling nonlinear problems and have recently come into play in the analysis of neural networks (Combettes & Pesquet, 2020a) and nonlinear systems [START_REF] Combettes | A fixed point framework for recovering signals from nonlinear transformations[END_REF].

This paper shows that the properties of nonlinear activation functions can be utilized to identify highly sparse subnetworks. We show that the sparsification of a network can be formulated as an approximate subdifferential inclusion problem. We provide an iterative algorithm called subdifferential inclusion for sparsity (SIS) that uses partial training data to identify a sparse subnetwork while maintaining good accuracy. SIS makes even few-parameter layers sparse, resulting in models with significantly lower inference FLOPs than the baselines. For example, SIS for 90% sparse MobileNetV3 on ImageNet-1K achieves 66.07% top-1 accuracy with 33% fewer inference FLOPs than its dense counterpart and thus provides better results than the state-of-the-art method RigL. For non-convolutional networks like Transformer-XL trained on WikiText-103, SIS is able to achieve 70% sparsity while maintaining 21.1 perplexity score. We experiment on the following activation functions: Capped ReLU (Jasper), QuadReLU (MobileNet-V3), and ReLU/SoftMax (all networks). We evaluate our approach across four applicative domains and show that our compressed networks can achieve competitive accuracy for potential use on commodity hardware and edge devices.

Related Work

Inducing sparsity post training

Methods inducing sparsity after a dense network is trained involve several pruning and fine-tuning cycles till desired sparsity and accuracy are reached [START_REF] Mozer | Skeletonization: A technique for trimming the fat from a network via relevance assessment[END_REF][START_REF] Lecun | Optimal brain damage[END_REF][START_REF] Hassibi | Optimal brain surgeon and general network pruning[END_REF][START_REF] Han | Learning both weights and connections for efficient neural networks[END_REF][START_REF] Molchanov | Variational dropout sparsifies deep neural networks[END_REF][START_REF] Guo | Dynamic network surgery for efficient dnns[END_REF][START_REF] Park | Lookahead: A farsighted alternative of magnitude-based pruning[END_REF]. [START_REF] Renda | Comparing rewinding and fine-tuning in neural network pruning[END_REF] proposed weight rewinding technique instead of vanilla fine-tuning post-pruning. Net-Trim algorithm [START_REF] Aghasi | Nettrim: Convex pruning of deep neural networks with performance guarantee[END_REF] removes connections at each layer of a trained network by convex programming. The proposed method works for networks using rectified linear units (ReLUs). Lowering rank of parameter tensors [START_REF] Jaderberg | Speeding up convolutional neural networks with low rank expansions[END_REF][START_REF] Prabhu | Butterfly transform: An efficient fft based neural architecture design[END_REF][START_REF] Lu | Learning compact recurrent neural networks[END_REF], removing channels, filters and inducing group sparsity [START_REF] Wen | Learning structured sparsity in deep neural networks[END_REF][START_REF] Li | Pruning filters for efficient convnets[END_REF][START_REF] Luo | A filter level pruning method for deep neural network compression[END_REF][START_REF] Gordon | Morphnet: Fast simple resource-constrained structure learning of deep networks[END_REF][START_REF] Yu | Slimmable neural networks[END_REF][START_REF] Liebenwein | Provable filter pruning for efficient neural networks[END_REF] are some methods that take network structure into account. All these methods rely on pruning and fine-tuning cycle(s) often from full training data.

Inducing sparsity during training

Another popular approach has been to induce sparsity during training. This is achieved by modifying the loss function to consider sparsity as part of the optimization [START_REF] Chauvin | A back-propagation algorithm with optimal use of hidden units[END_REF][START_REF] Carreira-Perpinan | Learning-Compression" algorithms for neural net pruning[END_REF][START_REF] Ullrich | Soft weight-sharing for neural network compression[END_REF][START_REF] Neklyudov | Structured bayesian pruning via log-normal multiplicative noise[END_REF]. Bayesian priors [START_REF] Louizos | Bayesian compression for deep learning[END_REF], L 0 , L 1 regularization [START_REF] Louizos | Learning sparse neural networks through l 0 regularization[END_REF], and variational dropout [START_REF] Molchanov | Variational dropout sparsifies deep neural networks[END_REF] get accuracy comparable to [START_REF] Zhu | To prune, or not to prune: Exploring the efficacy of pruning for model compression[END_REF] but at a cost of 2× memory and 4× computations during training. [START_REF] Liu | Rethinking the value of network pruning[END_REF][START_REF] Savarese | Winning the lottery with continuous sparsification[END_REF][START_REF] Kusupati | Soft threshold weight reparameterization for learnable sparsity[END_REF][START_REF] Lee | Differentiable sparsification for deep neural networks[END_REF][START_REF] Xiao | Automatic network pruning by regularizing auxiliary parameters[END_REF][START_REF] Azarian | Learned threshold pruning[END_REF] have proposed learnable sparsity methods through training of the sparse masks and weights simultaneously with minimal heuristics. Although these methods are cheaper than pruning after training, they need at least the same computational effort as training a dense network to find a sparse sub-network. This makes them expensive when compressing big networks where the number of parameters ranges from hundreds of millions to billions (Dai et al., 2019b;[START_REF] Li | An end-to-end convolutional neural acoustic model[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF]. Methods like [START_REF] Zhu | To prune, or not to prune: Exploring the efficacy of pruning for model compression[END_REF][START_REF] Bellec | Deep rewiring: Training very sparse deep networks[END_REF][START_REF] Mocanu | Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science[END_REF]Dai et al., 2019a;Lin et al., 2020b) can be sub-classified as methods where dynamic pruning is performed during training by observing the network flow. [START_REF] Mostafa | Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization[END_REF][START_REF] Dettmers | Sparse networks from scratch: Faster training without losing performance[END_REF][START_REF] Evci | Rigging the lottery: Making all tickets winners[END_REF] computes weight magnitude and reallocates weights at every step of model training. [START_REF] Frankle | The lottery ticket hypothesis: Finding sparse, trainable neural networks[END_REF] showed that it is possible to find sparse sub-networks that, when trained from scratch, were able to match or even outperform their dense counterparts. [START_REF] Lee | Single-shot network pruning based on connection sensitivity[END_REF] presented SNIP, a method to estimate, at initialization, the importance that each weight could have later during training. In [START_REF] Lee | A signal propagation perspective for pruning neural networks at initialization[END_REF] the authors perform a theoretical study of pruning at initialization from a signal propagation perspective, focusing on the initialization scheme. Recently, [START_REF] Wang | Picking winning tickets before training by preserving gradient flow[END_REF] proposed GraSP, a different method based on the gradient norm after pruning, and showed a significant improvement for moderate levels of sparsity. [START_REF] Ye | Good subnetworks provably exist: Pruning via greedy forward selection[END_REF] starts with a small subnetwork and progressively grow it to a subnetwork that is as accurate as its dense counterpart. [START_REF] Tanaka | Pruning neural networks without any data by iteratively conserving synaptic flow[END_REF] proposes SynFlow that avoids flow collapse of a pruned network during training. [START_REF] Jorge | Progressive skeletonization: Trimming more fat from a network at initialization[END_REF] proposed FORCE, an iterative pruning method that progressively removes a small number of weights. This method is able to achieve extreme sparsity at little accuracy expense. These methods are not usable for big pre-trained networks and are expensive as multiple training rounds are required for different sparse models depending on deployment scenarios (computing devices).

