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A concise proof of the Riemann Hypothesis is presented by clarifying the Hadamard product expansion over the zeta zeros, then demonstrating conclusively that the Riemann Hypothesis is true. Subsequently, based on the Heaviside function a unifying analysis of the prime-counting function is presented and its relation to the zeta function is developed via the Laplace transform and the residue theorem. Furthermore, new s-domain definitions of the prime-counting function and the Chebyshev function are developed, revealing a profound relationship to the zeta function. Additionally, an accurate zero-counting function exhibiting the expected step function behaviour is established and the relation to the primes is revealed. The paper encompasses a new paradigm shift with a fresh perspective from the s-domain.

1. Introduction. In his landmark paper in 1859, Bernhard Riemann [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF] hypothesized that the non-trivial zeros of the Riemann zeta function ζ(s) all have a real part equal to 1 2 . Major progress towards proving the Riemann hypothesis was made by Jacques Hadamard in 1893 [START_REF] Hadamard | Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann[END_REF], when he showed that the Riemann zeta function ζ(s) can be expressed as an infinite product expansion over the non-trivial zeros of the zeta function. In 1896 [START_REF] Hadamard | Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques[END_REF], he also proved that there are no zeros on the line (s) = 1.

The Riemann Hypothesis is the eighth problem in David Hilbert's list of 23 unsolved problems published in 1900 [START_REF] Hilbert | Mathematische Probleme[END_REF]. There has been tremendous work on the subject since then, which has been illustrated by Titchmarsh (1930) [START_REF] Titchmarsh | The Theory of the Riemann Zeta Function[END_REF], Edwards (1975) [START_REF] Edwards | Riemann's Zeta Function[END_REF], [START_REF] Ivic | The Riemann Zeta Function[END_REF] [START_REF] Ivic | The Riemann Zeta Function[END_REF], and [START_REF] Karatsuba | The Riemann Zeta-Function Berlin[END_REF] [START_REF] Karatsuba | The Riemann Zeta-Function Berlin[END_REF]. It is still regarded as one of the most difficult unsolved problems and has been named the second most important problem in the list of the Clay Mathematics Institute Millennium Prize Problems (2000), as its proof would shed light on many of the mysteries surrounding the distribution of prime numbers [START_REF] Bombieri | Problems of the millennium: The Riemann Hypothesis[END_REF][START_REF] Sarnak | Problems of the Millennium: The Riemann Hypothesis[END_REF].

The Riemann zeta function is a function of the complex variable s, defined in the half-plane (s) > 1 by the absolutely convergent series and in the whole complex plane by analytic continuation [START_REF] Bombieri | Problems of the millennium: The Riemann Hypothesis[END_REF]. The Riemann hypothesis is concerned with the locations of the non-trivial zeros of ζ(s), and states that: the non-trivial zeros of ζ(s) have a real part equal to 1 2 [START_REF] Bombieri | Problems of the millennium: The Riemann Hypothesis[END_REF]. In this paper, the truth of the Riemann Hypothesis is demonstrated by employing the Hadamard product of the zeta function and clarifying the principal zeros for the product expansion. The process is outlined in a less abstract form, to be accessible for a wider audience.

Furthermore, based on the Riemann Hypothesis proof, new concise and accurate results have been obtained for the prime-counting function and the zero-counting function. These were achieved by utilizing techniques; that included the Heaviside function, Dirac delta function, the Laplace transform, Mittag-Leffler's theorem, and the residue theorem. Such novel application of these techniques provided concise and elegant solutions both in the x-domain and the s-domain, revealing profound connections between the prime-counting function, the zero-counting function, as well as the interrelation with primes and zeta zeros. Which I hope will furnish another angle to address prime computations, primality testing, and prime factorization.

2. The Riemann Hypothesis.

2.1. Principal Zeros of the Zeta Function. For the case of the Riemann zeta function ζ(s), it has been shown, by Riemann [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF], that the zeta function satisfies the following functional equation

(2.1) ζ(s) = 2 s π s-1 sin πs 2 Γ(1 -s)ζ(1 -s),
where the symmetrical form of the functional equation is given as

(2.2) π -s 2 Γ( s 2 )ζ(s) = π 1-s 2 Γ( 1-s 2 )ζ(1 -s).
We note that ζ(s) has zeros at s = s m = σ m + it m , s = sm = σ m -it m , and s = -2m with m = 1, 2, 3, . . . . Many assume, from the functional equation (2.2) for ζ(1 -s), that s = 1-s m and s = 1-sm are also zeros of zeta. Nevertheless, the principal zeros of ζ(s) are determined only by using the pure argument s in ζ(s); hence, the principal zeros are only at s = s m , s = sm , and s = -2m. Therefore, the sums and products of ζ(s) should only be over the zeros s = s m , s = sm , and s = -2m, whenever appropriate, contrary to the usual statement that "the infinite product is understood to be taken in an order which pairs each root ρ with the corresponding root 1 -ρ" [START_REF] Edwards | Riemann's Zeta Function[END_REF] p.39. For clarity, I have rephrased the statement to "the ζ(s) infinite product is understood to be taken in an order which pairs each root s m with the corresponding conjugate root sm "; the difference is minor though the impact is tremendous. Now, the locations of the non-trivial zeros are determined by considering the Euler product of ζ(s) over the set of the prime numbers {2, 3, 5, . . . , p m , . . . }, given by

