
HAL Id: hal-03294504
https://hal.science/hal-03294504

Submitted on 21 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two real-time applications of quantum computing for
the evaluation of WCETs

Gabriella Bettonte, Stéphane Louise, Renaud Sirdey

To cite this version:
Gabriella Bettonte, Stéphane Louise, Renaud Sirdey. Two real-time applications of quantum comput-
ing for the evaluation of WCETs. Compas2021, Jul 2021, Lyon (online), France. �hal-03294504�

https://hal.science/hal-03294504
https://hal.archives-ouvertes.fr

Compas’2021 : Parallélisme / Architecture/ Système/ Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

Two real-time applications of quantum computing for the
evaluation of WCETs
Gabriella Bettonte, Stéphane Louise, Renaud Sirdey

Université Paris-Saclay,
CEA List - Palaiseau - France
gabriella.bettonte@cea.fr , stephane.louise@cea.fr , renaud.sirdey@cea.fr

Abstract
While the interest in quantum computing is constantly rising, the design of quantum algo-
rithms suitable for real applications is still in its infancy. We hereby investigate the issues of
worst-case execution times (WCETs) which are fundamental for the validation of real-time sys-
tems in which all time constraints must be met. Since the cache handling in non-deterministic
sequence of memory accesses impacts substantially on the execution time, we use it as a case
study to design quantum algorithms meant to improve the static analysis of cache misses on
programs performing random accesses to the memory and in programs where preemption is
allowed. Cache misses are connected to the execution time of a program : for in-order proces-
sors, the worst-case execution time is tied to the path with the highest amount of cache misses.

Key words : Calcul quantique, pire temps d’exécution, préemptions, applications temps
réel

1. Introduction

The evaluation of worst-case execution-times (WCETs) on real-time applications plays a im-
portant role in the validation of real-time systems. It is a requirement that all time constraints
are met to ensure the validity of a system but, at the same time, there exists the risk of building
an over-engineered, and thus too expensive, system. In other words, a trade-off between pre-
cision and efficiency must be reached in the evaluation of WCETs. Quantum computing could
bring benefits for this purpose because of its intrinsic parallelism that can boost computations
but this also comes with a caveat : one must identify precisely the problems where quantum
computing can bring real advantages. In this paper we show two applications of quantum com-
puting applied in the evaluation of WCETs. The first is an evaluation of WCETs in a sequence
of memory accesses with some random accesses where usually a classical approach performs
poorly. In the second application, the WCETs are evaluated in a deterministic sequence of me-
mory accesses that can be preempted at any time, representing a difficult problem because of
its low predictability.

2. Background overview

In our discussion we use concepts from quantum computing and cache memories, which we
briefly overview in this section.

Compas’2021 : Parallélisme / Architecture/ Système/ Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

2.1. On quantum computing
Classic computers rely on bits, that are deterministic : they can be either on (in the state 0) or
off (in the state 1). In contrast, qubits (short for quantum bits) have the capacity of being in a
superposition of |0〉 and |1〉 (in Dirac notation 1). More precisely,

ψ := α |0〉+ β |1〉 , | α |2 + | β |2= 1, with α,β ∈ C (1)

A part of the interest that quantum computing arises, comes from the ability of qubits to gene-
rate states of superposition that reflect all the possible outcomes of a given algorithm, up until
a measurement is done, which is usually at the end of the algorithm. This property is called
“quantum parallelism” and could theoretically give a massive performance boost for quantum
algorithms. However the advantages of quantum computing is not without caveats : only some
classes of problems can be solved by quantum computing with a significant gain in terms of
efficiency with respect to classical computing. Indeed, one important research issue related to
quantum computing is defining with precision those kinds of problems [10].
To give an idea of the momentum the scientific community gives to quantum computing [3], the
Quantum Algorithm Zoo [1] (at the time of writing) cites 430 papers and counting on quantum
algorithms, and enterprises such as Google, IBM or Rigetti Computing are investing a lot of re-
sources on research on quantum technologies. Among all quantum algorithms we can identify
two main important blueprints. The first one is defined by quantum algorithms able to reach
an exponential speedup over classical algorithms on precisely defined and heavily structured
mathematical problems, as e.g. Shor’s algorithm for integer factorization. The second one is de-
fined by quantum algorithms with a polynomial speedup over classical ones, as e.g. Grover’s
algorithm for searching an unstructured array. Still, a lot of questions remain open about the
real world applications and benefits of quantum computing [7].