Training sparsely initialized networks

Efficient Neural Architecture Search

Hardware-aware NAS methods [START_REF] Zoph | Learning transferable architectures for scalable image recognition[END_REF][START_REF] Real | Regularized evolution for image classifier architecture search[END_REF][START_REF] Cai | Path-level network transformation for efficient architecture search[END_REF][START_REF] Wu | FBNet: Hardware-aware efficient convnet design via differentiable neural architecture search[END_REF][START_REF] Tan | Platform-aware neural architecture search for mobile[END_REF][START_REF] Cai | ProxylessNAS: Direct neural architecture search on target task and hardware[END_REF][START_REF] Howard | Searching for mobilenetv3[END_REF] directly incorporate the hardware feedback into efficient neural architecture search. [START_REF] Cai | Oncefor-all: Train one network and specialize it for efficient deployment[END_REF] proposes to learn a single network composed of a large number of subnetworks from which a hardware aware subnetwork can be extracted in linear time. (Lin et al., 2020a) proposes a similar approach wherein they identify subnetworks that can be run efficiently on microcontrollers (MCUs).

The proposed algorithm applies to possibly large pretrained networks. In contrast with methods presented in Section 2.1, ours can use a small amount of training data during pruning and fewer epochs during fine-tuning. As we will see in the next section, a key feature of our approach is that it is based on a fine analysis of the mathematical properties of activation functions, so allowing the use of powerful convex optimization tools. Through its block-iterative structure, our algorithm makes it possible to perform minibatch processing, while offering sound convergence guarantees. In Section 4, extensive numerical experiments show the good performance of this strategy.

Proposed Method

Variational principles

A basic neural network layer can be described by the relation:

y = R(W x + b) (1)
where x ∈ R M is the input, y ∈ R N the output, W ∈ R N ×M is the weight matrix, b ∈ R N the bias vector, and R is a nonlinear activation operator from R N to R N . A key observation is that most of the activation operators currently used in neural networks are proximity operators of convex functions (Combettes & Pesquet, 2020a;b). We will therefore assume that there exists a proper lowersemicontinuous convex function f from R N to R ∪ {+∞} such that R = prox f . We recall that f is a proper lowersemicontinuous convex function if the area overs its graph, its epigraph (y, ξ) ∈ R N × R f (y) ξ , is a nonempty closed convex set. For such a function the proximity operator of f at z ∈ R N [START_REF] Moreau | Fonctions convexes duales et points proximaux dans un espace hilbertien[END_REF] is the unique point defined as

prox f (z) = argmin p∈R N 1 2 z -p 2 + f (p). (2)
It follows from standard subdifferential calculus that Eq. (1) can be re-expressed as the following inclusion relation:

W x + b -y ∈ ∂f (y), (3)
where ∂f (y) is the Moreau subdifferential of f at y defined as

∂f (y) = t ∈ R N (∀z ∈ R N)f (z) f (y) + t | z -y .
(4) The subdifferential constitutes a useful extension of the notion of differential, which is applicable to nonsmooth functions. The set ∂f (y) is closed and convex and, if y satisfies Eq. (1), it is nonempty. The distance to this set of a point z ∈ R N is given by

d ∂f (y) (z) = inf t∈∂f (y) z -t .
(5)

We thus see that the subdifferential inclusion in Eq. (3) is also equivalent to

d ∂f (y) (W x + b -y) = 0. (6)
Therefore, a suitable accuracy measure for approximated values of the layer parameters

(W, b) is d ∂f (y) (W x + b -y).

Optimization problem

Compressing a network consists of a sparsification of its parameters while keeping a satisfactory accuracy. Let us assume that, for a given layer, a training sequence of input/output pairs is available which results from a forward pass performed on the original network for some input dataset of length K. The training sequence is split in J minibatches of size T so that K = JT . The j-th minibatch with j ∈ {1, . . . , J} is denoted by (x j,t , y j,t) 1 t T . In order to compress the network, we propose to solve the following constrained optimization problem.

Problem 1 We want to minimize

(W,b)∈C g(W, b) (7)
with

C = (W, b) ∈ R N ×M × R N | (∀j ∈ {1, . . . , J}) T t=1 d 2 ∂f (yj,t) (W x j,t + b -y j,t) T η , (8
)
where g is a sparsity measure defined on R N ×M × R N and η ∈ [0, +∞[is some accuracy tolerance.