(2.3) ζ(s) = p 1 1 -1 p s
, which shows that ζ(s) does not have any zeros for (s) > 1, and by the functional Equation (2.1), no zeros for (s) < 0; save for the trivial zeros at s = -2m, due to the sin( πs 2 )Γ(1 -s) term. Jacques Hadamard (1896) [START_REF] Hadamard | Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques[END_REF] and Charles Jean de la Vallée-Poussin [START_REF] De La Vallée-Poussin | Recherches analytiques sur la théorie des nombers premiers[END_REF] independently proved that there are no zeros on the line (s) = 1. In addition, considering the functional equation and the fact that there are no zeros with a real part greater than 1, it follows that all non-trivial zeros must lie in the interior of the critical strip 0 < (s) < 1. [START_REF] Hardy | The zeros of Riemann's zeta-function on the critical line[END_REF] [START_REF] Hardy | The zeros of Riemann's zeta-function on the critical line[END_REF] have shown that there are infinitely many non-trivial zeros s m on the critical line s = 1 2 +it. We note that the non-trivial principal zeros of ζ(s) are located only in the strip 

< (s) ≤ 1 2 .
Although this is a minor definition clarification, it is critical in proving the Riemann Hypothesis. This has been overlooked, as 1-s m = sm for all the known zeros; thus, the product or sum over the zeros (1 -s m ) is the same as the product or sum over sm for the first ten trillion known zeros [13]. 2.2. Sums and Products for Zeta Function. In this section, the sum over the principal poles of a reciprocal function of zeta is developed based on Mittag-Leffler's theorem, in order to showcase the linkage to the Hadamard product over the principal zeros of zeta, by considering a normalized function of ξ(s) given by (2.4)

σ t σ = 1 2 σ = 1 σ = 0 s m ζ(s) ζ(1 -s) The Critical Strip sm 1 -sm 1 -s m
f (s) = 2ξ(s) = ζ(s)(s -1)sΓ( s 2 )π -s 2 ,
which is an entire function with

f (s) = f (1 -s), f (1) 
= f (0) = 1, and has principal zeros only at s = s m and s = sm . Thus, the ζ(s) infinite product is understood to be taken in an order which pairs each root s m with the corresponding conjugate root sm . Now, taking the log, we have (2.5) ln f (s) = ln 2 + ln ξ(s) = ln ζ(s) + ln(s -1) + ln s + ln Γ( s 2 ) -s 2 ln π. Differentiating, we have

(2.6) f (s) f (s) = ξ (s) ξ(s) = ζ (s) ζ(s) + 1 (s -1) + 1 s + Γ ( s 2 ) Γ( s 2 ) -1 2 ln π, which gives (2.7) f (0) f (0) = ln 2π -1 -1 2 γ -1 2 ln π.
Note that f (s) f (s) has simple poles at the same zeros of ξ(s) (i.e., the poles are at s = s m and s = sm ). Now, using Mittag-Leffler's theorem for the sum over the poles of the function

f (s) f (s) , we obtain ζ (s) ζ(s) + 1 (s -1) + 1 s + Γ ( s 2 ) Γ( s 2 ) =[ln 2π -1 -1 2 γ] + ∞ m=1 1 (s -s m ) + 1 s m + 1 (s -sm ) + 1 sm .
(2.8)

Integrating Equation (2.8) and taking the antilog, we have

(2.9) ζ(s)(s -1)sΓ( s 2 ) = e [ln 2π-1-1 2 γ]s ∞ m=1 1 - s s m e s sm 1 - s sm e s sm ,
which was proved by Hadamard [START_REF] Hadamard | Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann[END_REF]. Note the 1 2 ln π term canceled out, as it appears on both sides of the equation.

Also, using Mittag-Leffler's theorem for the following function (2.10)

F (s) = f (s) f (s) s =⇒ F (0) = 0, thus, we have (2.11) ζ (s) ζ(s) + 1 (s -1) + 1 s + Γ ( s 2 ) Γ( s 2 ) -1 2 ln π = ∞ m=1 1 (s -s m ) + 1 (s -sm )
.

Integrating and taking the antilog, we have

(2.12) ζ(s)(s -1)sΓ( s 2 )π -s 2 = ∞ m=1 1 - s s m 1 - s sm ; that is, (2.13) 2ξ(s) = ζ(s)(s -1)sΓ( s 2 )π -s 2 = ∞ m=1 1 - s(2σ m -s) s m sm ,
which was given by Riemann [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF], in a logarithmic form with minor difference from the modern definition of ξ(s). He set s = 

ζ(s) = ζ(1 -s) = 0.
From Equation (2.17), we can obtain the set M of all trivial zeros of ζ(s) (i.e., M = {-2, -4, . . . , -2m, . . . }, where m is a positive integer) and, from Equation (2.18), we can obtain another independent set S of all non-trivial zeros of ζ(s), S = {s 1 , s 2 , . . . , s m , . . . }, with s m = σ m ± it m , where 1 2 ≤ σ m < 1, t m are real numbers, and i is the imaginary unit. Now, by Equation (2.13), we have

(2.19) 2ξ(s) = ζ(s)(s -1)sΓ( s 2 )π -s 2 = ∞ m=1 1 - s(2σ m -s) s m sm ,
and, considering the case of the limit when s → 1, we have

(2.20) lim s→1 [ζ(s)(s -1)]Γ( 1 2 )π -1 2 = ∞ m=1 1 - (2σ m -1) s m sm . It is well-known that lim s→1 ζ(s)(s -1) = 1 and Γ( 1 2 ) = π 1 2 .
Therefore, Equation (2.20) becomes

