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Abstract

A nonlinear energy sink is designed to control the oscillations of a two degrees-
of-freedom pendulum under the following types of excitations: horizontal and vertical
base displacements and initial energy. Coupled nonlinear governing system equations
are treated with the multiple scale methods with different assumptions depending on
applied loads. Fast and slow system dynamics are revealed leading to detection of dif-
ferent possible dynamical regimes. The choice of the design parameters of the nonlinear
energy sink is discussed and a tuning method is proposed. The efficiency of the control
is validated by an experimental study: a physical model of the pendulum is excited by
the shake table. The response of the system shows that the nonlinear energy sink is
able to control the main system.

Keywords passive control, nonlinear energy sink, pendulum, experimental valida-
tion

1 Introduction

In transportation systems, vibrations can be an issue for mechanical structures but also for
passengers comfort. In order to control the vibrations of such systems, many types of devices
are proposed. These control devices cover large categories of systems ranging between active,
passive and hybrid ones [1]. In passive control systems, the most well-known device the tuned
mass damper [2], which is a spring-mass system with the same natural frequency than the
frequency of the targeted mode to be controlled. It has been shown that, via including
a cubic non-linearity in the restoring forcing function of the spring, the efficiency of this
device is improved [3]. In the nonlinear energy sink (NES) [4–6], the restoring force function
is purely nonlinear, i.e. there is no linear component. This function can be polynomial,
like the cubic function, or non-polynomial [7]. It is shown that the nonsmooth nonlinearity
can be considered for the absorbers [7, 8]. Such systems are very efficient when the system
possesses pre-stressing terms [9]. An example of such systems is the piece-wise linear one
which can be built with a mass moving in a clearance between two linear springs or elastic
barriers. The NES can be used in various domains such as civil engineering for buildings
[10] or stay-cable [11, 12]. The passive control of a single degree-of-freedom (dof) pendulum
by a tuned mass damper is studied by Matsuhisa et al. [13] The application of a NES with
cubic and nonsmooth nonlinearities on controlling planar oscillations of a two dof pendulum
under external excitations is studied by Hurel et al.[14, 15]. In addition, the same authors
studied the control process of a single dof pendulum under base and external excitations
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with cubic NES [16]. For the systems in gravitational field, the cubic NES looses its pure
nonlinear nature due to the prestressing terms induced by the gravity. To overcome this
fact, a nonsmooth NES can be used[17].

In this article, we propose a design procedure for controlling a two dof pendulum under
two-dimensional base excitation (horizontal and vertical) and initial energies.

The paper is organized as it follows: In section 2, we present the system and its governing
equations accompanied by some explanations about the principle of the NES. Then, in
section 3, we tune the parameters to have a good and reasonable control. In section 4, an
experimental validation is presented. At last, in section 5, the paper is concluded.

2 Principle of the nonlinear absorber

2.1 The main system: a two degrees-of-freedom pendulum

The mechanical system under consideration is a two dof pendulum of mass M in a gravity
field ~g = −g~k shown in Figure 1. It is hung from a moving base O. The pendulum can
rotates around ~i and ~j axes with angles ψ and ϕ respectively, transforming global reference
frame (~i,~j,~k) in local reference frame (~i′, ~j′, ~k′). It is excited by the imposed displacement
at its base O represented as xO(t), yO(t) and zO(t). The center of mass of the pendulum
is located at the distance L from the base O. Viscous damping coefficients relative to the
rotation of angles ϕ and ψ are represented as cϕ and cψ, respectively.

~g = −g~k

α

~k

~j

~i

ψ
ϕ

O ~k′ ~j′

~i′

Figure 1: The main system: a two-degrees-of freedom pendulum under gravitational effects
with ~g = −g~k.

2.2 The nonlinear absorber

The control of the oscillations of the main system is made by a nonsmooth NES [8] coupled
to the pendulum. The nonlinear absorber is composed of a mass m, moving in a guide
between two linear springs of stiffness k, with a clearance of 2d (see Figure 2a). When its
displacement u = 0, the mass is located at a distance a from the base O. The mass of the
absorber is very small compared to the mass of the main system:

m = εM, ε� 1 (1)

In order to control the system in both directions, the NES is set to have an angle α with
the axis ~i′ as seen on Figure 2a. The restoring force function s of the NES is depicted in
Figure 2b as a function of the displacement u of the mass m relative to the pendulum.

