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A COMPARISON BETWEEN NEUMANN AND STEKLOV EIGENVALUES

This paper is devoted to a comparison between the normalized first (nontrivial) Neumann eigenvalue |Ω|µ1(Ω) for a Lipschitz open set Ω in the plane, and the normalized first (non-trivial) Steklov eigenvalue P (Ω)σ1(Ω). More precisely, we study the ratio F (Ω) := |Ω|µ1(Ω)/P (Ω)σ1(Ω). We prove that this ratio can take arbitrarily small or large values if we do not put any restriction on the class of sets Ω. Then we restrict ourselves to the class of plane convex domains for which we get explicit bounds. We also study the case of thin convex domains for which we give more precise bounds. The paper finishes with the plot of the corresponding Blaschke-Santaló diagrams (x, y) = (|Ω|µ1(Ω), P (Ω)σ1(Ω)).

Introduction

Let Ω ⊂ R 2 be an open Lipschitz set, the Steklov problem on Ω consists in solving the eigenvalue problem ∆v = 0

Ω ∂ ν v = σv ∂Ω,
where ν stands for the outward normal at the boundary. As the trace operator H 1 (Ω) → L 2 (∂Ω) is compact (when Ω is Lipschitz), the spectrum of the Steklov problem is discrete and the eigenvalues (counted with their multiplicities) go to infinity

0 = σ 0 (Ω) ≤ σ 1 (Ω) ≤ σ 2 (Ω) ≤ • • • → +∞.
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We recall the classical variational characterization of the Steklov eigenvalues, that for the first non zero eigenvalue reads as follow

(1)

σ 1 (Ω) = min Ω |∇v| 2 dx ∂Ω v 2 ds : v ∈ H 1 (Ω), ∂Ω vds = 0 ,
and the minimum is attained at the eigenfunctions associated to σ 1 (Ω).

The Neumann eigenvalue problem on Ω consists in solving the eigenvalue problem

-∆u = µu Ω ∂ ν u = 0 ∂Ω.
As the Sobolev embedding H 1 (Ω) → L 2 (Ω) is also compact here, the spectrum of the Neumann problem is discrete and the eigenvalues (counted with their multiplicities) go to infinity 0 = µ 0 (Ω)

≤ µ 1 (Ω) ≤ µ 2 (Ω) ≤ • • • → +∞.
We also have a variational characterization of the Neumann eigenvalues, that for the first non zero eigenvalue reads as follow

(2)

µ 1 (Ω) = min Ω |∇u| 2 dx Ω u 2 dx : u ∈ H 1 (Ω), Ω udx = 0 ,
and the minimum is attained at the eigenfunctions associated to µ 1 (Ω).

Recently several papers study the link between theses two families of eigenvalues, let us mention for example [START_REF] Girouard | From Steklov to Neumann via homogenisation[END_REF], [START_REF] Girouard | Sharp isoperimetric upper bounds for planar steklov eigenvalues[END_REF], [START_REF] Hassannezhad | A note on Kuttler-Sigillito's inequalities[END_REF], [START_REF] Lamberti | Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues[END_REF]. A natural question is to compare the first (nontrivial) eigenvalues suitably normalized, that is to say to compare |Ω|µ 1 (Ω) and P (Ω)σ 1 (Ω) where Ω ⊂ R 2 is an open Lipschitz set in the plane, |Ω| is its Lebesgue measure, P (Ω) is its perimeter. More precisely, in this paper we study the following spectral shape functional:

(3) F (Ω) = µ 1 (Ω)|Ω| σ 1 (Ω)P (Ω) .

We want to find bounds for F (Ω) (if possible optimal) in the two following cases: the set Ω ⊂ R 2 is just bounded and Lipschitz or the set Ω ⊂ R 2 is bounded and convex. We now present the main results and the structure of the paper. In Section 2 we will show that, if we do not put any restriction on the class of sets, the problem of maximization and minimization of F (Ω) is ill posed, indeed we have Thus we will study the problem of minimizing or maximizing F (Ω) in the class of convex plane domains. It is well known that minimizing (or maximizing) sequences of plane convex domains

• either converge (in the Hausdorff sense) to an open convex set and we will see that, in this case, this set will be the minimizer or maximizer, • or shrink to a segment which leads us to consider such particular sequences of convex domains.

Therefore, in Section 3 we will study the behaviour of the functional F (Ω ) where Ω is a special class of domains, called thin domains (see [START_REF] Bossel | Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger[END_REF]). The main theorem of this section gives the precise asymptotic behaviour of the functional F (Ω ) Theorem 1.1. Let Ω ⊂ R 2 be a sequence of thin domains that converges to a segment in the Hausdorff sense. Then there exists a non negative and concave function h ∈ L ∞ (0, 1) such that the following asymptotic behaviour holds:

F (Ω ) --→ →0 F (h) := µ 1 (h) 1 0 h(x)dx σ 1 (h)
.