(2.21) 1 = ∞ m=1 1 - (2σ m -1) s m sm ,
and since

(2.22)

1 2 ≤ σ m < 1 for all the principal non-trivial zeros (s m = σ m ± it m ) of ζ(s), it implies that (2.23) 0 ≤ (2σ m -1) < 1.
Therefore, Equation (2.21) is true only when (2σ m -1) = 0, which requires that σ m = 1 2 for all the non-trivial zeros of ζ(s). This concludes the proof of the Riemann Hypothesis that: the real part of every non-trivial zero of the Riemann zeta function is σ m = 1 2 . Also, the proof can be stated in a concise form as (2.24)

∵ ζ(s)(s -1)sΓ( s 2 )π -s 2 = ∞ m=1 1 - s(2σ m -s) s m sm & 1 2 ≤ σ m < 1 ,     lim s→1     s = 1 ∴ 1 = ∞ m=1 1 - (2σ m -1) s m sm = =⇒ (2σ m -1) = 0 =⇒ σ m = 1 2 .
To validate the result, with σ m = 1 2 , Equation (2.19) can be restated as

(2.25) 2ξ(s) = ζ(s)(s -1)sΓ( s 2 )π -s 2 = ∞ m=1 1 - s(1 -s) s m sm ,
from which we see that the right hand side of Equation (2.25) is unchanged when s is replaced by (1 -s), obtaining the expressions for ζ(1 -s) and ξ(1 -s) as

(2.26) 2ξ(1 -s) = ζ(1 -s)s(s -1)Γ( 1-s 2 )π -1-s 2 = ∞ m=1 1 - s(1 -s) s m sm .
Therefore, Equations (2.25) and (2.26) are equal, as validated by the well-known ξ(s) functional equation, given by

(2.27) ξ(s) = ξ(1 -s). Now, in Equation (2.19), if any σ m = 1 2
, then it implies that ξ(s) = ξ(1-s), which would contradict Equation (2.27). Therefore, all σ m must be equal to 1 2 . From this, we can hypothesize that the product form of the ξ(s) in Equation (2.14) developed by Riemann [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF] was very likely to have been the source of inspiration for the Riemann Hypothesis.

3. The Prime-Counting Function. In this section, I will revisit the primecounting function analysis. Recasting Riemann's [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF] synthesis and results in a format; that will consolidate diverse elements such as the Heaviside step function, the von Mangoldt function, the Dirac delta function, and the Chebyshev function. Then, I will employ the Laplace transform to obtain the prime-counting function in the sdomain. Additionally, I will utilize the residue theorem to drive the prime-counting function in terms of ζ(s) pole and zeros. Some of these results are already available in the literature in one form or another. However, here I will consolidate them logically and bridge some crucial gaps to demonstrate the underlying relationships.

3.1. The Prime-Counting Function in the x-domain. The number of primes less than a given magnitude x can be formulated in the x-domain on a fundamental building block, using the staircase Heaviside step function H(ln x -ln p) as a base for the prime-counting function π(x), see Figure 3. Thus, the real function π(x) can be formally defined as

(3.1) π(x) := p H(ln x -ln p),
where the sum is over the set of all prime numbers p ∈ {2, 3, 5, Also, in terms of prime harmonics p k , see Figure 4, we have

• • • , p m , • • • }. π(x) x 2 3 
(3.2) π(x 1 k ) = p H(ln x 1/k -ln p) = p H(ln x -k ln p).
where k ∈ N. Differentiating the Heaviside function in Equation (3.1); gives the Dirac delta function δ(x), see Figure 5, thus we have

π(x 1 
(3.3) π (x) = p 1 x δ(ln x -ln p).
x π (x) Now, from Riemann's definition of J(x) in terms of the prime-counting function π(x), as

(3.4) J(x) = k∈N k π(x 1 k ).
and the reverse

(3.5) π(x) = k∈N µ(k) k J(x 1 k ).
where µ(k) is the Möbius function. Thus, from Equation (3.2) and Equation (3.4), we have

(3.6) J(x) = k∈N 1 k p H(ln x -k ln p) = ∞ n=2 Λ(n) ln(n) H(ln x -ln n),
where the von Mangoldt function, denoted by Λ(n), is defined as

(3.7) Λ(n) = ln p if n = p k for some prime p and integer k ≥ 1, 0 otherwise.
Differentiating Equation (3.6), we have Differentiating Equation (3.10), we have

J (x) = k∈N 1 k π (x 1 k ) = k∈N 1 k p 1 x δ(ln x -k ln p) = ∞ n=2 Λ(n) x ln(n) δ(ln x -ln n) = ∞ n=2 Λ(n) x ln(x) δ(ln x -ln n).
(3.12) ϑ (x) = p 1 x δ(ln x -ln p) ln p.
It is interesting to note that the relation between the differential of the prime-counting function in Equation (3.3) and the differential of the first Chebyshev function in Equation (3.12), can be stated as

(3.13) ϑ (x) = π (x) ln x.
Similarly, the second Chebyshev function ψ(x) is defined with the sum extending over all prime powers not exceeding x, as

(3.14) ψ(x) = k∈N p k ≤x ln p = n≤x Λ(n),
or based on the Heaviside function, as

(3.15) ψ(x) = k∈N p H(ln x -k ln p) ln p = ∞ n=2 Λ(n) H(ln x -ln n),
which can be represented in the following fascinating factorization format

(3.16) e ψ(x) = k∈N p p H(ln x-k ln p) .
Differentiating Equation (3.15), we have