2



αm

2d

k

k

~i′

~j′

u

(a)

u

s(u)

d−d

k

(b)

Figure 2: Nonsmooth NES: a) schematic of the piece-wise linear absorber; b) The restoring
forcing function of the absorber.

2.3 Equations of the system

The kinetic (K) and potential (U) energies of the system read [15]:

K =
1

2
M
(
ẋ2
G + ẏ2

G + ż2
G

)
+

1

2
Ixxϕ̇

2 +
1

2
Iyyψ̇

2 +
1

2
m
(
ẋ2
m + ẏ2

m + ż2
m

)
(2)

U =g(MzG +mzm) + S(u) (3)

where •̇ stands for the time derivation of the variable •, (xG, yG, zG) are the coordinates of
the center of mass G of the main system and (xm, ym, zm) are the coordinates of the NES
in the main reference of frame, Iyy and Ixx are the product of inertia of the main system

around ~i and ~j, respectively, and ∇S(u) = s(u), where ∇ stands for the gradient operator.
The non-conservatives forces applied on the system are:

Fϕ = −cϕϕ̇ (4)

Fψ = −cψψ̇ (5)

Fu = −cuu̇ (6)

The equations of the system are obtained with the Euler-Lagrange equations. They are
provided in appendix A.

2.4 Assumptions

The main system is a two-dof system with generalized coordinates represented as ϕ and ψ.
If we linearize the system around its equilibrium state (ϕ = ψ = 0), we can calculate two
eigenmodes with the natural frequencies represented as ωϕ and ωψ. Because of the geometry
and the inertia of the pendulum, we assume that the natural frequencies are close to each
other:

ωϕ = ωψ + σωε (7)

We assume also that the displacement of the baseO is periodic and its fundamental frequency
is close to the natural frequencies of the main system:

xO(t) =

∞∑
j=0

xje
ijΩt (8)

yO(t) =

∞∑
j=0

yje
ijΩt (9)

zO(t) =

∞∑
j=0

zje
ijΩt (10)
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where i2 = −1 and Ω = ωϕ + σϕε = ωψ + σψε. Finally, we assume that the angles and
the displacements are small: ϕ =

√
εϕ, ψ =

√
εψ, u =

√
εu, xj = ε

√
εxj , yj = ε

√
εy
j

and

zj =
√
εzj . This type of scaling of system variables with respect to the ε parameter is not

unique and it can vary depending on the nature of the problem (e.g. the type of excitation)
[14–16].

Table 1 collects numerical values of system parameters which will be used in all numerical
examples of this paper.

Table 1: Parameters of the considered system for all presented examples.

Part Parameter Value

Pendulum

g 9.81 m s−2

M 1.68 kg
L 0.10 m
ωϕ 8.29 rad s−1

ωψ 8.42 rad s−1

cϕ 0.05 N m rad−1 s−1

cψ 0.05 N m rad−1 s−1

NES

m 0.08 kg
a 0.207 m

α
π

4
k 120 N m−1

d 0.02 m
cu 2.5 N m−1 s−1

2.5 Detection of fast/slow dynamics: complexification and multiple
scale method

We introduce the complex variables of Manevitch [18]:

ΦeiΩt = ϕ̇+ iΩϕ (11)

ΨeiΩt = ψ̇ + iΩψ (12)

UeiΩt = u̇+ iΩu (13)

In the multiple time scale method [19], we consider that the time can be decomposed into
fast (τ0) and slow (τj , j = 1, 2, ...) time scales.

τ0 = ε0t, τ1 = ε1t, τ2 = ε2t... (14)

Then, the derivation operator is redefined as:

d

dt
=

∂

∂τ0
+ ε1 ∂

∂τ1
+ ε2 ∂

∂τ2
+ ... (15)

In this analysis, we keep only the first harmonics of the response of the system. This is done
for an arbitrary function of the system h(τ0, τ1, τ2...) by following operator:

H =
Ω

2π

∫ 2π

Ω

0

h(τ0, τ1, τ2...)e
−iΩτ0dτ0 (16)

Applying Equation 16, we assume that Φ, Ψ and U are independent of fast time scale τ0.
This will be verified during multiple scale method or we will look at an asymptotic system
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behavior where fast time (τ0) tends to infinity. After applying equations 11-13 and 16 on
governing system equations, following system is obtained:

Lg
dΦ

dτ0
+ i

Lg(Ω2 − ω2
ϕ)

2Ω
Φ + εω2

ϕ

[
a2 dΦ

dτ0
+
Lg

ω2
ϕ

dΦ

dτ1
+ a cos(α)

dU

dτ0
+

(
cϕ + ia2Ω

2
− i ag

2Ω

)
Φ

+ i
Lg

16Ω3
|Φ|Φ + i

aΩ2 − g
2Ω

cos(α)U + iL

(
L

8Ω
+

g

16Ω3

)
Ψ2Φ∗ − i L

2

4Ω
Φ |Ψ|+ i

Lg

8Ω3
Φ |Ψ|

−LΩ2x1 − 2iLΩz2Φ∗
]

+O(ε2) = 0

(17)

Lg
dΨ

dτ0
+ i

Lg(Ω2 − ω2
ψ)

2Ω
Ψ + εω2

ψ

[
a2 dΨ

dτ0
+
Lg

ω2
ψ

dΨ

dτ1
+ a sin(α)

dU

dτ0
+

(
cψ + ia2Ω

2
− i ag

2Ω

)
Ψ

+ i
Lg

16Ω3
|Ψ|Ψ + i

aΩ2 − g
2Ω

sin(α)U + iL

(
L

8Ω
+

g

16Ω3

)
Φ2Ψ∗ − i L

2

4Ω
Ψ |Φ|+ i

Lg

8Ω3
Ψ |Φ|

−LΩ2y1 − 2iLΩz2Ψ∗
]

+O(ε2) = 0

(18)

ε

[
dU

dτ0
+ a cos(α)

(
dΦ

dτ0
− gi

2aΩ
Φ +

Ωi

2
Φ

)
+ a sin(α)

(
dΨ

dτ0
− gi

2aΩ
Ψ +

Ωi

2
Ψ

)
+
λ+ Ωi

2
U − i K

2Ω
US(|U|)

]
+O(ε2)

(19)

with cϕ =
cϕ
m

, cψ =
cψ
m

and

S(|U|) =
2

π


0 if |U| ≤ D

arccos

(
D

|U|

)
−
D

√
|U|2 −D2

|U|2
if |U| > D

(20)

where λ =
cu
m

, D =
Ωd√
ε

and K =
k

m
[7].

2.6 Analysis of the system

At the first order O(ε0), corresponding to the fast time scale τ0, the equations of the system
read:

∂Φ

∂τ0
= 0 (21)

∂Ψ

∂τ0
= 0 (22)

∂U

∂τ0
+ a cos(α)

∂Φ

∂τ0
+ a sin(α)

∂Ψ

∂τ0
+ i

A

2Ω
(cos(α)Φ + sin(α)Ψ) +

iΩ + λ

2
U− i K

2Ω
US(|U|) = 0

(23)

with A = (aΩ2 − g). We express the complex variables in polar form: Φ = Nϕeiδϕ , Ψ =
Nψeiδψ and U = Nueiδu . We seek for an asymptotic state when τ0 tends to infinity, i.e.,
∂U

∂τ0
−→ 0. Equation 23 gives the expression of the slow invariant manifold (SIM):

cos2(α)N2
ϕ + sin2(α)N2

ψ + 2 sin(α) cos(α) cos(δ)NϕNψ =

(
KS(Nu)− Ω2

)2
+ λ2Ω2

A2
N2
u (24)

where δ = δϕ − δψ. The SIM is function of four real variables Nϕ, Nψ, Nu and δ. It can
be represented in the space (Nϕ, Nψ, Nu) for several values of δ. The SIM is composed of

5



(a) δ = 0.5π (b) δ = π

Figure 3: The three-dimensional views of the SIM for two values of δ.

stable and unstable zones delimited by singular points as demonstrated in [15]. Figure 3
shows the SIM with stable and unstable zones for an arbitrary value of δ and a particular
value δ = π.

