Marcelo Ruaro
email: marcelo.ruaro@univ-ubs.fr

Kevin J M Martin
email: kevin.martin@univ-ubs.fr

Fernando G Moraes
email: fernando.moraes@pucrs.br

Software-Defined Networking for Many-cores

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

I. INTRODUCTION

Software-Defined Networking (SDN) makes the NoC simple by removing the communication control logic from the hardware level (router), bringing it to the software level. An SDN Controller (Controller) manages NoC path definition, enabling the NoC to support new communication services, as QoS, power management, and faulttolerance (FT), by implementing them as controller's software rules rather than on dedicated hardware designs. Figure 1(a) shows an example of a typical Processing Element (PE) architecture of a manycore [START_REF] Ruaro | A systemic and secure sdn framework for noc-based many-cores[END_REF]. The NoC implements a Multiple Physical Network (MPN) concept, with three disjoint subnets, and consequently, three routers to implement each subnet. One Packet-Switching (PS) router allows link sharing and is suitable for non-priority flows. SDN Routers (SR) implement Circuit-Switching (CS) [START_REF] Liu | MultiCS: Circuit switched NoC with multiple sub-networks and sub-channels[END_REF], supporting dedicated paths configured by the controller, and making them suitable for real-time flows. In this sense, PS paths act like roads, allowing sharing best-effort packets, while CS paths (managed by SDN) act like rails, supporting timing constrained packets. The number of SRs is configurable. The SRs of MPN have a low design cost with one SR requiring, on average, 25% of the area and power of a typical PS router [START_REF] Ruaro | Sdn-based circuitswitching for many-cores[END_REF].

Figure 1(b) shows the steps to establish a dedicated path in an SDN-based many-core. The controller can either run in dedicated PE [START_REF] Ellinidou | Sspsoc: A secure sdn-based protocol over mpsoc[END_REF], or as a high priority task [START_REF] Ruaro | Sdn-based circuitswitching for many-cores[END_REF]. The controller abstracts the network management to a system manager (M), which performs application admission and task mapping. Due to such abstraction, when M needs a path between a source (S) and a target (T) communicating task, it performs a path request to the controller (step 1). The controller searches the path guided by the network status and its current management policies (step 2). The example in Figure 1(b) explores a theoretical scenario where the controller searches the shortest path between S and T, avoiding hot-spot areas (in red) and faulty routers (router 3x3). After finding a path, the controller physically configures the path (step 3) by sending a configuration packet to the respective SR. The configuration packet uses the PS subnet to reach the desired PE where the SR is located. The NI (Network Interface) of that PE receives the configuration packet by the SDN configuration logic (SCL), which handles the packet and configures the respective SR. The configuration ends when the controller configures all SR bellowing to the path. After the configuration, the controller sends an acknowledgment packet to M (step 4), which sets S and T to use the path (step 5) effectively. Table I presents related works on SDN for many-cores. There is a noticeable increasing academic interest and recognition of this subject. The lines filed in blue show the authors' contributions for this subject. The main motivation for investigating the SDN paradigm for on-chip communication comes from its advantages over traditional hardware-centered implementations [START_REF] Ruaro | Sdn-based circuitswitching for many-cores[END_REF], [START_REF] Kostrzewa | Self-aware network-on-chip control in real-time systems[END_REF]- [START_REF] Ruaro | Software-Defined Networking Architecture for NoC-based Many-Cores[END_REF]:

Hardware complexity reduction: each SDN router implements a simple hardware logic used only to support the router's configuration and packet forwarding [START_REF] Ruaro | Sdn-based circuitswitching for many-cores[END_REF]. There is no need to implement the logic for routing and arbitration of packets or another kind of control like power, QoS, and FT. Less hardware means less area, power, and lower temperature, helping against the dark silicon effect;

Management flexibility: due to software implementation, the SDN allows for changing and updating policies that define the routing path without the necessity to design a new circuit [START_REF] Berestizshevsky | Sdnoc: Software defined network on a chip[END_REF];

Real-time guarantees: SDN combined MPNs, allows for a dedicated path for each real-time application flow, thus ensuring QoS through communication isolation [START_REF] Ruaro | Self-Adaptive QoS Management of Computation and Communication Resources in Many-Cores SoCs[END_REF];

Multi-objective management: SDN allows multi-objective management due to its panoramic overview of the NoC status. Different adaptive and management goals can be implemented and managed by the controller, which can decide to configure the NoC at runtime to fulfill real-time application needs of system budgets [START_REF] Ruaro | Multiple-objective management based on a distributed sdn architecture for many-cores[END_REF].

II. DISTRIBUTED SDN

One of the big challenges of SDN is regarding the scalability to search and configure paths at runtime. In [START_REF] Ruaro | Distributed sdn architecture for noc-based many-core socs[END_REF], the authors proposed a cluster-based approach, where one controller is in charge of a cluster of PEs instead the whole systems. Controllers work in parallel for local (intra-cluster) paths. For global (inter-cluster) paths, the controllers execute a synchronization protocol inspired by VLSI routing, with global and detailed routing phases.