2.2. On cache memory and WCETs
Real-time systems are computer systems for which processing outcomes must also meet ti-
ming constraints which otherwise would jeopardize the real-time system or its environment,
potentially including the life of human beings. With respect to the verification of this kind of
systems, the evaluation of a WCET for programs and tasks is an important issue. In this context,
the behavior of cache memories has usually the most significant impact on the execution-time
of programs and must be taken into consideration while evaluating worst-case performance.
Cache memories are used to address the problem represented by the so-called memory wall :
the gap between the speed of processors and the memory latencies increases by an order of
magnitude every few years. The solution, largely applied since the ’80s, has been to add little
amounts of high-speed memory close to the processing parts –the cache memories– to provide
faster access to a local copy of often or recently used values in memory, thus speeding up the
average access time to memory.
The data accessed – and data close to accessed location, to exploit the principle of locality – are
copied into the cache memory. The position of the copy inside the cache memory is decided
by several parameters including its so-called associativity A –which determines the number of
lines in which a particular copy of the memory can reside– size, and replacement policy.

1. Bra-ket, or Dirac, notations denote state vectors in quantum mechanics. |0〉 and |1〉 are two orthogonal base
state vectors that denote the observable states of a qubit.

Compas’2021 : Parallélisme / Architecture/ Système/ Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

3. Applications

In this section we present two applications where quantum computing has the potential to be
beneficial for the evaluation of WCETs. It is worth noting that the two patterns of work are not
yet fully explored but they are the seeds of our future work.

3.1. Sequences of random memory accesses
We consider programs that perform non deterministic accesses to the memory, using the count
of cache misses as a first proxy evaluation 2 of the WCET (or as the literature calls it, the Cache
memory related delay). A“dual” approach has already been explored in the literature, with papers
about applying static analysis techniques to quantum algorithms to evaluate their performance
[6, 2]. Instead, the applications of quantum computing to improve the static analysis of cache
misses (and more largely to static analysis problems at all) has still, to the best of our know-
ledge, to be fully explored.
We designed an algorithm that, using a quantum-inspired formalism, builds a superposition of
all the possible sequences of memory accesses. The superposition produced by the algorithm
is suitable to be used as input for a yet to be determined quantum algorithm that will boost the
speed-up, allowing to count the worst number of cache misses with increased efficiency (i.e.
using less time) with regards to the classical equivalent.
We consider evaluating the WCET with respect to a simple model of program that considers
only a sequential sequence of memory accesses, some of which are deterministic, and others
non deterministicly chosen from a given subset of memory addresses. We study in the fol-
lowing the case of a direct mapped cache memory (i.e. a block of the main memory can be
mapped only to a specific block/line of the cache memory).
Despite its simplicity, this non-deterministic model of program we study in this paper is dif-
ficult to statically analyze for the evaluation of WCET with classical algorithms 3. Indeed, the
non-deterministic memory accesses produce a large set of possible execution paths for which a
non exhaustive analysis can result in a large overestimation of the WCET.

3.1.1. Our algorithm : an overview
The sequence of memory accesses performed by the program, contains non-deterministic ac-
cesses which our quantum algorithm superposes in order to take into account, in one execution,
the number of cache misses for each possible paths. Our final goal, which is still beyond the
scope of this paper, is to design an algorithm that returns (with non negligible probability) the
largest number of cache misses over every paths, which should give important hints about the
WCET for in-order processors. Since the program performs some non-deterministic accesses to
the memory there exist multiple possible linear sequences. Our goal is to exploit the quantum
parallelism for computing a superposition of the total number of cache misses over each pos-
sible execution path. It is not difficult to produce a superposition of all the possible elements
that can be chosen by means of a small network of Hadamard gates, in the example section we
will give an hint on how it is possible in practise. For every access to the memory in each pos-
sible sequence of accesses, the algorithm checks if a cache miss or hit occurs and modifies the
cache’s content accordingly : after a cache miss, the accessed element is added to the cache to its
assigned place while after a cache hit the cache state does not change (since it is direct-mapped,

2. This is true especially for in-order execution for which the execution-time grows monotonically with the
number of memory cache misses.

3. It is worth noting that despite its apparent simplicity any single-threaded program is amenable to our mo-
del, by replacing at relevant points in the execution, accesses on different branches of the control-flow graph by a
corresponding number of non-deterministic accesses.

