
HAL Id: hal-03294530
https://hal.science/hal-03294530v1

Submitted on 21 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software-Defined Networking for Many-cores
Marcelo Ruaro, Kevin Martin, Fernando G Moraes

To cite this version:
Marcelo Ruaro, Kevin Martin, Fernando G Moraes. Software-Defined Networking for Many-cores.
Colloque du GdR SOC2, Jun 2021, Rennes, France. �hal-03294530�

https://hal.science/hal-03294530v1
https://hal.archives-ouvertes.fr

Software-Defined Networking for Many-cores
Marcelo Ruaro∗†, Kevin J. M. Martin∗, Fernando G. Moraes†

∗Univ. Bretagne-Sud, UMR 6285, Lab-STICC, Lorient, France – marcelo.ruaro@univ-ubs.fr , kevin.martin@univ-ubs.fr
†PUCRS – School of Technology, Porto Alegre, Brazil – fernando.moraes@pucrs.br

Abstract—In the Software-Defined Networking (SDN)
paradigm, routers are generic and programmable forwarding
units that transmit packets according to a given policy defined
by a software controller. Recent research has shown the
potential of such a communication concept for Network on
Chip (NoC) management, resulting in hardware complexity
reduction, management flexibility, real-time guarantees, and
self-awareness. This work briefly introduces the SDN concepts
for many-cores and shows different studies addressing SDN,
including a comparison between centralized and distributed
SDN approaches, as well as the use of SDN to self-adaptive
management of QoS and faults, and to provide secure application
communication at runtime.

I. INTRODUCTION

Software-Defined Networking (SDN) makes the NoC simple by
removing the communication control logic from the hardware level
(router), bringing it to the software level. An SDN Controller (Con-
troller) manages NoC path definition, enabling the NoC to support
new communication services, as QoS, power management, and fault-
tolerance (FT), by implementing them as controller’s software rules
rather than on dedicated hardware designs. Figure 1(a) shows an
example of a typical Processing Element (PE) architecture of a many-
core [1]. The NoC implements a Multiple Physical Network (MPN)
concept, with three disjoint subnets, and consequently, three routers
to implement each subnet. One Packet-Switching (PS) router allows
link sharing and is suitable for non-priority flows. SDN Routers
(SR) implement Circuit-Switching (CS) [2], supporting dedicated
paths configured by the controller, and making them suitable for
real-time flows. In this sense, PS paths act like roads, allowing
sharing best-effort packets, while CS paths (managed by SDN) act
like rails, supporting timing constrained packets. The number of SRs
is configurable. The SRs of MPN have a low design cost with one
SR requiring, on average, 25% of the area and power of a typical PS
router [3].

Figure 1(b) shows the steps to establish a dedicated path in an
SDN-based many-core. The controller can either run in dedicated
PE [4], or as a high priority task [3]. The controller abstracts the
network management to a system manager (M), which performs
application admission and task mapping. Due to such abstraction,
when M needs a path between a source (S) and a target (T)
communicating task, it performs a path request to the controller
(step 1). The controller searches the path guided by the network
status and its current management policies (step 2). The example
in Figure 1(b) explores a theoretical scenario where the controller
searches the shortest path between S and T, avoiding hot-spot areas
(in red) and faulty routers (router 3x3). After finding a path, the
controller physically configures the path (step 3) by sending a
configuration packet to the respective SR. The configuration packet
uses the PS subnet to reach the desired PE where the SR is located.
The NI (Network Interface) of that PE receives the configuration
packet by the SDN configuration logic (SCL), which handles the
packet and configures the respective SR. The configuration ends
when the controller configures all SR bellowing to the path. After
the configuration, the controller sends an acknowledgment packet to
M (step 4), which sets S and T to use the path (step 5) effectively.

0x1

0x2

0x3

1x0

1x1

1x2

S

2x0

2x1

2x2

2x3

3x0

3x1

3x2

3x3

4x0

4x1

T

4x3

0x4 1x4 2x4 3x4 4x4

Controller

M

0x1

0x2

0x3

1x0

1x1

2x0

2x1

3x0

3x1

3x3

4x0

4x1

T

0x4 1x4

3x22x21x2

M

1

Controller

2x3

2x4 3x4 4x4

4x3

2

3

4

S

PS
SR

SR

NI

LO
C

A
L

M
E

M
O

R
Y

CPU

Processing Element (PE)

Architecture

5

(b)

(a)

NI = Network Interface

PS = Packet-Switching router

SR = SDN Router

SCL = SDN Configuration Logic

Fig. 1. (a) SDN-based communication in an MCSoC. (b) Overview of the
Processing Element. Source: [1].