(3.17) ψ (x) = k∈N p ln p x δ(ln x -k ln p) = ∞ n=2 Λ(n) x δ(ln x -ln n).
From Equations (3.8) and (3.17), it is observed that

(3.18) xψ (x) = xJ (x) ln x = k∈N p ln p δ(ln x -k ln p) = ∞ n=2 Λ(n)δ(ln x -ln n).
Also, we observe that Equation (3.18) is basically a delta function, given by

(3.19) xψ (x) = xJ (x) ln x = ln p if x = p k a prime with an integer k ≥ 1, 0 otherwise.
Now, multiplying Equation (3.2) by x -s-1 and integrating, we have

(3.20) ∞ 1 π(x 1 k ) x -s-1 dx = ∞ 1 p H(ln x -k ln p) x -s-1 dx,
integrating the right hand-side of Equation (3.20) by parts, we have

(3.21) ∞ 1 π(x 1 k ) x -s-1 dx = 1 s p p -sk .
Thus, from Equation (3.21) and Equation (3.4), we have

(3.22) ∞ 1 J(x) x -s-1 dx = 1 s k∈N 1 k p p -sk .
Here, we observe that the right hand-side of Equation (3.22) is basically the log of the Euler product of ζ(s). Therefore, Equation (3.22) can be restated as

(3.23) ∞ 1 J(x)x -s-1 dx = ln ζ(s) s , ( s > 1).
Equation (3.23) was one of the main results in Riemann's paper [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF]. However, the above analysis reveals the profound direct connection between the Heaviside primecounting function and the zeta function. This approach shifts the perspective to a new paradigm from number theory to signal processing theory using Riemann spectrum [START_REF] Mazur | Prime Numbers and the Riemann Hypothesis[END_REF], which will enable us to exert the signal processing arsenal to tackle some prime numbers enigmas.

3.2. The Prime-Counting Function in the s-domain. The Fourier analysis has been the mainstay in the literature for tackling the connection between zeta and the prime number counting function. However, the Laplace transform is a generalized Fourier transform that provides elegant and concise solutions, linking the s-domain with the x-domain.

The analysis so far has been based on the x-domain. Here, I will formulate the functions in the s-domain, then demonstrate their links via the Laplace transform by first employing the well-known Laplace transforms for the Heaviside and Dirac delta functions, given by Here, it is important to note the prime-counting function in the s-domain, denoted by the symbol Π(s). This is a new formulation and should not be confused with the same symbol used in the literature for different purposes. Thus, we can formally define the s-domain prime-counting complex function Π(s), in the half-plane (s) > 1, by the sum over the prime numbers of the following absolutely convergent series Here, it is important to highlight that the functions with these symbols: Π(s), J (s), Θ(s) and Ψ(s), which I have newly defined in this paper; as the s-domain manifestation of their x-domain representation: π(x), J(x), ϑ(x) and ψ(x) respectively. These functions have not been defined previously in the literature. Thus, should not be confused with any similar symbols encountered in the literature. Here, we observe the power of employing the Heaviside function and the s-domain analysis, which immediately demonstrates the profound relationship between ζ(s) and the prime-counting function, for Equation (3.34) reveals that ln ζ(s) is the sum of all the harmonics of the s-domain prime-counting function Π(s). where in our case y = ln x; and it is critical to take care of the effect of the term ln x when differentiating, as the factor of 1 x needs to be taken into account. Also, by Mittag-Leffler's theorem, we have

(3.37) ζ (s) ζ(s) = ln 2 - 1 (s -1) + ∞ m=1 1 (s -s m ) + 1 (s -sm ) + 1 (s + 2m) ,
where the poles of the function ζ (s) ζ(s) are at s = 1, s = s m , s = sm and s = -2m. Thus, the inverse Laplace transform, is obtained as follows We note that in Equation (3.41), the terms 1 sm , 1 sm and 1 2m are due to 1 s , and the term ζ (0)

xψ (x) =L -1 {sΨ(s)} = L -1 - ζ (s) ζ(s) = -
ζ(0) = ln 2π is due to the pole at s = 0. Now, from Equations (3.18), (3.25), (3.33) and (3.39), we see that (3.42)

xψ (x) = xJ (x) ln x = x - ∞ m=1 x sm + x sm + x -2m = ∞ n=2 Λ(n)δ(ln x -ln n).
Also, from Equations (3.15), (3.24), (3.33) and (3.41), we see that

(3.43) ψ(x) = x -ln 2π - ∞ m=1 x sm s m + x sm sm - x -2m 2m = ∞ n=2 Λ(n)H(ln x -ln n).
It is interesting to observe that differentiating Equation (3.43) results in Equation (3.42), which validates the analysis.

3.4. The J(x) Function. Rearranging Equation (3.42), we have

(3.44) J (x) = 1 ln x - ∞ m=1 x sm-1 ln x + x sm-1 ln x + x -2m-1 ln x ,
or as stated by Riemann [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF] for an approximate expression for the density of the prime numbers

(3.45) J (x) = 1 ln x -2 ∞ m=1
x -1 2 cos(t m ln x) ln x .

