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Abstract

A new algorithm for the identification of the permanent magnetization of ferro-

magnetic sheets is proposed. From magnetic measurements close to the ferro-

magnetic material, the magnetization distribution is reconstructed. The forward

problem involves an integral formulation based on the interpolation of the flux

density in the sheet, leading to a linear matrix system linking the magnetization

to the measurements. The inverse problem is solved with a balanced singular

values decomposition in order to stabilize the solution. The effectiveness of the

method is demonstrated using both a numerical test case and an experimental

validation.

Keywords: Magnetization identification, magnetostatic inverse problem,

volume integral method, thin magnetic shell

1. Introduction

Defense ships and submarines are made of steels which is a ferromagnetic

material. Steel acquires a magnetization in the combined presence of the earth’s

magnetic field and the water pressure (magneto-elasticity effect). The steel

magnetization generates a magnetic signature around the ship, that may lead to5

its destruction by magnetic mines or to its localization by aircrafts embedding
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high accuracy magnetic sensors. To control the magnetic risk, it is essential

to accurately identify the ship magnetization, and then to compensate for the

associated signature by adjusting currents flowing in degaussing coils installed

in the ship. This paper proposes a new identification algorithm to enable a ship10

to self-determine its own magnetization during navigation and thus achieve a

closed loop degaussing system.

A magnetic sheet, which represents the ship hull, has two kinds of magne-

tization. The induced one is the reversible magnetic reaction of the material

to an inductor field (i.e. the earth’s magnetic field). Induced magnetization15

is deterministic: it is easily computed as the magnetic constitutive law of the

material and the ship geometry are generally well known. The case of the per-

manent magnetization is more problematic because it depends on the magnetic

history of the sheet, which is impossible to know and model. As we have no

idea of this history, the permanent magnetization state determination requires20

the use of external magnetic measurements made on magnetic sensors, placed

close to the hull on-board the ship as well as the solving of an inverse problem.

Many works dealing with magnetization identification can be found in the

literature aiming to reconstruct magnetization of magnetic rollers [1], electrical

machine magnets [2] and also navy ship hulls [3, 4, 5, 6]. In most of these25

works, the forward problem is formulated thanks to an integral relation linking

the magnetization to the magnetic field produced in air on an external sensor.

The magnetic region is meshed in finite elements. A set of shape functions is

chosen on this mesh to approximate the unknown magnetization distribution.

The integral equation is discretized leading to a linear equation linking the field30

in the air on one sensor to the magnetization degrees of freedom. By setting

several magnetic sensors around the magnetic region, a linear matrix system is

obtained which form the inverse problem. The inverse problem being ill-posed,

some regularization techniques or additional information have to be used in

order to ensure the uniqueness and the stability of the solution.35

In order to interpolate the magnetization, 0-order vector shape functions

can be used like in the well-known Magnetic Moments Method (MMM). With
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such an interpolation, magnetization of volume regions has been reconstructed

for 2D [1] or 3D [2] problems. For ferromagnetic sheet, a similar approach

has been extended to the identification of the tangential components of the40

magnetization [4]. An alternative can be the use of the scalar magnetic potential

as the unknown quantity on the surface region [5].

All these formulations of the inverse problem are obviously ill-posed. The

Tikhonov’s regularization is often used in order to stabilize the solution but

the choice of the weighting parameter is always a difficulty [1, 3]. To avoid the45

problem of choosing a regularization parameter, it has been proposed to reduce

the solution searching space by introducing the constitutive magnetic law of the

material in the inverse formulation and by using a singular value decomposition

(SVD) in order to solve the linear matrix system [4]. This approach has shown

a very good efficiency with only a limited number of sensors but located not50

too close from the hull. This limitation is an important drawback because

for a closed-loop degaussing system, on-board sensors are mainly placed very

close to the hull. This poor efficiency for close measurements can be associated

to the lack of accuracy of MMM which is based on 0-order shape functions

for the magnetization and leads to artificial numerical singularity of the field55

in the vicinity of the sources. Another way to solve the inverse problem is

to formulate it as a non-linear constrained optimization problem. The use of

the adjoint variable method enables the determination of equivalent charges or

dipoles located on the mesh of the hull and then to get a model of the permanent

magnetization [6, 7]. These methods have been validated for sensors far from the60

shell but nothing has been demonstrated with close measurements. Moreover,

a regularization process is still needed.