Table I presents related works on SDN for many-cores. There
is a noticeable increasing academic interest and recognition of this
subject. The lines filed in blue show the authors’ contributions for this
subject. The main motivation for investigating the SDN paradigm for
on-chip communication comes from its advantages over traditional
hardware-centered implementations [3], [5]–[7]:

Hardware complexity reduction: each SDN router implements a
simple hardware logic used only to support the router’s configuration
and packet forwarding [3]. There is no need to implement the logic
for routing and arbitration of packets or another kind of control like
power, QoS, and FT. Less hardware means less area, power, and
lower temperature, helping against the dark silicon effect;

Management flexibility: due to software implementation, the
SDN allows for changing and updating policies that define the routing
path without the necessity to design a new circuit [8];

Real-time guarantees: SDN combined MPNs, allows for a ded-
icated path for each real-time application flow, thus ensuring QoS
through communication isolation [9];

Multi-objective management: SDN allows multi-objective man-
agement due to its panoramic overview of the NoC status. Different
adaptive and management goals can be implemented and managed
by the controller, which can decide to configure the NoC at runtime
to fulfill real-time application needs of system budgets [10].

II. DISTRIBUTED SDN
One of the big challenges of SDN is regarding the scalability to

search and configure paths at runtime. In [14], the authors proposed
a cluster-based approach, where one controller is in charge of a
cluster of PEs instead the whole systems. Controllers work in parallel
for local (intra-cluster) paths. For global (inter-cluster) paths, the
controllers execute a synchronization protocol inspired by VLSI
routing, with global and detailed routing phases.

TABLE I
STATE-OF-THE-ART WORKS OF SDN FOR MANY-CORES.

Work Year Organization Objective Model

[11] 2014 At router level Architecture Noxim
[12] 2016 Centralized Architecture Noxim
[3] 2017 Centralized Architecture RTL
[8] 2017 Centralized Architecture OMNET++
[13] 2017 Centralized Architecture RTL
[6] 2018 At PE level Power Mininet
[5] 2018 Centralized QoS RTL
[7] 2018 Centralized Architecture RTL
[9] 2019 Centralized QoS RTL
[14] 2019 Distributed Scalability RTL
[1] 2020 Distributed Security RTL
[15] 2020 Distributed Security RTL
[10] 2020 Distributed Faults+QoS RTL

Figure 2 evaluates the scalability of the approach, by varying
the system size and the number of SDN routers (CSn) inside a
PE. Figure 2(a) presents the total latency: time to establish the
maximum number (worst-case) of simultaneous paths into the system.
The distributed SDN (D-SDN) values are normalized in relation to
centralized (C-SDN). In summary, the C-SDN presents a better total
latency for smaller systems, on average, lower than 256 PEs, while
D-SDN outperforms C-SDN for the larger system sizes.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

36 603 1170 1737 2304

T
o

ta
l

la
te

n
cy

 (
N

O
R

M
.)

Processing Elements

C-SDN

CSn=1, D-SDN

CSn=2, D-SDN

CSn=4, D-SDN

CSn=6, D-SDN

0

20

40

60

80

100

120

140

160

180

36 603 1170 1737 2304

A
v
g

.
 s

et
u

p
 l
at

en
cy

 (
K

cy
cl

es
)

Processing Elements

CSn=1,D-SDN
CSn=1,C-SDN
CSn=2,D-SDN
CSn=2,C-SDN
CSn=4,D-SDN
CSn=4,C-SDN
CSn=6,D-SDN
CSn=6,C-SDN

(a) (b)

Fig. 2. Comparison between D-SDN and C-SDN.

Figure 2(b) presents the average setup latency (ASL) per path. For
system sizes below 1024 PEs on average, it is possible to observe
that the D-SDN presents a higher ASL. Note that the C-SDN ASL
increases with the system size, due to the larger path search space.
This result unveils that SDN can be adopted in larger systems by
distributing the management role/load among controllers.

III. SDN FOR QOS AND FAULTS

This experiment evaluates the multi-objective adaptation using
SDN, handling QoS and fault-tolerance simultaneously. Figure 3(a)
shows an MPEG application mapping, where blue arrows represent
the communication between MPEG tasks. Red arrows represent
disturbing flows and the two red rays faulty CS routers. Figure 3(b)
presents the MPEG iteration latency measured at the output task.
The communication between tasks starts in PS mode. As there is no
disturbing traffic, the NoC can meet latency threshold. At 800,000 cc,
disturbing flows start, generating an increase in the iteration latency
(t1 in Figure), and consequently, triggering a CS setup for the affected
MPEG flows At 936,116 cc, the MPEG flows communicate using CS
mode, restoring its QoS constraint.