The ε1 order of equations corresponding to the slow time scale τ1, yields to:

Lg
∂Φ

∂τ1
=x1LΩ4 + 2iz2LΩ3Φ∗ −

(
i
2σϕLg

2
+
cϕΩ2

2

)
Φ− iAΩ

2
(aΦ + cos(α)U)

− i Lg
16Ω

[
|Φ|2 Φ +

(
2− 4LΩ2

g

)
Φ |Ψ|2 +

(
Lg +

2LΩ2

g

)
Φ∗Ψ2

] (25)

Lg
∂Ψ

∂τ1
=y

1
LΩ4 + 2iz2LΩ3Ψ∗ −

(
i
2σψLg

2
+
cψΩ2

2

)
Ψ− iAΩ

2
(aΨ + sin(α)U)

− i Lg
16Ω

[
|Ψ|2 Ψ +

(
2− 4LΩ2

g

)
Ψ |Φ|2 +

(
Lg +

2LΩ2

g

)
Ψ∗Φ2

] (26)

2.7 Different cases of excitations

We identify three cases of excitations for which the NES can control the pendulum oscilla-
tions:

� Horizontal base excitation

� Initial energy

� Vertical base excitation

These different excitation types are considered separately in following sections in order to
simplify and also to solve Equations 25 and 26.

2.7.1 Horizontal base excitation

In this case, there is a horizontal periodic motion of the base O. The NES is designed to
keep the amplitude of the main system below a given threshold. For design, it is necessary
to know either the maximal amplitude of excitation to find the lowest threshold, or the
maximal amplitude of the main system allowed to be effective at the highest excitation
amplitude. In this study, we suppose that we know the maximum amplitude of excitation.

We assume that excitation and complex variables are small. A second rescaling is per-
formed: x1 =

√
εX1, y

1
=
√
εY1, z2 =

√
εZ2, Φ =

√
εΦ, Ψ =

√
εΨ, U =

√
εU and D =

√
εD.
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The effect of the vertical displacement of the base O is no more visible at this order. The

equilibrium points are obtained via setting
∂Φ

∂τ1
= 0 and

∂Ψ

∂τ1
= 0 in Equation 25 and 26

accompanied by consideration of the Equation of the SIM (24):

X1LΩ4 −

(
i
2σϕLg

2
+
cϕΩ2

2

)
Φ− iAΩ

2
(aΦ + cos(α)U) = 0 (27)

Y1LΩ4 −

(
i
2σψLg

2
+
cψΩ2

2

)
Ψ− iAΩ

2
(aΨ + sin(α)U) = 0 (28)

In order to determinate the efficiency of the NES for a given excitation, we calculate the
equilibrium points of the system for a range of frequency in the interval Ω ∈ [ωmin, ωmax].
Figure 4 shows that Nϕ, Nψ and Nu of the equilibrium points of the system with NES are
lower than the system without NES. We can also see that for some values of the frequency
Ω there is no stable equilibrium point. These zones can correspond to different non periodic
responses such as strongly modulated response (SMR) [14, 20] which is due to existence
of fold singularities in the system. Figure 5 shows that the system oscillates between both
stable zone of the SIM. The amplitudes Nϕ and Nψ oscillate and stay below a threshold.

However, as the SIM has dimension four, which creates difficulty in its visualization.
That’s why analytical predictions should be compared carefully with results obtained from
direct numerical integration of the system equations.
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Figure 4: Equilibrium points of the system for a horizontal excitation x1 = 17 mm.
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(a) Amplitude of the system (b) Numerical results with the SIM

Figure 5: Numerical results showing SMR type oscillations of the system x1 = 13.5 mm and
Ω = 8.5.

2.7.2 The system under initial energy

In this case, the base O is motionless but an initial energy is applied to the mass M of the
pendulum. This energy can be due to a sudden displacement of O. The role of the NES is
to absorb this energy rapidly. Here, the time tc to reach a given amplitude from an initial
amplitude of pendulum is a criterion to be minimized for tuning the NES.