Since, for every j ∈ {1, . . . , J}, the function

(W, b) → T t=1 d 2 ∂f (yj,t) (W x j,t + b -y j,t
) is continuous and convex, C is a closed and convex subset of R N ×M ×R N . In addition, this set is nonempty when there exist W ∈ R N ×M and b ∈ R N such that, for every j ∈ {1, . . . , J} and t ∈ {1, . . . , T },

d 2 ∂f (yj,t) (W x j,t + b -y j,t) = 0. (9)
As we have seen in Section 3.1, this condition is satisfied when (W , b) are the parameters of the uncompressed layer.

Often, the sparsity of the weight matrix is the determining factor whereas the bias vector represents a small number of parameters, so that we can make the following assumption.

Assumption 2 For every W ∈ R N ×M and b ∈ R N , g(W, b) = h(W)
where h is a function from R N ×M to R ∪ {+∞}, which is lower-semicontinuous, convex, and coercive (i.e. lim W F →+∞ h(W) = +∞). In addition, there exists (W , b) ∈ C such that h(W) < +∞ and there exists (j * , t *) ∈ {1, . . . , J} × {1, . . . , T } such that y j * ,t * lies in the interior of the range of R.

Under this assumption, the existence of a solution to Problem 1 is guaranteed (see Appendix A). A standard choice for such a function is the 1 -norm of the matrix elements, h = • 1 , but other convex sparsity measures could also be easily incorporated within this framework, e.g. group sparsity measures. Another point worth being noticed is that constraints other than (8) could be imposed. For example, one could make the following alternative choice for the constraint set

C = (W, b) ∈ R N ×M × R N | sup j∈{1,...,J},t∈{1,...,T } d ∂f (yj,t) (W x j,t + b -y j,t) √ η . (10
)
Although the resulting optimization problem could be tackled by the same kind of algorithm as the one we will propose, Constraint (8) leads to a simpler implementation.

Optimization algorithm

A standard proximal method for solving Problem 1 is the Douglas-Rachford algorithm (Lions & Mercier, 1979;[START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF]. This algorithm alternates between a proximal step aiming at sparsifying the weight matrix and a projection step allowing a given accuracy to be reached. This algorithm reads as shown below.

Algorithm 1 Douglas-Rachford algorithm for network compression

Initialize : W 0 ∈ R N ×M and b 0 ∈ R N for n = 0, 1, . . . do W n = prox γh (W n) (W n , b n) = proj C (2W n -W n , b n) W n+1 = W n + λ n (W n -W n) b n+1 = b n + λ n (b n -b n).
The Douglas-Rachford algorithm uses positive parameters γ and (λ n) n∈N . Throughout this article, proj S denotes the projection onto a nonempty closed convex set S. The convergence of Algorithm 1 is guaranteed by the following result (see illustrations in Subsection 4.3).

Proposition 3 [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF] Assume that Problem 1 has a solution and that there exists

(W , b) ∈ C such W is a point in the interior of the domain of h. Assume that γ ∈]0, +∞[and (λ n) n∈N in]0, 2[is such that n∈N λ n (2 -λ n) = +∞. Then the sequence (W n , b n) n∈N generated by Algorithm 1 converges to a solution to Problem 1.
The proximity operator of function γh has a closed-form for standard choices of sparsity measures1 . For example, when h = • 1 , this operator reduces to a soft-thresholding (with

Computation of the projection onto the constraint set

For every mini-batch index j ∈ {1, . . . , J}, let us define the following convex function:

(∀(W, b) ∈ R N ×M × R N) c j (W, b) = T t=1 d 2 ∂f (yj,t) (W x j,t + b -y j,t) -T η. (11)
Note that, for every j ∈ {1, . . . , J}, function c j is differentiable and its gradient at

(W, b) ∈ R N ×M × R N is given by ∇c j (W, b) = (∇ W c j (W, b), ∇ b c j (W, b)), (12)
where

∇ W c j (W, b) = 2 T t=1 e j,t x j,t , ∇ b c j (W, b) = 2 T t=1 e j,t (13)
with, for every t ∈ {1, . . . , T }, e j,t = W x j,t + by j,tproj ∂f (yj,t) (W x j,t + by j,t).

(

) 14
A pair of weight/bias parameters belongs to C if and only if it lies in the intersection of the 0-lower level sets of the functions (c j) 1 j J . To compute the projection of some (W, b) ∈ R N ×M × R N onto this intersection, we use Algorithm 2 (• F denotes here the Frobenius norm).

This iterative algorithm has the advantage of proceeding in a minibatch manner. It allows us to choose the minibatch index j n at iteration n in a quasi-cyclic manner. The simplest rule is to activate each minibatch once within J successive iterations of the algorithm so that they correspond to an epoch. The proposed algorithm belongs to the family of block-iterative outer approximation schemes for solving constrained quadratic problems, which was introduced in [START_REF] Combettes | A block-iterative surrogate constraint splitting method for quadratic signal recovery[END_REF]. The convergence of the sequence (W n , b n) n∈N generated by Algorithm 2 to proj C (W, b) is thus guaranteed. One of the main features of the algorithm is that it does not require to perform any projection onto the 0-lower level sets of the functions c j , which would be intractable due to their expressions. Instead, these projections are implicitly replaced by subgradient projections, which are much easier to compute in our context.

Algorithm 2 Minibatch algorithm for computing proj C (W, b)

Initialize :W 0 = W and b 0 = b for n = 0, 1, . . . do Select a batch of index j n ∈ {1, . . . , J} if c jn (W n , b n) > 0 then Compute ∇ W c jn (W n , b n) and ∇ b c jn (W n , b n
) by using Eqs. (13) and (14)

δW n = cj n (Wn,bn) ∇ W cj n (Wn,bn) ∇ W cj n,n (Wn,bn) 2 F + ∇ b cj n (Wn,bn) 2 δb n = cj n (Wn,bn) ∇ b cj n (Wn,bn) ∇ W cj n ,n (Wn,bn) 2 F + ∇ b cj n (Wn,bn) 2 π n = tr((W 0 -W n) δW n) + (b 0 -b n) δb n µ n = W 0 -W n 2 F + b 0 -b n 2 ν n = δW n 2 F + δb n 2 ζ n = µ n ν n -π 2 n if ζ n = 0 and π n 0 then W n+1 = W n -δW n b n+1 = b n -δb n else if ζ n > 0 and π n ν n ζ n then W n+1 = W 0 -(1 + πn νn)δW n b n+1 = b 0 -(1 + πn νn)δb n else W n+1 = W n + νn ζn (π n (W 0 -W n) -µ n δW n) b n+1 = b n + νn ζn (π n (b 0 -b n) -µ n δb n) else W n+1 = W n b n+1 = b n