This paper proposes a new inversion method based on a forward integral

formulation recently proposed in (Ref. [8]). It has been demonstrated that this

integral formulation is very accurate even if the field has to be computed really65

close to the sheet because the magnetization is considered as linear on surfaces

element. This point is a great advantage compared to our former forward model

used in (Ref. [4]) where the magnetization is uniform in each element, generating
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important numerical inaccuracies close to the shell and constraining the sensor

mapping. It will be shown in the following that the new inversion process leads70

to accurate results with only a few sensors located close to the magnetized struc-

ture and without the choice of any empirical regularization parameter. Once the

new method efficiency demonstrated with a numerical example, experimental

measurements made close to a physical mock-up (hollow ferromagnetic cylinder)

will validate the inversion process and show how the approach can be applied75

to the evaluation of magnetic anomaly created by navy ships or submarines in

order to reduce the risk of detection or de-struction by magnetic mines.

This paper is structured as follows: the second part is dedicated to the

forward modelling. The third part will introduce the resolution of the inverse

problem. The fourth part will present both numerical and experimental results.80

The paper will end with conclusions.

2. Forward Modelling

The integral forward formulation of the magnetostatic problem is detailed

in (Ref. [8]) but the most points are reminded in this section. Let us consider

a magnetic problem composed of a nonconductive ferromagnetic region Ω with

a reluctivity ν and placed in a static low-level inductor magnetic field H0. The

level of the inductor field being low, it is classical to assume that the magnetic

material is linear. Let us assume that the magnetic material has a permanent

magnetic state, which can be represented by a coercive field Hc. The constitu-

tive equation linking the total field H to the induction B is:

H = νB−Hc. (1)

In the whole domain, the total field can be written as the sum of H0 and

the reduced field Hred due to the magnetization M, which is the total magne-

tization. The reduced field Hred derives from a scalar reduced potential φred.

H = H0 + Hred = H0 −∇φred. (2)
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Applying the Helmholtz decomposition, an integral expression for the scalar

potential φred is obtained:

φred = − 1

4π

∫
Ω

M ·∇GdΩ, (3)

where G is the standard 3D Green’s function (i.e. the inverse of the distance

between the point where the scalar potential is expressed and the integration

point) and M is the magnetization of the material such as M = (ν0 − ν) B+Hc.

Equations (1) and (2) combined with the integral expression of φred (3) lead to

the magnetostatic integral equation with the induction B as state variable [9]:

νB− 1

4π

∫
Ω

((ν0 − ν) B + Hc) ·∇GdΩ = H0 + Hc. (4)

In the case of a magnetic sheet, the approximation of thin element simplifies

a volume problem into a surface one by considering that the magnetic induction

in the active region is uniform across the thickness and is tangential to the

sheet. In (Ref. [8]), it has been shown that it is appropriate to interpolate

B with Whitney 2-form shape functions (also known as face shape functions)

and to express it with a linear combination of magnetic flux ΦB flowing in the

sheet through the equivalent faces of the meshed surface (i.e. the edges of the

equivalent surface elements). Equation (4) needs to be completed in order to

enforce the free-divergence of the flux. A solution is to express (4) in the basis of

independent flux loops ΦBI . Let us note P the incidence matrix linking the flux

flowing in each face of the mesh to the independent ones. Applying a Galerkin’s

projection method to (4), a linear system of equations whose unknowns are

independent fluxes is achieved.