Work Year Organization

Objective Model [START_REF] Cong | A configurable, programmable and software-defined network on chip[END_REF] 2014 At router level Architecture Noxim [START_REF] Sandoval-Arechiga | Software Defined Networks-on-Chip for multi/many-core systems: A performance evaluation[END_REF] 2016 Centralized Architecture Noxim [START_REF] Ruaro | Sdn-based circuitswitching for many-cores[END_REF] 2017 Centralized Architecture RTL [START_REF] Berestizshevsky | Sdnoc: Software defined network on a chip[END_REF] 2017 Centralized Architecture OMNET++ [START_REF] Fathi | A Centralized Controller as an Approach in Designing NoC[END_REF] 2017 Centralized Architecture RTL [START_REF] Scionti | Towards a Scalable Software Defined Network-on-Chip for Next Generation Cloud[END_REF] 2018 At PE level Power Mininet [START_REF] Kostrzewa | Self-aware network-on-chip control in real-time systems[END_REF] 2018 Centralized QoS RTL [START_REF] Ruaro | Software-Defined Networking Architecture for NoC-based Many-Cores[END_REF] 2018 Centralized Architecture RTL [START_REF] Ruaro | Self-Adaptive QoS Management of Computation and Communication Resources in Many-Cores SoCs[END_REF] 2019 Centralized QoS RTL [START_REF] Ruaro | Distributed sdn architecture for noc-based many-core socs[END_REF] 2019 Distributed Scalability RTL [START_REF] Ruaro | A systemic and secure sdn framework for noc-based many-cores[END_REF] 2020 Distributed Security RTL [START_REF] Ruaro | Sdn-based secure application admission and execution for many-cores[END_REF] 2020 Distributed Security RTL [START_REF] Ruaro | Multiple-objective management based on a distributed sdn architecture for many-cores[END_REF] 2020 Distributed Faults+QoS RTL Figure 2 evaluates the scalability of the approach, by varying the system size and the number of SDN routers (CSn) inside a PE. Figure 2(a) presents the total latency: time to establish the maximum number (worst-case) of simultaneous paths into the system. The distributed SDN (D-SDN) values are normalized in relation to centralized (C-SDN). In summary, the C-SDN presents a better total latency for smaller systems, on average, lower than 256 PEs, while D-SDN outperforms C-SDN for the larger system sizes. Figure 2(b) presents the average setup latency (ASL) per path. For system sizes below 1024 PEs on average, it is possible to observe that the D-SDN presents a higher ASL. Note that the C-SDN ASL increases with the system size, due to the larger path search space. This result unveils that SDN can be adopted in larger systems by distributing the management role/load among controllers.

III. SDN FOR QOS AND FAULTS

This experiment evaluates the multi-objective adaptation using SDN, handling QoS and fault-tolerance simultaneously. Figure 3(a) shows an MPEG application mapping, where blue arrows represent the communication between MPEG tasks. Red arrows represent disturbing flows and the two red rays faulty CS routers. Figure 3(b) presents the MPEG iteration latency measured at the output task. The communication between tasks starts in PS mode. As there is no disturbing traffic, the NoC can meet latency threshold. At 800,000 cc, disturbing flows start, generating an increase in the iteration latency (t1 in Figure), and consequently, triggering a CS setup for the affected MPEG flows At 936,116 cc, the MPEG flows communicate using CS mode, restoring its QoS constraint.

At 1,800,000 cc, faults occur at CS routers in the cores executing ivlc and idct tasks, which makes the controller to switch the affected flows to PS mode. As the disturbing traffic is still active, the iteration latency increases, generating latency misses and making the controller to setup CS again (t2 in Figure). As the controller is aware about the faulty CS routers, it sets CS using different subnets than previously. After 1,984,991 cc, all affected flows of MPEG meet the QoS constraint latency by using CS.

IV. SDN FOR SECURITY

Authors in [START_REF] Ruaro | A systemic and secure sdn framework for noc-based many-cores[END_REF] present a systemic and secure SDN framework (SDN-SS). The work describes the iteration between the hardware, operating system, and user's tasks to serve a data-sensitive application for dedicated and secure paths. The originality of SDN-SS includes (i) a step-by-step framework description addressing the phases required to support a secure SDN management; (ii) a secure SDN router configuration protocol; (iii) a protocol to change the subnet at runtime. Experimental results show the framework's capability to avoid DoS and spoofing attacks while presenting a low SDN router configuration overhead, corresponding up to 2% of a related work delay and a small impact over the user's task communication.

V. CONCLUSION

This paper presents an overview of the possibilities in exploiting SDN for many-cores. The SDN is a new open-topic and as demonstrated by results can contribute to reach a scalable and runtime multiobjective management at communication level.

 Interface PS = Packet-Switching router SR = SDN Router SCL = SDN Configuration Logic

Fig. 1 .

 1 Fig. 1. (a) SDN-based communication in an MCSoC. (b) Overview of the Processing Element. Source: [1].

Fig. 2 .

 2 Fig. 2. Comparison between D-SDN and C-SDN.

Fig. 3 .

 3 Fig. 3. (a) MPEG mapping with disturbing flows, and faulty CS routers; (b) MPEG iteration latency. Source: [10].

TABLE I STATE

 I -OF-THE-ART WORKS OF SDN FOR MANY-CORES.