Without excitation, we can observe from Equations 25 and 26 that the only equilibrium
point of the system is Φ = Ψ = 0. We have to evaluate the decreasing speed of the amplitude.
We introduce the new complex variable: Θ = cos(α)Φ + sin(α)Ψ. By considering almost
equal damping scenarios for the system as: cθ = cϕ + εσcϕ = cψ + εσcψ and very close
frequency σθ = σϕ + εσσϕ = σψ + εσσψ , the Equations 27 and 28 give:

∂Θ

∂τ1
= −

(
iσθ +

cθΩ
2 + iΩaA

2Lg

)
Θ− i ΩA

2Lg
U (29)

Equation 23 becomes:

AΘ =
(
iλΩ− Ω2 +KS(|U |2)

)
U (30)

By replacing expression of Θ from Equation 30 in equation 29, we obtain:

∂Nu
∂τ1

(Nu) = − Ω2

2Lg

A2λ+ cθ

[
λ2Ω2 +

(
KS(N2

u)− Ω2
)2]

λ2Ω2 + 2KS′(N2
u) (KS(N2

u)− Ω2)N2
u + (KS(N2

u)− Ω2)
2Nu (31)

From Equation 30, we write the expressions of
∂Nθ
∂Nu

and
∂Nu
∂τ1

to calculate
∂Nθ
∂τ1

:

∂Nθ
∂τ1

(τ1) =
∂Nθ
∂Nu

∂Nu
∂τ1

(τ1) (32)

Figure 6a illustrates the variation of
∂Nθ
∂τ1

as a function of Nθ. It is seen that Nθ decreases

abruptly to a considerable level and then it reduces its energy in an exponential manner. A
numerical integration of the Equation 32 gives the theoretical evolution of Nθ as a function
of time τ1. One can see two distinct behaviours: the first one for Nθ > 0.2 with an abrupt
decrease in amplitude and the second one (Nθ < 0.2), with an exponential manner.

This evolution is compared in Figure 6b with results obtained from the numerical integra-
tion of the system governing equations (see Equations 35, 36 and 37). The main difference
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Figure 6: Evolution of Nθ as a function of slow time τ1.

is due to the approximation σ = σϕ + εσσϕ = σψ + εσσψ . In reality the frequencies ωϕ
and ωψ are different and a phase angle δ increases over time. Since the SIM depends on δ,
the behaviour of the NES and the variation of Nθ vary with δ.

2.7.3 Vertical excitation

In this case, there is only a vertical periodic motion of the base O. Here, a validation of the
parameters of the NES is necessary to verify the possibility of existence of high amplitudes
of the oscillations.

To understand the behaviour of the system, we consider Ψ = 0, y
1

= 0, x1 = 0 and α = 0,

i.e. we consider a planar system. Here, the hypothesis of small Φ (Φ =
√
εΦ) would lead to

irrelevant results. The Equation 25 leads to:

2iz2LΩ3Φ∗ −

(
i
2σϕLg

2
+
cϕΩ2

2

)
Φ− iAΩ

2
(aΦ + U)− i Lg

16Ω
|Φ|2 Φ = 0 (33)

The equilibrium points of the system can be evaluated from Equations 23 and 33. They are
shown in Figure 7. In previous study [16], we showed that the NES prevents the pendulum
to reach high amplitude equilibrium point from a state with low amplitude.

It is worth to mention that in the design of the NES, the isolas should be treated and
identified carefully as they could correspond to very high energy level of the main dofs and
be counter-productive.

3 Tuning of parameters of the nonlinear absorber

To design the NES, we have to determine six parameters: the mass m, the position a, the
angle α, the stiffness k, the clearance d and the damping coefficient cu. These parameters
have to be tuned to find good efficiency of the NES. These six parameters should be tuned
all together. However, due to technical constraints, we suppose that the mass m and the
position a of the NES are determined independently. The orientation angle α is also tuned
independently because it depends on excitation and on the demand of the industry about
the direction of the control.
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Figure 7: Equilibrium points of the system for a vertical excitation z2 = 0.05.

3.1 The mass of the NES

The mass m does not appear directly in Equations 23, 25 and 26 but its effect is hidden

behind the slow time scale τ1 =
m

M
t. Hence, the higher value of the mass m implies that the

infinity of slow time scale τ1 starts faster, i.e. the system can reach its equilibrium points
faster [21]. However, due to the main assumptions in analytical developments (ε � 1) and
due to technical constraints, m cannot be too high.

3.2 The position of the NES

The position of the NES is also determined by technical constraints, but several options can
exist. In Equations 25 and 26, the decreasing of Φ and Ψ relative to slow time τ1 due to the
absorber is proportional to A = aΩ2 − g. In order to maximize A, the absorber has to be
placed as far as possible from G, the equivalent mass center of the pendulum:

~OG = − g

Ω2
~k (34)

3.3 Orientation angle of the NES

In order to understand the effect of the orientation of the NES, we fix α the orientation
angle of the NES and we study the response of the system for variable angles of horizontal

base excitation, β = tan

∣∣∣∣ y1

x1

∣∣∣∣. Figure 8 shows the results for angle α ∈ [0,
π

2
]. Here are some

remarks:

1. It is confirmed that with α 6= 0 + j
π

2
, j ∈ Z, the NES can be efficient and can control

both ϕ and ψ angles [14].