P

R 0

0 L

Pt ΦBI = P

U

0

 , (5)

where R ∈ Rnf×nf , U ∈ Rnf×1, L ∈ Rne×ne , P ∈ R(nf+ne)×nBI , ΦBI ∈

RnBI×1, nf is the number of facet element (i.e. edge of the surface mesh ele-

ments), ne is the number of surface elements and nBI is the number of inde-

pendent fluxes. Expressions of the matrix terms are:

Rij =
1

e

∫
S

νwi ·wj dS, (6)
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Lij =
1

4π

ν0 − ν
SeiSej

∫
Sei

∫
Sej

GdSei dSej , (7)

Ui =

∫
S

wi · (H0 + Hc) dS

+
1

4π

1

Sei

∑
j

∫
Sei

∫
Sej

∆HcnG dSei dSej , (8)

where S is the averaged geometric surface representing the ω volume region, e is

the thickness of the sheet, Sei is the surface of the element i, νj is the reluctivity

of element j, wi is the face shape function associated to edge i on the mesh and85

∆Hcn is the jump of the normal component of the coercive field between two

adjacent elements. It can be noted that the last double integral term in (8) can

be neglected considering that the cross-section of the shell is much smaller than

the other dimensions. Thus, the matrix system (5) can be rewritten in a more

compact expression:90

MΦBI = SH0 + SHc , (9)

where M ∈ RnBI×nBI , SH0
∈ RnBI×1 and SHc

∈ RnBI×1.

Let us remind that in the forward problem (9), both coercive and inductor

fields are known as well as the reversible reluctivity of the material. However, in

the context of an inverse problem, the point of view is different. The inductor

field as well as the reversible permeability are known but the magnetic state in95

a null inductor field is unknown. In other words, Hc has to be determined for

each element of the mesh and considered as an unknown of the problem. This

is why external magnetic measurements have to be added in order to provide

additional information to the system.

3. Inverse Problem Formulation100

An equation linking the flux distribution in the shell to the induction mea-

sured on external magnetic sensors has to be added. The magnetic field in air
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is [8]:

Bsensor = ∇
∫
S

(
1− ν

ν0

)
∇S ·BGdS + B0, (10)

where Bsensor is the induction measured on a magnetic sensor located in the

vicinity of the ferromagnetic body and B0 = µ0H0. ∇S · is the surface diver-105

gence. By subtracting B0 (which is known) to the measured induction, the

measurement of the induction generated by the shell Bmes is obtained. Equa-

tion (10) can also be discretized considering the independent fluxes flowing in

the shell as unknowns. The following matrix system[8] is derived:

Bmes = AΦBI , (11)

where Bmes ∈ RnBmes×1, A ∈ RnBmes×nBI and nBmes
being the number of110

available measurements. The computation of the derivative of the Green’s kernel

in (10) has to be achieved carefully since the distance between the measurement

point and the integration point is very small. A solution consists in using

analytical expressions. This method ensures to compute the field very close to

the hull with a good accuracy.115

Let us notice that most references dealing with magnetization identification

proposes to solve (11) directly with a regularization process [1, 3] without taking

into account the ”internal” magnetic behavior of the material included in (9).

Solving only (11) is equivalent to considering that the field sources are related

to each other. However, the information included in (9) is important and must120

be taken into account.

Let us remember that Hc is an unknown of the problem. To determine it

numerically, an interpolation function space has to be selected. A good choice

can be also the face shape functions. Thus, the last term in (9) can be replaced

by the product of a matrix N and the unknowns ΦHc
associated to Hc explicit,125

leading to a new matrix system (12) which replaces (9).

MΦBI −NΦHc = SH0 , (12)
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where N ∈ RnBI×nf .