Now, integrating Equation (3.44), results in the logarithmic integral function Li(x), giving

(3.46) J(x) = Li(x) - ∞ m=1 Li(x sm ) + Li(x sm ) + Li(x -2m ).
Then the prime-counting function is finally obtained as

(3.47) π(x) = k∈N µ(k) k Li(x 1 k ) - k∈N µ(k) k ∞ m=1 Li(x sm/k ) + Li(x sm/k ) + Li(x -2m/k ).
Equation (3.47) is exactly the core result of Riemann's paper [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF]. Furthermore, the above analysis demonstrate clear insight into the relation of the prime-counting function and the zeta function; as can be observed that the first part of Equation (3.47) is due to the pole of ζ(s) at s = 1, and the second part is due to the zeros of ζ(s) at s = s m , s = sm and s = -2m. Moreover, we observe that the term due to the pole is the major component of π(x), whereas the terms due to the real zeros are negligible. In contrast, the terms due to the complex zeros are the source of the sawtooth-like wave component, which will be illustrated later. The sums are conditionally convergent with a slow convergence rate. Although Equation (3.47) was a landmark result that laid the foundations for prime numbers analysis, it is cumbersome and not convenient for analyzing prime numbers. In the next section, I will develop more convenient expressions.

3.5. Chebyshev ψ(x) Function. Utilizing the proof of the Riemann Hypothesis, that the non-trivial zeros of zeta have real part equal to 1 2 . i.e. the zeros have a format of s m = 1 2 + i t m , and noting that

(3.48) ∞ m=1 x -2m = x -2 1 -x -2 .
Thus, Equation (3.42) can be expressed as

(3.49) ψ (x) = 1 - x -3 (1 -x -2 ) -2x -1 2 ∞ m=1 cos (t m ln x) = ∞ n=2 Λ(n) x δ(ln x -ln n).
Also, integrating Equation (3.49) or rearranging Equation (3.43), we have (3.50)

ψ(x) = x -ln 2π -1 2 ln(1 -1 x 2 ) -4x 1 2 ∞ m=1 [cos(t m ln x) + 2 t m sin(t m ln x)] 4 t 2 m + 1
.

Note that Equation (3.50), was proved in 1895, by Hans Carl Friedrich von Mangoldt ( [START_REF] Mangoldt | Zu Riemanns Abhandlung "Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF] p. 294 Equ.58), and was stated in the paper as

(3.51) Λ(x, 0) = x -ln 2π -1 2 ln(1 -1 x 2 ) -x 1 2 ∞ ν=1
[cos(α ν ln x) + 2 α ν sin(α ν ln x)]

1 4 + α 2 ν .
where he showed that Λ(x, r) ( [START_REF] Mangoldt | Zu Riemanns Abhandlung "Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF] p. 279 Equ.38), is given by

(3.52) -lim h→∞ 1 2πi • a+ih a-ih ζ (s + r) ζ(s + r) • x s s ds = Λ(x, r).

Equation (3.52) is basically the inverse Laplace transform of ζ (s)

ζ(s) s when r = 0, from which we see that ψ(x) = Λ(x, 0).

Of course, some of these results are not new, already Edwards ([6] p.50) had shown a short method to obtain Equation (3.51). However, in this paper, I have employed the residue theorem to prove the results within few steps. Furthermore, I have demonstrated via Laplace transform the links of the Chebyshev ψ(x) function and its derivative to the prime-counting functions, the Heaviside function, and the Dirac delta function, which provides a new perspective and simplifies the analysis. Now, the term [ln(1 -x -2 )] has a negligible value, thus Equations (3.49) and (3.50) can be approximated to

(3.53) xψ (x) = x -2x 1 2 ∞ m=1 cos (t m ln x) = ∞ n=2 Λ(n)δ(ln x -ln n).

and

(3.54) Although Equations (3.53) and (3.54) are slow and conditionally convergent, the two equations provide better speed and accuracy for the primality test than current algorithms. In figures ( 6) and ( 7); with the computation executed at steps of x = 0.01, we can see the harmonics and Gibbs phenomenon. Also, we observe the prime locations at 101, 103, 107, 109; the harmonic primes at 121 = 11 2 , 125 = 5 3 , 128 = 2 7 , and the larger primes at 127, 131, 137, 139; whereas the rest of the natural nonprime harmonics integers are small. In Figure [START_REF] Ivic | The Riemann Zeta Function[END_REF], the Heaviside staircase prime harmonics counting function is observed. Also, we can observe the sawtooth-like waveform component of ψ(x) in Figure [START_REF] Karatsuba | The Riemann Zeta-Function Berlin[END_REF]. 4. The Zeta Zero-Counting Function. The distribution of the poles of the logarithmic derivative of the Riemann zeta-function is closely related to that of the zeros of zeta ζ(s) itself. One of the most important questions in the study of the zeros is the non-trivial zero-counting problem for ζ(s), where Riemann laid the foundations for the solution with a good approximation [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF]. For the Riemann zeta-function the best known bound for the error term is O(log T ) due to von Mangoldt in 1905 [START_REF] Mangoldt | Zur Verteilung der Nullstellen der Riemannschen Funktion ξ(t)[END_REF]. If we assume the Riemann Hypothesis, then essentially the best bound is O(log T / log log T ) due to Littlewood in 1924 [START_REF] Littlewood | On the zeros of the Riemann zeta-function[END_REF]. In this section, assuming the Riemann Hypothesis, I will demonstrate an accurate zeta zero-counting function exhibiting the expected step function behaviour, as well as exposing the underlying relationship to the prime numbers. Now, we can visualize the zeta zero-counting function ν(t), as illustrated in Figure [START_REF] Bombieri | Problems of the millennium: The Riemann Hypothesis[END_REF] This demonstrates that the zero-counting function is essentially a staircase step function. Thus, utilizing the Heaviside function, we can formally define the zerocounting function ν(t), as (4.1)

ψ(x) x -ln 2π -x 1 2 ∞ m=1 cos(t m ln x) t 2 m + sin(t m ln x) 2t m = ∞ n=2 Λ(n)H(ln x -ln n).
ν(t) := m H(t -t m ),
where the sum is over t m , the imaginary values of the ζ(s) non-trivial zeros.