2. If α → 0, then the NES is not efficient in controlling ϕ. If α → π

2
, then the NES is

not efficient in controlling ψ.

3. If the direction of excitation β is known, then setting α = β provides a good control
of the pendulum since both angles ϕ and ψ have relatively low amplitude.
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3.4 Parameters maps

3.4.1 Horizontal excitation

Let us suppose that parameters m, a, α are already determined and we would like to find
the good combination of parameters k, d and c. To do this, we build parameter maps in the
plan (k, d) for several values of c with the amplitudes of angles ϕ and ψ.

This is performed by numerical integration of the equations of the system (Equations
35, 36 and 37). We simulate the system with horizontal base excitation x1 = 17 mm from
initial condition with no energy (ϕ(0) = ψ(0) = u(0) = ϕ̇(0) = ψ̇(0) = u̇(0) = 0). The time
of simulation is long enough to reach the asymptotic state of fast time: τ0 = 100.

Figure 9 shows the parameters maps for the amplitudes Nϕ and Nψ. The zone where

the NES is more efficient is for low values of λ and d with the frequency

√
k

m
being close to

the frequencies ωϕ and ωψ. This fact is similar to the design logic of a tuned mass damper.
However, the zone of efficiency is very narrow and the absorber is not robust. In fact,
as the main system is nonlinear, the frequencies of oscillations vary with the amplitude.
Furthermore, it is technologically difficult to ensure a precise and low value of damping
because of different phenomena such as friction, interactions, etc... So we prefer to take
higher values of cu and d to provide more robustness to the NES.
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Figure 8: Amplitude of ϕ and ψ as a function of angle of applied horizontal base excitation
(β) for several values of NES orientation (α).

12



c
u

 = 0.04

10 15 20 25

0

5

10

15

20

d
c

u
 = 0.12

10 15 20 25

0

5

10

15

20

c
u

 = 0.2

10 15 20 25

0

5

10

15

20

c
u

 = 0.28

10 15 20 25

k

0

5

10

15

20

d

c
u

 = 0.36

10 15 20 25

k

0

5

10

15

20

c
u

 = 0.44

10 15 20 25

k

0

5

10

15

20

15

20

25

30

35

40

45

50

55

(a) Maximal value of Nϕ
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(b) Maximal value of Nψ

Figure 9: Maximal value of Nϕ and Nψ for the system with parameters k, d and cu and
excited by horizontal base displacement (x1 = 17 mm). Color scale corresponds to the
maximal amplitude the system can reach for angles ϕ and ψ.
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3.4.2 Initial energy

In this case, we would like to minimize the time tc for which the system decreases its
amplitude from an initial state to half of it. To evaluate this time, we consider Equation 29.
For each combination of parameters (k, d, cu), a numerical integration of the equation 32
is performed with an initial energy Nθ = 100. Figure 10 shows the time tc needed for the
system to reach 50 % of its initial amplitude. We can observe following aspects:

� when the damping λ increases, the clearance d decreases;

� the NES is still efficient for high values of stiffness k.

To design a robust NES we choose a value of clearance d for which high values of stiffness
k provide a good control.
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Figure 10: Time tc (s) to reach 50 % of the initial amplitude as a function of parameters k,
d and cu.

4 Experimental validation

4.1 The prototype

A pendulum is made of a threaded rod. A parallelepiped of steel gives inertia in both
directions. The hinge is made of two pivot linkages allowing the pendulum to rotate around~i
and ~j axes (see Figure 11b). The system is excited by the shake table. The values of x1

and y1 are set with the amplitude of acceleration of the shaker and the angle β between the
table and the pendulum. It is possible to change the configuration of the shaker to excite
the pendulum vertically and provide vertical displacement of the base zO(t) (see Figure 12).

The mass of the NES consists of a translating rod (via two linear ball bearings for
minimizing friction), between two linear springs (see Figure 11a). For simulating the tests
without NES, the mobile mass is blocked.