Dealing with various nonlinearities

For any choice of activation operator R, we have to calculate the projection onto ∂f (y) for every vector y satisfying Eq. (1). This projection is indeed required in the computation of the gradients of functions (c j) 1 j J , as shown by Eq. (14). Two properties may facilitate this calculation. First, if f is differentiable at y, then ∂f (y) reduces to a singleton containing the gradient ∇f (y) of f at y, so that, for every z ∈ R N , proj ∂f (y) (z) = ∇f (y).

Second, R is often separable, i.e. consists of the application of a scalar activation function ρ : R → R to each component of its input argument. According to our assumptions, there thus exists a proper lower-semicontinuous convex function ϕ from R to R ∪ {+∞} such that ρ = prox ϕ and, for every k)). This implies that, for every z

z = (ζ (k)) 1 k N ∈ R N , f (z) = N k=1 ϕ(ζ (
= (ζ (k)) 1 k N ∈ R N , proj ∂f (y) (z) = (proj ∂ϕ(υ (k)) (ζ (k))) 1 k N ,
where the components of y are denoted by (υ (k)) 1 k N . Based on these properties, a list of standard activation functions ρ is given in Table 1, for which we provide the associated expressions of the projection onto ∂ϕ. The calculations are detailed in Appendix B.

An example of non-separable activation operator frequently employed in neural network architectures is the softmax operation defined as

(∀z = (ζ (k)) 1 k N ∈ R N) R(z) = exp(ζ (k)) N k =1 exp(ζ (k)) 1 k N . (15)
It is shown in Appendix C that, for every y = (υ (k)) 1 k N in the range of R,

(∀z ∈ R N) proj ∂f (y) (z) = Q(y) + 1 (z -Q(y)) N 1, (16
) where 1 = [1, . . . , 1] ∈ R N and Q(y) = (ln υ (k) + 1 -υ (k)) 1 k N . (17
)
3.6. SIS on multi-layered networks Algorithm 3 Parallel SIS for multi-layered network Input: input sequence X ∈ R M ×K , compression parameter η > 0, weight matrices W (1) , . . . , W (L) , and bias vectors b l) , Y (l) , Y (l-1))

(1) , . . . , b (L) Y (0) ← X for l = 1, . . . , L do Y (l) = R l (W (l) Y (l-1) + b (l)) W (l) , b (l) ← SIS(η, W (l) , b (
Output: W (1) , . . . , W (L) and b (1) , . . . , b (L) Algorithm 3 describes how we make use of SIS for a multilayered neural network. We use a pre-trained network and part of the training sequence to extract layer-wise inputoutput features. Then we apply SIS on each individual layer l by passing η, layer parameters (W (l) , b (l)) and extracted input-output features (Y (l-1) , Y (l)) to Algorithm 1. The benefit of applying SIS to each layer independently is that we can run SIS on all the layers of a network in parallel. This reduces the time required to process the whole network and compute resources are optimally utilized.

Experiments

In this section, we conduct various experiments to validate the effectiveness of SIS in terms of test accuracy vs. sparsity and inference time FLOPs vs. sparsity by comparing against RigL [START_REF] Evci | Rigging the lottery: Making all tickets winners[END_REF]. We also include SNIP [START_REF] Lee | Single-shot network pruning based on connection sensitivity[END_REF], GraSP [START_REF] Wang | Picking winning tickets before training by preserving gradient flow[END_REF], SynFlow [START_REF] Tanaka | Pruning neural networks without any data by iteratively conserving synaptic flow[END_REF], STR [START_REF] Kusupati | Soft threshold weight reparameterization for learnable sparsity[END_REF], and FORCE [START_REF] Jorge | Progressive skeletonization: Trimming more fat from a network at initialization[END_REF]. These methods start training from a sparse network and have some limitations when compared to methods that prune a pre-trained network [START_REF] Blalock | What is the state of neural network pruning?[END_REF][START_REF] Gale | The state of sparsity in deep neural networks[END_REF]. For a fair comparison we also include LRR [START_REF] Renda | Comparing rewinding and fine-tuning in neural network pruning[END_REF] which uses a pre-trained network and multiple rounds of pruning and retraining by leveraging learning rate rewinding. The experimental setup is described in Appendix D.

Name ρ(ζ) ρ(ζ) ρ(ζ) proj ∂ϕ(υ) (ζ) proj ∂ϕ(υ) (ζ) proj ∂ϕ(υ) (ζ) Sigmoid (1 + e -ζ) -1 -1 2 ln(υ + 1/2) -ln(υ -1/2) -υ Arctangent (2/π) arctan(ζ) tan(πυ/2) -υ ReLU max{ζ, 0} 0 if υ > 0 or ζ 0 ζ otherwise Leaky ReLU ζ if ζ > 0 αζ otherwise 0 if υ > 0 (1/α -1)υ otherwise Capped ReLU ReLU α (ζ) = min{max{ζ, 0}, α}      ζ if (υ = 0 and ζ < 0) or (υ = α and ζ > 0) 0 otherwise ELU ζ if ζ 0 α exp(ζ) -1 otherwise 0 if υ > 0 ln υ+α α -υ otherwise QuadReLU (ζ + α)ReLU 2α (ζ + α) 4α          υ if υ = 0 and ζ -α -υ + 2 √ αυ -α if υ ∈]0, α] or (υ = 0 and ζ > -α) υ -α