Compas’2021 : Parallélisme / Architecture/ Système/ Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

every element has a unique possible position into the cache).
We designed a circuit Q that checks if a cache miss occurred, takes note of it and creates a new
cache state that contains the considered element. It is worth noting that we have to create a new
cache state instead of updating the previous one to maintain the reversibility of the quantum
circuit. The circuitQ is the concatenation of the circuitsM andN below. The miss operatorM
is designed to evaluate if the requested data is available in the cache (cache hit) or the program
has to access to the main memory (cache miss). The inputs of the miss operator are the accessed
data element, the actual state of the cache and a qubit b to store the result : at the beginning
b = |0〉, while, after the application of the miss operator, the qubit b will be in the state |1〉 if a
cache miss occurred or be left to the state |0〉 if a cache hit occurred. The operator “Next” N is
built to create a new cache state from the previous one. The inputs of the “Next" operator N
are : the accessed data element, the current state of the cache and the new state of the cache. It is
required to repeat theQ circuit as many times as the number of accesses the program performs
after the first non-deterministic access). The picture in the appendix represents the main flow
of the algorithm. In this figure two iterations of the algorithm are represented. The number of
qubits required to represent the considered access or cache state is indicated on the right. As
result of the previous steps, we have m cache misses wires (i.e. qubits) : the wires associated
to a cache miss are in the state |1〉 while the wires associated to a cache hit are in the state |0〉.
As final step, we can use one of the many quantum sum operators in the literature, e.g. [5], to
perform the sum of the qubits : the obtained value, plus the cache misses we counted before
the first non-deterministic access, is the total number of memory-cache misses of the sequence
we are considering. The largest value of the total number of cache misses for each possible path
can be tied to an estimation of the (cache-related) WCET for the program considered in the case
of in-order processors.

3.1.2. Example
We consider a 1-way associative cache with 2 lines. We suppose to have this sequence of
accesses :ABABE∗AE∗ where E∗ = {E, F}. This means we have four deterministic accesses
(A,B,A, B,A) and two non-deterministic accesses (E∗ can be either E or F). We encode the four
possible elements we can access to as α0α1.

A 00 B 01 E 10 F 11

We need 4 qubits to store the state ~s of the cache : ~s = s00s01s10s11.

~si =

{
1 if α is in the cache
0 otherwise

.

In our example we have four possible situations that can happen : ABABEAE, ABABEAF,
ABABFAE and ABABFAF.
At the beginning there are only deterministic accesses : we have 2 cache misses (A,B) and 2
cache hits (A,B).

0000 1000 1100 · · ·

+1 +1

access to A access to B

cache miss

access to A

cache miss

Compas’2021 : Parallélisme / Architecture/ Système/ Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

· · · 1100 1100

+0 +0

access to A access to B

cache hit cache hit

We apply the Hadamard gate on the second qubits to build a superposition of E and F.
We provide some details of the miss operator M for our example to give an insight of our
algorithm.

|α | ~s | b〉 −→ |α | ~s | b⊕miss(α,~s)〉 (2)

where α is the access, ~s the cache state and b the target qubit. In particular :

miss(α,~s) = mA ∨mB ∨mE ∨mF (3)

More precisely,me = 1 if we are accessing to the element e and it is not into the cache.
The number of (non-auxiliary) qubits needed by the operatorM for our example is (2+ 4+ 1) :

3.2. Deterministic memory accesses sequences with preemption
Preemption is the act of interrupting one task to allow the execution of another task on a ma-
chine. The advantage is allowing the operating system to allocate the processor to urgent tasks.
In particular, in fully preemptive systems, the running task can be interrupted at any time by
another task with higher priority and be resumed to continue when all higher priority tasks
have completed [4]. When the task is preempted, a large number of memory blocks belonging
to the task are flushed away from the cache memory. When the preempted task resumes its exe-
cution, a substantial amount of time is spent to reload the cache with the previously displaced
memory blocks, leading to a great increase of the task execution time [8].Preemption damages
program locality and therefore it causes a degradation of system predictability, making WCETs
more difficult to characterize and predict [11] [8] [4]. The total increase of the WCETs of a task
is also a function of the total number of preemptions experienced. The usual approach to eva-
luate WCETs in case of preemption relies on the analysis of NP-problems i.e. finding the actual
points of preemption. With our algorithm we want to avoid the NP- problem because even if
we would obtain a decreased execution time, since it would be an exponential order of magni-
tude we would obtain again an exponential time, being very useful in real-world application.