The parameters of the pendulum and the NES are those displayed on Table 1.
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(a) Experimental piece-wise linear NES.
(b) Ball joint made of two pin
joints.

Figure 11: Details of the experimental setup: (a) the NES is made by a rod moving between
two springs; (b) the ball joint is made with two pin joints.

4.2 The test procedure

The tests consist of sinusoidal excitations with sweeping frequencies. The sweeping is carried
out with increasing and decreasing frequencies. An uni-axial accelerometer measures the
acceleration of the base O. The amplitude of excitation is ensured with a control loop. A
triaxial accelerometer is glued on the pendulum which provides the values of angles ϕ and ψ.
We excite the system with constant velocity amplitude of the base O for two reasons:

� compared to the test with constant acceleration, constant velocity reduces the dis-
placement of the table at low frequencies ;

� the shake table provides the same power to the system independently of the frequency.

For these reasons, the amplitude of acceleration of the base is proportional to the frequencies.

4.3 Preliminary tests

Some preliminary tests are performed to characterize the system. As far as the system is
nonlinear, several tests with different amplitudes of excitation are performed. The results
are presented in Figure 13. It can be seen that:

� The frequency at the peak response decreases when the excitation increases. The main
system presents a nonlinear softening behaviour.

� The shape of the curve with increasing and decreasing frequencies are very different.
The system follows the stable branch of the response curve. When it meets an unstable
state, it jumps on the other stable branch.

4.4 Horizontal base excitation

A test with and without the NES is performed with α = β = 0. As shown in Figure 14, the
NES reduces the amplitude of the pendulum with a factor of 2. To prove the efficiency of

the NES on both angles ϕ and ψ, another test is performed with α =
π

4
. The results shown

in Figure 15 show the NES is still efficient.
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(a) Horizontal excitation (b) Vertical excitation

Figure 12: Pictures of the experimental setup: a pendulum hung to a jib crane and excited
by an electrodynamical shaker in horizontal (a) or vertical (b) directions.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Frequency (Hz)

0

2

4

6

8

10

12

A
c
c
e

le
ra

ti
o

n
 (

m
.s

-2
)

V = 7.1

V = 11.8

V = 16.5

V = 21.2

V = 25.9

V = 30.6

Decreasing

Increasing

Figure 13: Response of the pendulum to several amplitudes of excitation with α = β = 0.
Velocity amplitude V are given in mm s−1.

4.5 Vertical base excitation

The shaker of the table is oriented vertically to give a vertical displacement at the base O.
It is necessary to give an initial energy at the pendulum in order to create oscillations of
the system. This is done by an initial angle θ. Figure 16 shows that without NES, the
pendulum reaches a state with high amplitude of oscillations. With the NES, the system
goes rapidly to the equilibrium point Nθ = 0. This confirms that the NES is efficient for
the vertical base excitation.
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Figure 14: Test result with α = β = 0 with and without NES.
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Figure 15: Test result with α = π/4 and β = 0 with and without NES for amplitudes of
angles ϕ and ψ.

(a) Initial energy given to the pendulum.
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Figure 16: Comparison of the response of the pendulum with and without NES, with vertical
excitation and initial energy.
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5 Conclusion

We propose a method to design a nonsmooth nonlinear energy sink to control a two degrees-
of-freedom pendulum for three types of excitations: horizontal base excitation, vertical
base excitation and the initial energies. First we analysed the governing equations of a
mathematical model of the system with a time multiple scale method. Thanks to this
analysis, we can evaluate the efficiency of the control process by the NES under each of
three types of excitations. The design process consists of tuning six parameters of the
nonsmooth absorber. The mass, the position and the orientation angle are first fixed due
to the technical constraints. Then, the good combinations of the stiffness, clearance and
damping of the nonlinear energy sink are found with parameters maps taking account the
robustness of the device.

Finally, the proposed design tools are tested on a prototype pendulum mounted on the
shake table. The tests show that the nonlinear energy sink is efficient to control the oscilla-
tion of the pendulum. The explained procedure in this paper provides design tools for passive
control of pendulum type systems, such as gondola lifts, by nonsmooth absorber. Obtained
results in this paper (theoretical and experimental) will be used to design a nonlinear system
for controlling pendulum movements of full-scale gondola lift.