Modern ConvNets on CIFAR and ImageNet

We compare SIS with competitive baselines on CIFAR-10/100 for three different sparsity regimes 90%, 95%, 98%, and the results are listed in Due to its small size and controlled nature, CIFAR-10/100 may not appear sufficient to draw solid conclusions. We thus conduct further experiments on ImageNet using ResNet50 and MobileNets. For ResNet50 on ImageNet experiment, we adapt SNIP [START_REF] Lee | Differentiable sparsification for deep neural networks[END_REF], GraSP [START_REF] Wang | Picking winning tickets before training by preserving gradient flow[END_REF], SynFlow [START_REF] Tanaka | Pruning neural networks without any data by iteratively conserving synaptic flow[END_REF], STR [START_REF] Kusupati | Soft threshold weight reparameterization for learnable sparsity[END_REF], FORCE [START_REF] Jorge | Progressive skeletonization: Trimming more fat from a network at initialization[END_REF], SpraseVD [START_REF] Molchanov | Variational dropout sparsifies deep neural networks[END_REF], Bayesian Compression [START_REF] Louizos | Bayesian compression for deep learning[END_REF], and L0 regularization [START_REF] Louizos | Learning sparse neural networks through l 0 regularization[END_REF] methods to use pre-trained weights. We also include results from NetTrim [START_REF] Aghasi | Nettrim: Convex pruning of deep neural networks with performance guarantee[END_REF] which is another convex optimization based pruning method. Table 5 reports WER and inference FLOPs for all three methods. SIS marginally performs better than LRR on this task in terms of WER and FLOPs for 70% sparsity. The main advantage of our approach lies in the fact that we can use a single pre-trained Jasper network and achieve different sparsity level for different types of deployment scenarios with less computational resources than RigL.

Transformer-XL on WikiText-103. Transformer-XL is a language model with 246 million parameters. The trained network on WikiText-103 has a perplexity score (PPL) of 18.6. In Table 5, we see that SIS performs better than SNIP and RigL in terms of PPL and has 68% fewer inference FLOPs. This is due to the fact that large language models can be efficiently trained and then compressed easily, but training a sparse sub-network from scratch is hard [START_REF] Li | Train large, then compress: Rethinking model size for efficient training and inference of transformers[END_REF], as is the case with SNIP and RigL. SNIP uses one-shot pruning to obtain a random sparse sub-network, whereas RigL is able to change its structure during training, which allows it to perform better than SNIP. N-BEATS on M4. N-BEATS is a very deep residual fullyconnected network to perform forecasting in univariate timeseries problems. It is a 14 million parameter network. The Symmetric Mean Absolute Percentage Error (SMAPE) of the dense network on the M4 dataset is 8.3%. We apply SIS on this network and compare its performance with respect to RigL and SIS. As shown Table 5, SIS performs better than both methods and results in 65% fewer inference FLOPs.

Empirical Convergence Analysis

The η parameter in our algorithm controls the accuracy tolerance. The higher, the more tolerant we are on the loss of precision and the sparser the network is. Thus, this parameter also controls the network sparsity. The choice of this parameter should be the result of an accuracy-sparsity trade-off. This is illustrated in Figure 1.

We illustrate the convergence of our method on LeNet-FCN trained on MNIST. LeNet-FCN is a fully-connected network having four layers with 784-300-1000-300-10 nodes (two 300 nodes and one 1000 node hidden layers). Figure 2 shows the convergence of SIS when applied to dense LeNet-FCN. We observe that the convergence is smooth and SIS finds a global solution for the first (ReLU activated) and last (softmax) layer cases. This fact is in agreement with our theoretical claims. SIS attains a sparsity of 99.21% at an error of 1.86%. The trained dense network has an error of 1.65%. This result is obtained at η = 2.

Conclusion

In this article, we have proposed a novel method for sparsifying neural networks. The compression problem for each layer has been recast as the minimization of a sparsity measure under accuracy constraints. This constrained optimization problem has been solved by means of advanced convex optimization tools. The resulting SIS algorithm is i) reliable in terms of iteration convergence guarantees, ii) applicable to a wide range of activation operators, iii) able to deal with large datasets split into mini-batches.

Our numerical tests demonstrate that the approach is not only appealing from a theoretical viewpoint but also practically efficient.

Appendices

A. Existence of a solution to Problem 1 under Assumption 2

Under Assumption 2, Problem 1 is equivalent to minimize

(W,b)∈C h(W) (18)
with

C = (W, b) ∈ R N ×M × R N max j∈{1,...,J} c j (W, b) 0 , (19)
where the functions (c j) 1 j J are defined in Eq. (11). These functions being convex, Φ = max j∈{1,...,J} c j is convex (Bauschke & Combettes, 2019, Proposition 8.16). We deduce that Ψ = inf b∈R N Φ(•, b) is also a convex function (Bauschke & Combettes, 2019, Proposition 8.35). Since Φ -ηT , Ψ is finite valued. It is thus continuous on R N ×M (Bauschke & Combettes, 2019, Corollary 8.40). Let us now consider the problem: minimize

W ∈lev 0 Ψ h(W) (20)
where lev 0 Ψ is the 0-lower level set of Ψ defined as

lev 0 Ψ = W ∈ R N ×M Ψ(W) 0 , (21)
Ψ being both convex and continuous, lev 0 Ψ is closed and convex. According to Assumption 2, there exists (W , b) ∈ R N ×M × R N such that h(W) < +∞ and Φ(W , b) 0, which implies that Ψ(W) 0. This shows that lev 0 Ψ has a nonempty intersection with the domain of h. By invoking now the coercivity property of h, the existence of a solution W to Problem (20) is guaranteed by standard convex analysis results (Bauschke & Combettes, 2019, Theorem 11.10).

To show that (W , b) is a solution to (18), it is sufficient to show that there exists b ∈ R N such that Φ(W , b) = Ψ(W). This is equivalent to prove that there exists a solution b to the problem:

minimize b∈R N Φ(W , b). (22
)
We know that Φ(W , •) is a continuous function. In addition, we have assumed that there exists (j * , t *) ∈ {1, . . . , J} × {1, . . . , T } such that y j * ,t * is an interior point of R(R N), which is also equal to the domain of ∂f and thus a subset of the domain of f . Since f is continuous on the interior of its domain, ∂f (y j * ,t *) is bounded (Bauschke & Combettes, 2019, Proposition 16.17(ii)). Then d ∂f (y j * ,t *) is coercive, hence c j * (W , •) is coercive, and so is Φ(W , •) c j * (W , •).