4.1. Riemann Conjecture. Now, in the range {0, T }, the number of roots of ξ(s); was conjectured by Riemann [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF], as approximately

(4.2) = T 2π ln T 2π -T 2π ,
and some 46 years later was proved by H. von Mangoldt [START_REF] Mangoldt | Zur Verteilung der Nullstellen der Riemannschen Funktion ξ(t)[END_REF], the proof was outlined by Ivic ([7], p. 17), where he showed that the number of zeros is given approximately by

(4.3) N (T ) = T 2π ln T 2π -T 2π + 7 8 + 1 π L ζ (s) ζ(s) ds,
and demonstrated that

(4.4) L ζ (s) ζ(s) ds = O(ln T ).
Although the integral in Equation (4.4) is small compared to the major elements in Equation ( 4.3), it still contains the sawtooth-like waveform component, that I will demonstrate shortly. Now, recalling Riemann [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF] main justification of Equation (4.2), quoted as follows:

"because the integral d log ξ(t), taken in a positive sense around the region consisting of the values of t whose imaginary parts lie between 1 2 i and -1 2 i and whose real parts lie between 0 and T , is (up to a fraction of the order of magnitude of the quantity 1 T ) equal to (T log T 2π -T )i; this integral however is equal to the number of roots of ξ(t) = 0 lying within this region, multiplied by 2πi. One now finds indeed approximately this number of real roots within these limits, and it is very probable that all roots are real." In essence, Riemann instinctively was invoking Cauchy's argument principle.

Cauchy's Argument

Principle. Now, since ξ(s) is a meromorphic function inside and on some closed contour D, and ξ(s) has no zeros or poles on D, then

(4.5) 1 2πi D ξ (s) ξ(s) ds = Z -P,
where Z and P denote the number of zeros and poles of ξ(s); inside the contour D.

In fact, Cauchy's Argument Principle of Equation (4.5) is applicable to any meromorphic function f (z), which makes it extremely useful for counting the zeros of any function f (z). Now, noting that (

= ζ(s)(s -1)sΓ( s 2 )π -s 2 , 4.6) 2ξ(s) 
then, taking the log and differentiating, we have

(4.7) ξ (s) ξ(s) = ζ (s) ζ(s) + 1 (s -1) + 1 s + Γ ( s 2 ) Γ( s 2 )
-1 2 ln π.

Thus, from the Riemann Hypothesis, which implies that ξ(s) has simple zeros only on the critical line (s) = 1 2 , at s = s m and s = sm . Then, we can invoke Cauchy's argument principle, to define the zero-counting function ν(t), in the range {s, s} enclosed by the contour D, for the number of zeros of ξ(s), as

(4.8) 4πiν(t) = D ξ (s) ξ(s) ds = D ζ (s) ζ(s) + 1 (s -1) + 1 s + Γ ( s 2 ) Γ( s 2 ) - 1 2 ln π ds.
where the closed contour D encompasses the critical strip [0 ≤ (s) ≤ 1] and the factor 2 accounts for the conjugate zeros. Now, from Figure [START_REF] Sarnak | Problems of the Millennium: The Riemann Hypothesis[END_REF] and assuming the Riemann Hypothesis, we see that all the poles of the following term

ζ (s) ζ(s) + Γ ( s 2 ) Γ( s 2 )
, are on the critical line (s) = 1 2 , and the contour L 1 encloses all these poles in the range from s to s, whereas the contour L 2 encloses only the two poles s = 0 and s = 1; i.e. the term 1 (s -1) + 1 s . where in this case the limits of the integration are s = 1 2 + it and s = 1 2 -it. Also, using the residue theorem to evaluate the contour integral around L 2 , we obtain

(4.11) L2 1 (s -1) + 1 s ds = 4πi.
Therefore, the contour integration in Equation (4.9), simplifies to (4.12) 4πiν(t) = 2

s s ζ (s) ζ(s) + Γ ( s 2 ) Γ( s 2 ) - 1 2 ln π ds + 4πi,
integrating, we finally have the exact explicit formula for the zeta zero-counting function, as

(4.13) 2πiν(t) = ln ζ(s) -ln ζ(s) + ln Γ( s 2 ) -ln Γ( s 2 ) -s 2 ln π + s 2 ln π + 2πi.
Differentiating Equation (4.13), we have

(4.14) 2πiν (t) = ζ ( 1 2 + it) ζ( 1 2 + it) - ζ ( 1 2 -it) ζ( 1 2 -it) + Γ ( 1 4 + i t 2 ) Γ( 1 4 + i t 2 ) - Γ ( 1 4 -i t 2 ) Γ( 1 4 -i t 2 )
-i ln π.

Now, utilizing the first few terms in the Stirling approximation; i.e. We observe from Equation (4.23), the direct relation between the zero-counting function ν(t) and the s-domain prime-counting function Π(s). Furthermore, we observe in Equation (4.25), the direct relationship between the number of ζ(s) zeros and the prime harmonics. Although the equation is slow for computational purposes, it reveals the underlying relationship between the zero-counting function and the primes. Furthermore, it exposes the source of the sawtooth-like waveform effect as the spectrum sum of the prime harmonics.