At 1,800,000 cc, faults occur at CS routers in the cores executing
ivlc and idct tasks, which makes the controller to switch the affected
flows to PS mode. As the disturbing traffic is still active, the iteration
latency increases, generating latency misses and making the controller
to setup CS again (t2 in Figure). As the controller is aware about the
faulty CS routers, it sets CS using different subnets than previously.
After 1,984,991 cc, all affected flows of MPEG meet the QoS
constraint latency by using CS.

output

idct

input

iquant

ivlc

output

idct

input

iquant

ivlc

(a) (b)

Fig. 3. (a) MPEG mapping with disturbing flows, and faulty CS routers; (b)
MPEG iteration latency. Source: [10].

IV. SDN FOR SECURITY

Authors in [1] present a systemic and secure SDN framework
(SDN-SS). The work describes the iteration between the hardware,
operating system, and user’s tasks to serve a data-sensitive application
for dedicated and secure paths. The originality of SDN-SS includes
(i) a step-by-step framework description addressing the phases re-
quired to support a secure SDN management; (ii) a secure SDN
router configuration protocol; (iii) a protocol to change the subnet
at runtime. Experimental results show the framework’s capability to
avoid DoS and spoofing attacks while presenting a low SDN router
configuration overhead, corresponding up to 2% of a related work
delay and a small impact over the user’s task communication.

V. CONCLUSION

This paper presents an overview of the possibilities in exploiting
SDN for many-cores. The SDN is a new open-topic and as demon-
strated by results can contribute to reach a scalable and runtime multi-
objective management at communication level.

REFERENCES

[1] M. Ruaro, L. L. Caimi, and F. G. Moraes, “A systemic and secure sdn
framework for noc-based many-cores,” IEEE Access, 2020.

[2] S. Liu, A. Jantsch, and Z. Lu, “MultiCS: Circuit switched NoC with
multiple sub-networks and sub-channels,” Journal of Systems Architec-
ture, 2015.

[3] M. Ruaro, H. M. Medina, and F. G. Moraes, “Sdn-based circuit-
switching for many-cores,” in ISVLSI, 2017.

[4] S. Ellinidou, G. Sharma, T. Rigas, T. Vanspouwen, O. Markowitch, and
J. Dricot, “Sspsoc: A secure sdn-based protocol over mpsoc,” Security
and Communication Networks, 2019.

[5] A. Kostrzewa, S. Tobuschat, and R. Ernst, “Self-aware network-on-chip
control in real-time systems,” IEEE Design Test, 2018.

[6] A. Scionti, S. Mazumdar, and A. Portero, “Towards a Scalable Software
Defined Network-on-Chip for Next Generation Cloud,” Sensors, 2018.

[7] M. Ruaro, H. Medina, A. Amory, and F. Moraes, “Software-Defined
Networking Architecture for NoC-based Many-Cores,” in ISCAS, 2018.

[8] K. Berestizshevsky, G. Even, Y. Fais, and J. Ostrometzky, “Sdnoc: Soft-
ware defined network on a chip,” Microprocessors and Microsystems,
2017.

[9] M. Ruaro, A. Jantsch, and F. G. Moraes, “Self-Adaptive QoS Manage-
ment of Computation and Communication Resources in Many-Cores
SoCs,” ACM Transaction on Embedded Computing Systems, 2018.

[10] M. Ruaro and F. G. Moraes, “Multiple-objective management based on
a distributed sdn architecture for many-cores,” in SBCCI, 2020.

[11] L. Cong, W. Wen, and W. Zhiying, “A configurable, programmable and
software-defined network on chip,” in WARTIA, 2014.

[12] R. Sandoval-Arechiga, R. Parra-Michel, J. L. Vazquez-Avila, J. Flores-
Troncoso, and S. Ibarra-Delgado, “Software Defined Networks-on-Chip
for multi/many-core systems: A performance evaluation,” in ANCS,
2016.

[13] A. Fathi and K. Kia, “A Centralized Controller as an Approach in
Designing NoC,” International Journal of Modern Education and Com-
puter Science, 2017.

[14] M. Ruaro, N. Velloso, A. Jantsch, and F. G. Moraes, “Distributed sdn
architecture for noc-based many-core socs,” in NOCS, 2019.

[15] M. Ruaro, L. L. Caimi, and F. G. Moraes, “Sdn-based secure application
admission and execution for many-cores,” IEEE Access, 2020.