By combining (11) and (12) and after some algebra, the final matrix system

with ΦHc
as unknown is obtained:

AM−1NΦHc =
(
Bmes −AM−1SH0

)
, (13)

ZΦHc = T. (14)

System (14) is a more compact writing of (13). It must be pointed out130

that (14) includes both the information from the magnetic measurement and

the magnetic behavior of the material. The solution of (14) is non-unique, the

system being underdetermined since the number of equations is far smaller than

the number of unknowns, due to a limited experimental set of measurement

values. The singular value decomposition makes it possible to compute the135

Moore-Penrose pseudo-inverse Z+ of Z [10]:

ΦHc
= Z+T. (15)

The condition number of the Z matrix is the ratio between the highest

and the lowest singular values. The higher is the ratio the worst is the condi-

tioning. Before solving (14), a ”row and column” balancing [11] is applied to

equilibrate the influence of each magnetization sources on the induction mea-140

surements. Mathematically, it consists in dividing each element of the columns

by the norm of the concerned column, the same operation being also proceeded

for the lines. Several iterations of this process make it possible to improve the

condition number of the matrix Z. This process can be seen as a preconditioning

technique. If this preconditioning technique is not enough efficient, the principle145

of the spectrum truncation can be used [10]: it consists in removing the smallest

singular values in order to limit the influence of the numerical noise.
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4. Validations and Results

4.1. Numerical Validation

In order to validate the algorithm, a test configuration is proposed. A square150

ferromagnetic plate is considered and a permanent magnetization is applied

as follows. Firstly, a material with an anhysteretic reluctivity νa and a null

coercive field is placed in a homogenous inductor field H01 = (1, 1, 0) (A/m).

Its magnetic state is computed by solving (9), leading to (H,B). Then, for each

element, equation (1) is solved locally, considering the reversible reluctivity νrev155

in order to compute the Hc field for each element. In a second step, (9) is

solved again with a new inductor field H02 = (1, 0, 0) (A/m) and the previously

computed Hc field in order to get a complex magnetic state mixing permanent

and reversible magnetizations. The numerical measurements are generated with

(10) on four tri-axis sensors located at the four corners of the plate (Fig. 1).160

Figure 1: Test case: Iron sheet mesh and inversion test configuration (dimensions: 1m×1m,

thickness: 2mm, number of elements: 440, number of unknowns: 760, 4 tri-axis sensors

represented by white dots located at 5 cm from the sheet). The extrapolated field is computed

on the red dashed line. Left: mesh and sensors location. Right: Non trivial Hc distribution

(A/m) to reconstruct.

The purpose of the test is to solve the inverse problem from the numerical
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measurements and to identify the magnetic state of the sheet. The problem

is strongly underdetermined because only 12 equations (4Ö3 components for

the measured induction) should enable the determination of 760 unknowns.

Firstly, the system (15) is solved with a simple balanced SVD without spectrum165

truncation. Figure 2 shows the result of the identified repartition of Hc.

Figure 2: Irregular identified Hc distribution obtained by solving (14) with a balanced SVD.

The solution has major spatial irregularities that are clearly unrealistic.

The result obtained is very unsatisfying. In fact, the Hc distribution identi-

fied is highly irregular and differs strongly from the expected distribution repre-

sented in Fig. 1. The problem being underdetermined, the solution is naturally

non-unique and (15) leads to a flux distribution that fits magnetic measurements170

but without physical sense. Classically, a solution would be to use a Tikhonov’s

regularization but an alternative approach is proposed here.

Mathematically, the SVD returns the solution with the minimal norm. So,
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the previous solution is the minimal Hc fluxes flowing through the shell which fit

the measurements. This minimal flux solution does not make sense physically.175

A better option would be to opt for a solution that ensures the flux regularity.

At this stage, it is therefore necessary to change the unknowns of the problem.

Let us consider the surface divergence of the coercive field on the shell such as:

∇S ·Hc = QHc
. (16)

Note that the divergence can be computed naturally because it is associated

with a field of vectors interpolated with face shape function. QHc
is then asso-180

ciated to a 0-order scalar distribution on the mesh and is equivalent to a charge

distribution by analogy with Gauss’s law. Thanks to the integral form of (16),

we can interpret QHc as the flux of Hc escaping from the shell. The surface

divergence operator can be seen as an incidence matrix linking the fluxes flowing

through the facet elements (so in the shell) to the flux escaping in the air. It is185

possible to pseudo-invert this incidence matrix to get a new expression of the

inverse problem:

QHc
=
[
Z∇+

S

]+
T. (17)

As previously, the SVD returns the admissible solution having the mini-

mal norm. Thus equation (17) leads to a solution that fits external magnetic

measurement but also minimizes the QHc distribution i.e. the permanent flux190

leaving the shell (and not the flux flowing in the shell as obtained with (15)).