Finally, Figure [START_REF] Hardy | The zeros of Riemann's zeta-function on the critical line[END_REF] shows comparisons between ν(t) and N (t), and it confirms that the zero-counting function is a Heaviside staircase step function, and its differential ν (t) is an impulse Dirac delta function; as can be seen in Figure (13). 5. Recommendations for Future Research. Here I will summarize some of the key results and relations, then I will outline some interesting topics, that I think are worthy of further research and exploration. Taking the Laplace transform of the above equations, we have

(5.3) L {φ(x)} = n L {H(ln x -ln n)} = ∞ n=1 e -s ln n s = 1 s ζ(s). and (5.4) L {φ (x)} = n L 1 x δ(ln x -ln n) = ∞ n=1 e -s ln n = ζ(s),
Therefore, the inverse Laplace transform of 1 s ζ(s) to the x-domain, manifests itself as the natural number counting function φ(x). Also, we observe from Equation (5.4) an interesting x-domain representation of the inverse Laplace transform of ζ(s) as a decreasing Dirac impulse function. Equation (5.3) can be utilized to count many variations of numbers, such as the numbers of the form n r , exploring the features of this equation is an interesting topic to research. Equation (5.8) for Π(s) exhibits elegance as well as deceptive simplicity, however, its complexity is revealed by Equation (5.10). The function Π(s) has poles at s = 0, s = 1, and at the zeros of ζ(s). Figure [START_REF] Mazur | Prime Numbers and the Riemann Hypothesis[END_REF] shows the real part of sΠ(s); along the critical line s = 1 2 , we also observe the poles at s = 1 2 + it m . Now, the inverse Laplace of Π(s) gives directly the prime-counting function π(x), i.e. (5.11) π(x) = L -1 {Π(s)} .

From the Laplace transform properties, multiplication by s results in differentiation of π(x), and multiplication by -x results in differentiation of sΠ(s), thus we have (5.12)

-x π (x) ln x = L -1 {[sΠ(s)] } ;
i.e.

(5.13)

x π (x) ln x = L -1 - k∈N µ(k) k ζ (ks) ζ(ks) ,
Then using the residue theorem to evaluate the inverse Laplace, we have 

(k) k x 1 k - ∞ m=1 k∈N µ(k) k x sm k + x sm k + x -2m k .
Integrating, we have Here we come back a full circle to the same result. However, this approach gives much better clarity and coherence with far fewer steps.

The elegant s-domain forms present a new perspective in the relation between the ζ(s) function and the prime-counting function Π(s). The behaviour of Π(s) needs further investigation that might reveal new insights into the computations of the primes. Moreover, the relation between the s-domain prime-counting function Π(s) and the zero-counting function ν(t) see Equation (4.23), could yield better approximation for the prime-counting function π(x). In fact, the prime-counting function π(x) and the first Chebyshev function ϑ(x), can be directly evaluated from Equation (5.22), using the inverse Laplace transform. We note that the function Θ(s) has poles at s = 0, s = 1, and the zeros of ζ(s). This again, provides another perspective in the relation between ζ(s) and the Chebyshev function expressed in the s-domain. The behaviour of Θ(s) needs further investigation, that could yield greater insights into the prime factorization.

6. Conclusions. Proof of the Riemann Hypothesis would unravel many of the mysteries surrounding the distribution of prime numbers, which are at the heart of all encryption systems. In addition, proof of the Riemann Hypothesis would, as a consequence, prove many of the propositions known to be true under the Riemann Hypothesis.

The proof demonstrated in this paper was based on a basic insight into the product expansion of the Riemann zeta function, as available from Hadamard's publication in 1893 and Riemann's publication in 1859, as well as clarifying that the product expansion is only over the principal non-trivial zeros of zeta. Sometimes, the truth is hidden in plain sight.

Furthermore, in this paper, I have demonstrated several techniques with a new perspective. These included the Heaviside function, Dirac delta function, the Laplace transform, Mittag-Leffler's theorem, and the residue theorem. The techniques have provided concise and elegant solutions; that immediately revealed the profound connections between the prime-counting function, the zero-counting function, as well as the interrelation with primes and zeta zeros. This novel approach shifts the perspective to a new paradigm, from number theory to signal processing theory. These results will enable us to exert the signal processing arsenal to tackle some prime numbers enigmas. The newly defined s-domain prime-counting function Π(s) and Chebyshev function Ψ(s) provide another angle to address prime computations, primality testing, and prime factorization.
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 2 (s) < 1, as shown in Figure (1), whereas the non-trivial zeros of ζ(1 -s) are located in the strip 0

Fig. 1 .

 1 Fig. 1. The Critical Strip.

Fig. 3 .

 3 Fig. 3. Prime-Counting Heaviside Step Function.

Fig. 4 .

 4 Fig. 4. Prime-Counting Function π(x 1 k ) .

Fig. 5 .

 5 Fig. 5. Prime Dirac Delta Function δ(ln x -ln p).

(3. 8 )

 8 Furthermore, the first Chebyshev function is defined by (3.9) ϑ(x) = p≤x ln p, and based on Heaviside function can be defined as (3.10) ϑ(x) = p H(ln x -ln p) ln p, or in a prime factorization format, as (3.11) e ϑ(x) = p p H(ln x-ln p) .

( 3 .