The existence of b thus follows from the Weierstrass theorem.

B. Results in Table 1

The results are derived from the expression of the convex function ϕ associated with each activation function ρ (Combettes & Pesquet, 2020a, Section 2.1) (Combettes & Pesquet, 2020b, Section 3.2).

Sigmoid

(∀ζ ∈ R) ϕ(ζ) =            (ζ + 1/2) ln(ζ + 1/2) + (1/2 -ζ) ln(1/2 -ζ) - 1 2 (ζ 2 + 1/4) if |ζ| < 1/2 -1/4 if |ζ| = 1/2 +∞ if |ζ| > 1/2.
The range of the Sigmoid function is] -1/2, 1/2[and the above function is differentiable on this interval and its derivative at every

υ ∈] -1/2, 1/2[is ϕ (υ) = ln(υ + 1/2) -ln(υ -1/2) -υ. (23
)
We deduce that, for every

ζ ∈ R, proj ∂ϕ(υ) (ζ) = ϕ (υ). Arctangent (∀ζ ∈ R) ϕ(ζ) = -2 π ln cos πζ 2 -1 2 ζ 2 , if |ζ| < 1 +∞, if |ζ| 1. (24)
By proceeding for this function similarly to the Sigmoid function, we have, for every υ ∈ ρ

(R) =] -1, 1[, (∀ζ ∈ R) proj ∂ϕ(υ) (ζ) = ϕ (υ) = tan(πυ/2) -υ. (25) ReLU (∀ζ ∈ R) ϕ(ζ) = 0 if ζ 0 +∞ otherwise. (26
)
For every υ ∈ ρ(R) = [0, +∞[, we have

∂ϕ(υ) = {0} if υ > 0] -∞, 0] if υ = 0. (27
)
We deduce that

(∀ζ ∈ R) proj ∂ϕ(υ) (ζ) = 0 if υ > 0 or ζ 0 ζ otherwise. (28
)
where

u = [1, . . . , 1] /N = 1/N ∈ R N . If R is the Softmax activation operator, the convex function f such that prox f = R is (Combettes & Pesquet, 2020a, Example 2.23): (∀z = (ζ (k)) 1 k N) f (z) = N k=1 ϕ(ζ (k)) if z ∈ C ∩ A +∞ otherwise, (43)
where

(∀ζ ∈ [0, +∞[) ϕ(ζ) = ζ ln ζ - ζ 2 2 (44)
(with the convention 0 ln 0 = 0). The latter function is differentiable on]0, +∞[. It then follows from standard subdifferential calculus rules that, for every y =

(υ (k)) 1 k N ∈]0, +∞[N , ∂f (y) = (ϕ (υ (k))) 1 k N + ∂ι C∩A (y), (45
)
where ϕ is the derivative of ϕ on]0, +∞[and ι C∩A denotes the indicator function of the intersection of C and A (equal to 0 on this set and +∞ elsewhere). It can be deduced from Eq. (45) that, for every y = (υ

(k)) 1 k N ∈]0, +∞[N , ∂f (y) = (ϕ (υ (k))) 1 k N + N C (y) + N A (y), (46)
where N D denotes the normal cone to a nonempty closed convex set D, which is defined as

(∀y ∈ D) N D (y) = t ∈ R N (∀z ∈ D) t | z -y 0 . (47) Thus, for every y ∈ A, N A (y) = N V (y -u) is the orthogonal space V ⊥ of V . Let us now assume that y ∈ R(R N) =]0, 1[N ∩A.
Then, since y is an interior point of C, N C (y) = {0}. We then deduce from Eq. (46) that

∂f (y) = Q(y) + V ⊥ , (48)
where

Q(y) = (ϕ (υ (k))) 1 k N = (ln υ (k) + 1 -υ (k)) 1 k N . (49) It follows that, for every z ∈ R N , proj ∂f (y) (z) = Q(y) + proj V ⊥ (z -Q(y)). (50)
By using the expression of the projection proj V = Idproj V ⊥ onto hyperplane V , we finally obtain

proj ∂f (y) (z) = Q(y) + 1 (z -Q(y)) N 1. (51)

D. Experimental Setup

PyTorch is employed to implement our method. We use and extend SNIP and RigL code available here2 , LRR3 , GraSP 4 , SynFlow 5 , STR 6 , and FORCE 7 . In order to manage our experiments we use Polyaxon 8 on a Kubernetes 9 cluster and use five computing nodes with eight V100 GPUs each.

Floating point operations per second (FLOPs) is calculated as equal to one multiply-add accumulator using the code 10 .

SIS has the following parameters: number of iterations of Algorithm 1, number of iterations of Algorithm 2, step size parameter γ in Algorithm 1, constraint bound parameter η used to control the sparsity, and relaxation parameter λ n ≡ λ of Algorithm 1. In our experiments, the maximum numbers of iterations of Algorithms 1 and 2 are set to 2000 and 1000, respectively. λ is set to 1.5 and γ is set to 0.1 for all the SIS experiments. η value depends on the network and dataset. With few experiments, we search for a good η value that gives suitable sparsity and accuracy.

VGG19 and ResNet50 on CIFAR-10/100. We train VGG19 on CIFAR-10 for 160 epochs with a batch size of 128, learning rate of 0.1 and weight decay of 5 × 10 -4 applied at epochs 81 and 122. A momentum of 0.9 is used with stochastic gradient descent (SGD). We make use of 1000 images per training class when using SIS. We finetune the identified sparse subnetwork for 10 epochs at a learning rate of 10 -3 . For CIFAR-100 we keep the same training hyperparameters as for CIFAR-10. When applying SIS to the dense network, we use 300 images per class from the training samples. We fine-tune the identified sparse subnetwork for 40 epochs on the training set with a learning rate of 10 -3 . ResNet50 employs the same hyperparameters as VGG19, except the weight decay that we set to 10 -4 . When applying SIS to train dense ResNet50, we use the same partial training set and the same hyperparameters during fine-tuning. In case of VGG19 for CIFAR-10 and CIFAR-100, we found that η values in range (1.5, 2) works best for sparsity range (90%, 98%). In case of ResNet50, η values in range (1, 2) is used.