3.2.1. Our algorithm : an overview
We take into consideration the example of one task producing a deterministic sequence of ac-
cesses preempted a fixed number of times k. The approach in [9] evaluates the WCETs (that
is what interests engineers having to design real-time applications) avoiding to compute the
exact point of preemptions and obtaining a speed-up. Following this idea, we are working on
building a superposition of all the possible sequences of memory accesses to evaluate their exe-
cution time at once, in a similar way as the one described in the first application. In parallel,
We are developing another approach with the aim of improving the precision, by finding the
point of preemption. Being this a NP-problem, as mentioned before, for now we are considering
very simple sequences of memory accesses. We designed a dynamic programming algorithm
that given the sequence of memory accesses and the number of preemption K finds the "opti-
mal" solution, i.e. the minimum number of cache hit and thus the worst-case scenario. We are
working on a quantum version of this algorithm, building a superposition on the possible num-
bers of preemption k ′, where k ′ < K. This dynamic programming algorithm, has a polynomial

Compas’2021 : Parallélisme / Architecture/ Système/ Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

complexity, but developing a quantum version of it we should obtain a decreased complexity,
being a valuable result.

4. Conclusion

This paper aims to show the state of our research project until now, and both the applications
we described are still work in progress. In the first application we built the superposition of
memory accesses sequences but we still need to find a way to exploit its potential to obtain a
valuable speed-up in the execution time. In particular, we need to build an oracle (black box)
able to amplify the coefficient of the searched sequence (i.e. the one with the highest number
of cache misses). In the second application we proposed two different approaches. In the first
one we want to obtain a speed up of the computation of WCETs for the preempted sequence
of memory accesses, by avoiding to actually find the points of preemption. In this case we still
need to build the superposition, but the operators will probably be similar to the one presen-
ted for the first application. The second path privileges precision over efficiency, meaning that,
on very simple sequences of memory accesses we want to find the points of preemption. To
achieve that, we are building the superposition on the number of preemptions, but then we
will have to rely on a quantum searching algorithm, such as Grover’s algorithm, to actually
isolate the solution with the desired number of preemptions. Both the applications we presen-
ted in this paper are paths of works that have the ambition of becoming two fully developed
contributions in the next months.

Bibliography

1. The quantum algorithm zoo. http://math.nist.gov/quantum/zoo/.
2. Abhari (A. J.), Patil (S.), Kudrow (D.), Heckey (J.), Lvov (A.), Chong (F. T.) et Martonosi.

(M.). – Scaffcc : a framework for compilation and analysis of quantum computing pro-
grams. In Proc. 11th ACM Conf. on Computing Frontiers., 2014.

3. Bravyi (S.), Gosset (D.), König (R.) et et al. – Quantum advantage with noisy shallow cir-
cuits. Nat. Phys., 2020.

4. Buttazzo (G.), Bertogna (M.) et Yao (G.). – Limited preemptive scheduling for real-time
systems. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 1, 2013.

5. Cherkas (A.) et Chivilikhin (S.). – Quantum adder of classical numbers. Journal of Physics :
Conference Series, 2016.

6. Facon (A.), Guilley (S.), Lec’Hvien (M.), Schaub (A.) et Souissi (Y.). – Detecting cache-timing
vulnerabilities in post-quantum cryptography algorithms. IEEE 3rd International Verification
and Security Workshop, 2018.

7. Hall (R. J.). – A quantum algorithm for software engineering search. Proceedings of the 2009
IEEE/ACM Int. Conf. on Automated Software Engineering, 2009.

8. Lee et al. – Analysis of cache-related preemption delay infixed-priority preemptive sche-
duling. IEEE Trans. Comput., 1998.

9. Louise (S.). – A first step toward using quantum computing for low-level wcets estimations.
ACM Trans. Archit. Code Optim., 2019.

10. Nielsen (M. A.) et Chuang (I. L.). – Quantum Computation and Quantum Information. – Cam-
bridge University Press, 2000.

11. Ramaprasad (H.) et Mueller (F.). – Tightening the bounds on feasible pre-emption points.
27th IEEE Real-Time Syst. Symp. (RTSS’06), 2006.

http://math.nist.gov/quantum/zoo/

	Introduction
	Background overview
	On quantum computing
	On cache memory and WCETs

	Applications
	Sequences of random memory accesses
	Our algorithm: an overview
	Example

	Deterministic memory accesses sequences with preemption
	Our algorithm: an overview

	Conclusion