Acknowledgement This research was funded by “La Région Auvergne Rhone Alpes” in
the frame of the CALIPSO project.

Author contributions All authors of this paper have contributed equally in its different
scientific aspects (analytical and numerical developments, discussion of results, etc.) and
also in writing the article.

Data availability statement Research data are not shared.

18



A Equations of the system

ε cos(α)2ϕ̈u2 +

[
L2 + εa2 +

Ixx
M

]
ϕ̈+ ε cos(α) cos(ϕ) sin(α)ψ̈u2 + aε sin(α) sin(ϕ)ψ̈u

+ aε cos(α)ü+ 2ε cos(α)2ϕ̇u̇u+ cϕεϕ̇− ε cos(α)2 cos(ϕ) sin(ϕ)ψ̇2u2

+
[
2aε cos(α) cos(ϕ)2 − aε cos(α)

]
ψ̇2u+

[
cos(ϕ) sin(ϕ)L2 + ε cos(ϕ) sin(ϕ)a2

]
ψ̇2

+ 2ε cos(α) cos(ϕ) sin(α)ψ̇u̇u+ 2aε sin(α) sin(ϕ)ψ̇u̇+ [z̈Oε cos(α) cos(ϕ) cos(ψ)

−ẍOε cos(α) sin(ϕ) + εg cos(α) cos(ϕ) cos(ψ)− ÿOε cos(α) cos(ϕ) sin(ψ)]u

+ [L cos(ϕ) + aε cos(ϕ)] ẍO − [aε sin(ϕ) sin(ψ) + L sin(ϕ) sin(ψ)] ÿO

+ [L cos(ψ) sin(ϕ) + aε cos(ψ) sin(ϕ)] [g + z̈O] + Lg cos(ψ) sin(ϕ) = 0

(35)

ε cos(α) cos(ϕ) sin(α)ϕ̈u2 + aε sin(α) sin(ϕ)ϕ̈u+
[
ε− ε cos(α)2 cos(ϕ)2

]
ψ̈u2 + cψεψ̇

− 2aε cos(α) cos(ϕ) sin(ϕ)ψ̈u+

[
L2 cos(ϕ)2 + εa2 cos(ϕ)2 +

Iyy
M

]
ψ̈ + aε cos(ϕ) sin(α)ü

− ε cos(α) sin(α) sin(ϕ)ϕ̇2u2 + aε cos(ϕ) sin(α)ϕ̇2u+ 2ε cos(α)2 cos(ϕ) sin(ϕ)ϕ̇ψ̇u2

+
[
2aε cos(α)− 4aε cos(α) cos(ϕ)2

]
ϕ̇ψ̇u+

[
−2 cos(ϕ) sin(ϕ)L2 − 2ε cos(ϕ) sin(ϕ)a2

]
ϕ̇ψ̇

+ 2ε cos(α) cos(ϕ) sin(α)ϕ̇u̇u+
[
2ε− 2ε cos(α)2 cos(ϕ)2

]
ψ̇u̇u− 2aε cos(α) cos(ϕ) sin(ϕ)ψ̇u̇

+ [−ε sin(α) sin(ψ)− ε cos(α) cos(ψ) sin(ϕ) + L cos(ϕ) cos(ψ) + aε cos(ϕ) cos(ψ)] ÿO

+ [ε cos(ψ) sin(α)u− ε cos(α) sin(ϕ) sin(ψ)u+ aε cos(ϕ) sin(ψ) + L cos(ϕ) sin(ψ)] [g + z̈O] = 0

(36)

aε cos(α)ϕ̈+ aε cos(ϕ) sin(α)ψ̈ + εü− ε cos(α)2ϕ̇2u− 2ε cos(α) cos(ϕ) sin(α)ϕ̇ψ̇u

− 2aε sin(α) sin(ϕ)ϕ̇ψ̇ +
[
ε cos(α)2 cos(ϕ)2 − ε

]
ψ̇2u+ aε cos(α) cos(ϕ) sin(ϕ)ψ̇2

+ cεu̇+ s(u) + ε cos(α) cos(ϕ)ẍO + [ε cos(ψ) sin(α)− ε cos(α) sin(ϕ) sin(ψ)] ÿO

+ [ε cos(α) cos(ψ) sin(ϕ) + ε sin(α) sin(ψ)] [g + z̈O] = 0

(37)
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