ResNet50 on ImageNet We use the weights of ResNet50 pre-trained on ImageNet available at PyTorch hub 11 . When applying SIS to the dense pre-trained network we use 20% samples per class from the training set. We fine-tune the identified sparse subnetwork for 40 epochs on the training set with a learning rate of 10 -4 . We use different η values in range (0.7, 1.5) for sparsity range (60%, 90%). We found that η = 2.3 achieves 96.5% sparsity.

MobileNets on ImageNet

We use MobileNetV1 dense pre-trained model from here 12 and MobileNetV2 from PyTorch hub 13 . In case of MobileNetV3, we replace the hard swish activation function used in the original paper [START_REF] Howard | Searching for mobilenetv3[END_REF] with our QuadReLU function (see the last row of Table 1). We use hyperparameters provided in the original paper to train MobileNetV3. When applying SIS to the dense pre-trained MobileNets, we use 20% samples per class from the training set. We fine-tune the identified sparse subnetwork for 30 epochs on the training set with a learning rate of 10 -4 . For MobileNets, we search η values in range (0.6, 1.75) for sparsity range (75, 90).

Jasper on LibriSpeech A BxR Jasper network has B blocks, each consisting of R repeating sub-blocks. Each sub-block consists of 1D-Convolution, Batch Normalization, ReLU activation, and Dropout. The kernel size of convolutions increases with depth. The network has one convolution block at the beginning and three at the end. We train a network of 13 encoding blocks and one decoding block, having 54 1D-Convolution layers on the LibriSpeech dataset. The total number of parameters in our trained network is 333 million. Jasper network is trained on trainclean-100, train-clean-360, and train-other-500 splits of the LibriSpeech dataset [START_REF] Panayotov | Librispeech: An ASR corpus based on public domain audio books[END_REF]. The training configuration can be found here 14 . We use train-clean-100 when using SIS. We fine-tune the identified sparse subnetwork on the completed training set for ten epochs with a learning rate of 10 -4 . We use η values in range (0.6, 1.75) for sparsity range (70, 90).

Transformer-XL on WikiText-103 We train the Transformer-XL network (Dai et al., 2019b) on the base version of WikiText-103 [START_REF] Merity | Pointer sentinel mixture models[END_REF]. We use the training configuration available here 15 . We use 10% of the training set articles when using SIS. We use η values in range (0.5, 0.75) for sparsity range (40, 70).

N-BEATS on M4

We train the interpretable architecture network of N-BEATS on the M4 dataset. The trained network has six residual blocks. Each block consists of four fully-connected layers and two linear projection layers. With 24 fully-connected layers, this network has 14 million trainable parameters. To compare different methods, we only train a single network on a 48-hour window instead of 180 networks on different timescales. We use the training configuration available here 16 . The training set has 50K time-series samples. We use 10K training samples to generate a sparse sub-network using SIS. We use η values in range (0.75, 1.5) for sparsity range (70, 90).

LanguageModeling/Transformer-XL/pytorch/ wt103_base.yaml 16 https://github.com/ElementAI/N-BEATS/ blob/master/experiments/m4/interpretable. gin

 Figure 1. Effect of η on LeNet-FCN

Figure 2 .

 2 Figure 2. Convergence of SLIC: Top row coresponds to the first layer (ReLU activated) and bottom row corresponds to the last one (softmaxed) in LeNet-FCN. (a) and (d) show the evolution of the maximum value cmax of the constraint functions (cj) 1 j J , (b) and (e) show the evolution of W 1 along Algorithm 1 iterations. (c) and (f) show W 1 evolution in Algorithm 2.

Table 1 .

 1 otherwise Expression of proj ∂ϕ(υ) (ζ) for ζ ∈ R and υ in the range of ρ, for standard activation functions ρ. α is a positive constant.

	Dataset		CIFAR-10		CIFAR-100	
	Pruning ratio	90%	95%	98%	90%	95%	98%
	VGG19 (Baseline)	94.23	-	-	74.16	-	-
	SNIP (Lee et al., 2019)	93.63 93.43 92.05 72.84 71.83 58.46
	GraSP (Wang et al., 2020)	93.30 93.04 92.19 71.95 71.23 68.90
	SynFlow (Tanaka et al., 2020) 93.35 93.45 92.24 71.77 71.72 70.94
	STR (Kusupati et al., 2020)	93.73 93.27 92.21 71.93 71.14 69.89
	FORCE (Jorge et al., 2020)	93.87 93.30 92.25 71.9 71.73 70.96
	LRR (Renda et al., 2020)	94.03 93.53 91.73 72.12 71.36 70.39
	RigL (Evci et al., 2020)	93.47 93.35 93.14 71.82 71.53 70.71
	SIS (Ours)	93.99 93.31 93.16 72.06 71.85 71.17
	ResNet50 (Baseline)	94.62	-	-	77.39	-	-
	SNIP (Lee et al., 2019)	92.65 90.86 87.21 73.14 69.25 58.43
	GraSP (Wang et al., 2020)	92.47 91.32 88.77 73.28 70.29 62.12
	SynFlow (Tanaka et al., 2020) 92.49 91.22 88.82 73.37 70.37 62.17
	STR (Kusupati et al., 2020)	92.59 91.35 88.75 73.45 70.45 62.34
	FORCE (Jorge et al., 2020)	92.56 91.46 88.88 73.54 70.37 62.39
	LRR (Renda et al., 2020)	92.62 91.27 89.11 74.13 70.38 62.47
	RigL (Evci et al., 2020)	92.55 91.42 89.03 73.77 70.49 62.33
	SIS (Ours)	92.81 91.69 90.11 73.81 70.62 62.75

Table 2 .