This process acts as a regularization technique but without weighting param-

eter. Its interest is demonstrated in Fig. 3. The obtained solution is smooth

and physical. A good way to quantify the quality of the inversion is to compute

and compare magnetic signatures obtained on a line at 0.5m in front of the195

sheet (see Fig. 1, red dashed line). The magnetic field is computed with (10).

The results obtained are presented in Fig. 4. The target field (solid line, no

marker) is computed with the real initial magnetization and the predicted field

(dashed line, diamond markers) is computed with the identified magnetization.
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Both curves are very close to each other attesting that the magnetization has200

been correctly predicted. The error is defined as the norm of the difference

between the real value and the extrapolated value divided by the max of the

real value for each component. The mean error is around 1 % for all induction

components (see Tab. 1). Let us notice that the proposed test case is a quite

difficult one because the geometry presents high peak effects at the four corners205

of the plate. However, the algorithm tested with only 4 tri-axis sensors (i.e. 12

measurement equations compared to the 760 unknowns) remains very good in

terms of performance.

Figure 3: Smooth and acceptable identified Hc using fictive charge inversion based on the

solution of (17).
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Table 1: Computed errors of the reconstructed induction.

X component Y component Z component

max error (%) 2.25 2.26 1.65

mean error (%) 0.42 1.02 0.45

4.2. Experimental Validations

4.2.1. Description of the measurement set-up210

An experimental set-up has been developed to validate the identification

algorithm. A hollow ferromagnetic cylinder (0.5m long, 59mm of external

radius, 2mm of thickness) filled with hydraulic oil, is subjected to an internal

pressure up to 10MPa, driven by an external pump. The cylinder is wound to

allow its demagnetization (Fig. 5). Fourteen Fluxgate biaxial magnetic sensors215

are arranged 1 cm far from the steel on 2 lines. This set of sensors consists

of 7 vertical cores, 7 transverse cores and 14 longitudinal cores (Fig. 6). The

prototype is placed in a large magnetic field simulator that has been designed

to create any field from zero up to 70µT in various directions thanks to a tri-

axial set of coils, driven by current generators. The cylinder is mounted on a220

trolley driven over a pair of rails by an electrical motor along the longitudinal

direction. It allows magnetic signature measurements on a [−1.7m, 1.7m] line

on two fixed magnetic sensors (Fig. 7): sensor S1 is located at 10 cm below the

axis of the cylinder (”near field” extrapolation), sensor S2 is placed further, at

1m (”far field” extrapolation).225

This set-up has been developed in order to study magneto-elastic effects i.e.

the variation of the permanent magnetization versus the combined effect of a

low magnetic inductor field and a high-pressure acting on the steel [12]. Conse-

quently, the conferred permanent state is relevant to illustrate the phenomenon

undergone by submarine hulls.230
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4.2.2. Permanent longitudinal magnetization

The cylinder is initially demagnetized. Then an axial uniform magnetic in-

duction of 40µT is applied with the field simulator and the mock-up is subjected

to an internal pressure of 10MPa. Finally, the pressure is decreased to zero.

After such a process, the cylinder gets a permanent longitudinal magnetization235

that can be determined by using the proposed identification method. In order

to check if the magnetic state has been correctly identified, the total induc-

tion is then extrapolated and compared to the magnetic signature measured on

sensor S1. Two identification and extrapolation algorithms have been tested

and compared. The first one, proposed a few years ago, is based on an inverse240

MMM [4]. As already mentioned, this algorithm suffers from some inaccuracies

if sensors are located too close from the sheet, as it is the case in the presented

experimental set-up. The second method is the new approach proposed in this

paper. Results are presented in Fig. 8.