 3 24) L {H(ln x -k ln n)} = e -sk ln n s , and (3.25) L 1 x δ(ln x -k ln n) = e -sk ln n . Thus, the Laplace transform of the prime-counting function Equation (3.1), from π(x) to Π(s), is obtained by (3.26) Π(s) = L {π(x)} = p L {H(ln x -ln p)} = x -ln p) = p e -s ln p .

  , ( s > 1), and in the whole complex plane by analytic continuation. The definition in Equation (3.28) is the base prime numbers sub-sum of the [ln ζ(s)] function. Now, we can utilize Equation (3.24) to obtain the Laplace transform of Equations (3.6), (3.10) and (3.15)p e -ks ln p = ∞ n=2 Λ(n)e -s ln n . Remark 3.1.

1 k 1 k

 11 Now, we recall the log expansion of the Euler product of Riemann zeta function, which is given by (3.32) ln ζ(s) =p ln(1 -e -s ln p ) = k∈N p e -ks ln p = p e -ks ln p = -∞ n=2 Λ(n)e -s ln n . Therefore, from Equations (3.28), (3.29), (3.30), (3.31) (3.32) and (3.33), we discover that in the s-domain, the relationship amongst the functions Π(s), ζ(s), J (s), Θ(s) and Ψ(s), are as follows (3.34) sJ (s) = ln ζ(s) = k∈N p e -ks ln p = sΨ(s) = -ζ (s) ζ(s) = k∈N p ln p e -ks ln p = ∞ n=2 Λ(n)e -s ln n = s k∈N Θ(ks).

3. 3 .

 3 The Inverse Laplace Transform. Now, to obtain the functions in the x-domain, we employ the residue theorem to evaluate the inverse Laplace transform of the expressions, i.e. (3.36) L -1 {F (s)} = all polesRes [F (s)e sy ] ,

e

  sm ln x + e sm ln x + e -2m ln x . Also,(3.40) ψ(x) = L -1 {Ψ(s)} = L -1 -ζ (s) ζ(s) s = -all poles Res ζ (s)e s ln x ζ(s)s ; i.e. (3.41) ψ(x) = e ln x -ln 2π -∞ m=1 e sm ln x s m + e sm ln x sm -e -2m ln x 2m .

Equations ( 3 .

 3 53) and (3.54) are in essence contain the Riemann spectrum of ζ(s) non-trivial zeros, i.e. the set { 1 2 + it m }. These equations are powerful in locating the prime numbers and their harmonics; for Equation (3.53) is essentially a delta function of the prime numbers harmonics, whereas Equation (3.54) is a Heaviside staircase function of the prime numbers harmonics. Comparing Equation (3.35) and Equation (3.53), we observe that in the s-domain the function Ψ(s) is summed over the prime numbers; and has poles at the zeros of zeta at s = s m , s = sm and s = -2m, as well as at s = 0 and s = 1. In contrast, the x-domain function ψ (x) is summed over the zeros of zeta; and has poles at the harmonics of the prime numbers.
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 8 Fig. 8. Sawtooth-like waveform component of ψ(x) .
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 9 Fig. 9. Zeta Zero-Counting Heaviside Step Function.

4. 3 .

 3 Contour Integration. Now, the contour integration around L 1 , can be transformed to a line integral, as follows (

( 4 .

 4 15) Γ(z) ∼ (z) z e -z z -1 2 √ 2π, of ν(t) is shown in Figure (11). It is observed that the component magnitude is less than one, this component is the major source of the error term. Moreover, this component has a vital contribution to the accuracy of the zero-counting function; which turns it into a Heaviside staircase step function, as shown in Figure (12).
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 11 Fig. 11. The sawtooth-like waveform component of ν(t).
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 12 Fig. 12. ν(t) vs. N (t).
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 13 Fig. 13. |ν (t)| .

5. 1 .

 1 Natural Number Counting Function. Now, consider the natural numbercounting function φ(x) based on Heaviside function, which we can define as (x -ln n).

5. 2 . 5

 25 The Prime-Counting Function. Recalling the definition of the primecounting function in the x-domain, k) is the Möbius function. Also, recalling the s-domain form, given by (to the zeta function, given by (5.9) sJ (s) = ln ζ(s) = s k∈N Π(ks),

Fig. 14 .

 14 Fig. 14. {sΠ(s)} along the critical line s = 1 2 + it.

  x π (x) ln x =all poles Res k∈N µ(k) k ζ (ks)e s ln x ζ(ks) , (5.14) giving (5.15) xπ (x) ln x = k∈N µ

5. 3 .

 3 The Chebyshev Function. Recalling the definition of the first kind Chebyshev function in the x-domain, as (5.17) ϑ(x) = p H(ln x -ln p) ln p, or in a factorization form, as (5.18) e ϑ(x) = p p H(ln x-ln p) .Also, the first kind Chebyshev function in the s-domain,

Acknowledgements. I would like to thank Dr. Sami M. Alhumaidi, director general of PSDSARC, Prof. Mohammed I. Alsuwaiyel, and Dr. Fawzi A. Al-thukair for their feedback on the first draft and their encouragement. Naturally, All Errors are My Own.

and the first few terms in the asymptotic expansion of the digamma function; i.e. ( 

.

and noting that s 2 ln π + s 2 ln π -it = -it ln πe. Thus, we obtain a very accurate approximation exhibiting the sinusoidal component, as

Also, from Equation (4.14), we have

4.4. Computation. Equation (4.20) is a very accurate approximation, and it is a sum of differences between complex numbers and their conjugates, thus the result will always be an imaginary number as expected. Further approximation of the log terms, we obtain a much simpler form, as