 2 Test accuracy of sparse VGG19 and ResNet50 on CIFAR-10 and CIFAR-100 datasets.

Table 2

 2

	Sparsity		60%			80%			90%			96.5%	
		Train/Prune	Top-1	Infer	Train/Prune	Top-1	Infer	Train/Prune	Top-1	Infer	Train/Prune	Top-1	Infer
		FLOPs	Acc(%) FLOPs	FLOPs	Acc(%) FLOPs	FLOPs	Acc(%) FLOPs	FLOPs	Acc(%) FLOPs
		(×e16)			(×e16)			(×e16)			(×e16)		
	SNIP	0.978	74.06	1.88G	0.696	72.34	941M	0.537	66.97	409M	0.502	59.16	292M
	GraSP	0.903	75.95	1.63G	0.650	74.21	786M	0.555	70.71	470M	0.501	69.55	290M
	SynFlow	0.898	76.54	1.61G	0.665	74.14	776M	0.553	71.01	465M	0.500	70.10	288M
	FORCE	0.833	75.47	1.39G	0.619	73.42	685M	0.550	72.59	455M	0.497	72.04	276M
	SparseVD	1.827	76.75	1.71G	1.737	74.68	811M	1.702	69.73	461M	1.685	67.13	286M
	BC-GHS.	1.825	76.45	1.69G	1.737	74.15	813M	1.701	71.33	454M	1.684	68.54	282M
	L 0hc , λ = e -5 STR	1.825 0.891	76.98 77.75	1.69G 1.59G	1.736 0.625	76.67 76.11	802M 704M	1.702 0.516	71.61 75.72	459M 341M	1.684 0.449	68.61 71.87	276M 117M
	NetTrim	1.148	74.52	1.71G	0.866	72.88	842M	0.465	67.62	461M	0.283	62.01	281M
	SIS (Ours)	0.923	77.05	1.34G	0.435	76.96	647M	0.351	76.31	298M	0.102	73.11	101M

. It can be observed that LRR, RigL and SIS are able to maintain high accuracy with increasing sparsity. LRR performs better than both RigL and SIS for VGG19 on CIFAR-10 at 90% and 95%

Table 3 .

 3 Pruning phase compute cost, test Top-1 accuracy and single image inference FLOPs of sparse ResNet50 on ImageNet where baseline accuracy and inference FLOPs are 77.37% and 4.14G, respectively. All methods were applied on same pre-trained "dense" ResNet50. 20% samples per class were used during pruning phase of all the methods and were run for 40 epochs.

	sparsity. When compared to SNIP, our method achieves
	impressive performance for VGG19 on CIFAR-100 (58.46
	→ 71.17). In the case of ResNet50, SIS outperforms all the other methods for CIFAR-10/100 except for CIFAR-100 at
	90%.				
	Sparsity		75%			90%
		LRR	RigL SIS (Ours) LRR	RigL SIS (Ours)
	V1 (70.90)	68.79 69.97	70.11	66.59 67.10	67.15
	FLOPs (569M) 498M 461M	367M	401M 331M	284M
	V2 (71.88)	68.83 69.60	69.83	64.17 65.23	65.11
	FLOPs (300M) 267M 211M	182M	192M 174M	162M
	V3 (72.80)	68.97 70.21	70.47	64.32 65.13	66.07
	FLOPs (226M) 187M 198M	172M	185M 167M	151M

Table 4 .

 4 Test accuracy and inference FLOPs of sparse MobileNet versions using RigL and SIS on ImageNet, baseline accuracy and inference FLOPs shown in brackets.

Table 3

 3

	shows that, in the case
	of ResNet50, STR performs marginally better than SIS
	at 60% sparsity. At 80%, 90%, and 96.5% sparsity SIS
	outperforms all other methods. For all sparsity regimes,
	SIS achieves least inference FLOPs. Training FLOPs is
	best for SIS in 80%, 90%, and 96.5% regimes, FORCE
	achieves best training FLOPs in 60% regime. MobileNets
	are compact architectures designed specifically for resource-
	constrained devices. Table 4 shows results for RigL and

Table 5 .

 5 Test accuracy and inference FLOPs of JASPER, Transformer-XL, and N-BEATS at 70% sparsity.

Université Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique. Correspondence to: Sagar Verma <sagar.verma@centralesupelec.fr>. Proceedings of the 38 th International Conference on Machine Learning, PMLR 139,

Copyright 2021 by the author(s).

http://proximity-operator.net threshold value γ) of the input matrix elements. In turn, since the convex set C has an intricate form, an explicit expression of proj C does not exist. Finding an efficient method for computing this projection for large datasets thus constitutes the main challenge in the use of the above Douglas-Rachford strategy, which we will discuss in the next section.

https://github.com/google-research/rigl

https://github.com/lottery-ticket/

Acknowledgements J.-C. Pesquet would like to thank P. L. Combettes for fruitful discussions concerning the mathematical formulation of the problem. Part of this work was supported by Institut Universitaire de France and the ANR Research and Teaching Chair in Artificial Intelligence BRIDGEABLE.

https://sagarverma.github.io/compression

Leaky ReLU

(29) Since this function is differentiable on R, for every υ ∈ R,

Capped ReLU

We have thus, for every υ ∈ [0, α],

This leads to

This function being differentiable on ρ

QuadReLU Unlike the previous ones, this function does not seem to have been investigated before. It can be seen as a surrogate to the hard swish activation function, which is not a proximal activation function. Let us define

ϕ is a lower-semicontinuous convex function whose subdifferential is

From the definition of the proximity operator, for every

This shows that

In addition, for every υ ∈ [0, +∞[, it follows from Eq. (37) that the projection onto ∂f (υ) is

C. Softmax Activation

Let C denote the closed hypercube [0, 1] N , let V be the vector hyperplane defined as

and let A be the affine hyperplane defined as