For the MMM, although the trend is quite respected, the amplitude is clearly245

underestimated. The maximum of the error is 40 %. Additional numerical tests

have shown that twice as many sensors are needed to reduce the error and

achieve good anomaly prediction. The results obtained with the new method

are much better. Both curves match, the mean error is less than 1 %. The

identified Hc looks fine and is shown in Fig. 9. These results demonstrate the250

efficiency of the proposed method.

4.2.3. Composed magnetization identification

In a second experimentation, a more complex magnetic state identification

is proposed. The cylinder is initially demagnetized. Then it is placed in a

combination of an axial induction of 20µT and a vertical one of 40µT . The255

cylinder is subjected to an internal pressure of 10MPa and then reduced to zero.

It gets a permanent magnetization along both the vertical and longitudinal

directions, as shown on the reconstructed Hc (Fig. 10). The field can be

extrapolated at a further distance (sensor S2) and compared to the measured

value (Fig. 11).260
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Results are also very satisfying for the identification of a more complex mag-

netization state. Extrapolated and measured fields are in very good accordance

even if the signature level is very low (below 100nT at 1m). The maximal error

computed is about 10 % and the mean value is under 4 %. This last validation

demonstrates the efficiency of the approach.265

5. Conclusion

A new magnetization identification algorithm based on near magnetic field

measurements has been proposed. It has been applied to thin magnetic shells,

described as equivalent surfaces. The approach consists in the inversion of an

integral method based on the face interpolation of flux flowing within the shell.270

The key points of the method is the introduction of the constitutive material law

in the problem and the choice of the coercive field flux as unknown. The inverse

linear problem being ill-posed, a surface divergence operator has been used to

change the unknowns into equivalent magnetic charges (sources of permanent

flux getting out of the shell). The problem becomes better-posed and can be275

solved by a simple balanced singular value decomposition without using any

regularization technique. The efficiency of the approach has been demonstrated

thanks to an experimental set-up dedicated to the study of magneto-elasticity

effects, image of the ones undergone by a submarine hull. Consequently, the

algorithm is well adapted in order to predict magnetic anomaly created by the280

ferromagnetic hull of a submarine but the method can be applied in many other

areas where local permanent magnetization determination of ferromagnetic ma-

terial is required.
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Figure 4: Comparison of magnetic induction components (X,Y and Z) on a line located

at 0.5m from the sheet – target induction (solid line, no marker) and predicted induction

(dashed line, diamond markers).
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Figure 5: Hollow ferromagnetic cylinder filled by pressurized oil, with its degaussing windings.
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Figure 6: Mechanical support presenting the ”on-board” magnetic sensors set up at 1 cm

from the cylinder used to predict the magnetization. The cylinder does not appear on the

picture. The 14 sensors are distributed along 2 lines.
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Figure 7: Cylinder mounted on the trolley with its 14 ”on-board” magnetic sensors and the

2 magnetometers used for magnetic signature acquisition during the cylinder motion.

21



Figure 8: Longitudinal and vertical magnetic induction components on a line located at

10 cm below the device (sensor S1) – comparison between measured induction (solid line,

no marker) and predicted induction by our former [4] (dashed line, circle markers) and new

algorithms (dashed line, diamond markers) for a longitudinal permanent magnetization. The

reference x = 0 (m) for the position is the middle of the cylinder.
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Figure 9: Reconstructed coercive field Hc inside the cylinder for the longitudinal magneti-

zation identification.

Figure 10: Reconstructed coercive field Hc inside the cylinder for the composed magnetiza-

tion identification.
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Figure 11: Longitudinal and vertical magnetic induction components on a line located at

1m below the device (sensor S2) – comparison between measured induction (solid line, no

marker) and predicted induction (dashed line, diamond markers) for a composed permanent

magnetization with both longitudinal and vertical components.
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