Where µ 1 (h) is the first non zero eigenvalue of

   -d dx h(x) du k dx (x) = µ k (h)h(x)u k (x)
x ∈ 0, 1 h(0) du k dx (0) = h(1) du k dx (1) = 0, and σ 1 (h) is the first non zero eigenvalue of

   -d dx h(x) dv k dx (x) = σ k (h)v k (x)
x ∈ 0, 1 h(0) dv k dx (0) = h(1) dv k dx (1) = 0. In the rest of Section 3 we are interested in studying in which way a sequence of thin domains Ω must collapse in order to obtain the lowest possible value of the limit F (Ω ). From Theorem 1.1 this problem is equivalent to study the minimization problem for the one-dimensional spectral functional F (h) in the class of L ∞ (0, 1), concave and non negative functions. In particular in Theorem 3.7 we will show that there exists a minimizer and also that the function h ≡ 1 is a local minimizer.

Section 4 is devoted to the study of upper and lower bounds for the functionals F (h) and F (Ω). We start by showing the following bounds for the functional F (h) Theorem 1.2. For every non negative and concave function h ∈ L ∞ (0, 1) the following inequalities hold

π 2 12 ≤ F (h) ≤ 4
Then we will prove the following bounds for the functional F (Ω)

Theorem 1.3. There exists an explicit constant C 1 such that, for every convex open set Ω ⊂ R 2 , the following inequalities hold

π 2 6 3 √ 18 ≤ F (Ω) ≤ C 1 ≤ 9.04
The explicit constant C 1 will be described in Section 4.

In the last Section we are interested in plotting the Blaschke-Santaló diagrams

E = {(x, y) where x = σ 1 (Ω)P (Ω), y = µ 1 (Ω)|Ω|, Ω ⊂ R 2 } E C = {(x, y) where x = σ 1 (Ω)P (Ω), y = µ 1 (Ω)|Ω|, Ω ⊂ R 2
, Ω convex.} This kind of diagrams for spectral quantities has been recently studied by different authors, let us mention for example [START_REF] Antunes | On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian[END_REF], [START_REF] Bucur | On the attainable eigenvalues of the Laplace operator[END_REF], [START_REF] Berg | On the relations between principal eigenvalue and torsional rigidity[END_REF], [START_REF] Ftouhi | The diagram (λ1, µ1)[END_REF], [START_REF] Lucardesi | On Blaschke-Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue[END_REF]. In this section, we show that the diagram E is, in some sense, trivial while the diagram E C is more complicated delimited by two unknown curves. We present some numerical experiments and give some conjectures for this diagram.

Existence or non-existence of extremal domains

We show that, in general, the problem of minimization and maximization of the functional F (Ω) is ill posed, in the sense that one can construct sequences of domains for which F (Ω ) converge to 0 and sequences of domains for which F (Ω ) converge to +∞. In order to prove that the infimum is 0 we will construct a sequence of domains Ω for which σ 1 (Ω )P (Ω ) → c > 0 and µ 1 (Ω )|Ω | → 0. We will use similar ideas in order to construct another sequence Ω for which σ 1 (Ω )P (Ω ) → 0 and µ 1 (Ω )|Ω | → c > 0, proving in this way that the supremum is +∞.

We construct the desired sequences Ω by perturbing a given set Ω by adding oscillations on the boundary (see [START_REF] Bucur | Stability and instability issues of the Weinstock inequality[END_REF] for the details of the construction). Given two compact sets Ω 1 , Ω 2 ∈ R 2 we denote by d H (Ω 1 , Ω 2 ) the Hausdorff distance between the two sets (see [START_REF] Henrot | Shape variation and optimization[END_REF]), the key result is the following Theorem 2.2 (Bucur-Nahon [START_REF] Bucur | Stability and instability issues of the Weinstock inequality[END_REF]). Let Ω, ω ⊂ R 2 be two smooth, conformal open sets. Then there exists a sequence of smooth open sets (Ω ) >0 with uniformly bounded perimeter and satisfying a uniform ε-cone condition (see [START_REF] Henrot | Shape variation and optimization[END_REF]) such that

(4) lim →0 d H (∂Ω , ∂Ω) = 0, lim →0 P (Ω )σ k (Ω ) = P (ω)σ k (ω), lim →0 |Ω |µ k (Ω ) = |Ω|µ k (Ω).
Proof of Proposition 2.1. Let δ > 0, let Ω be a simply connected domain for which µ 1 (Ω)|Ω| ≤ δ (for example a dumbbell shape domain with the channel very thin see [START_REF] Jimbo | Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels[END_REF]). Let ω be a disc, we know that σ 1 (ω)P (ω) = 2π. Using Theorem 2.2 we can perturb the domain Ω in such a way that

lim →0 P (Ω )σ 1 (Ω ) = 2π, lim →0 |Ω |µ 1 (Ω ) ≤ 2δ
Thus we can conclude that, for small enough F (Ω ) ≤ 2δ 2π -1 since δ was arbitrary small we conclude that:

inf{F (Ω) : Ω ⊂ R 2 open and Lipschitz} = 0.
For the other case, we choose Ω as the unit disc, then µ 1 (Ω)|Ω| = πj 2 11 (j 11 is the first zero of the derivative of the Bessel function J 1 ). Let ω be a set for which σ 1 (ω)P (ω) ≤ δ (for example a dumbbell shape domain with the channel very thin see [START_REF] Bucur | Asymptotic behaviour of the Steklov spectrum on dumbbell domains[END_REF]), using arguments similar at the ones above we conclude that

πj 2 11 -1 2δ ≤ F (Ω ),
since δ was arbitrary small we conclude that: sup{F (Ω) : Ω ⊂ R 2 open and Lipschitz} = +∞.

We mention that there exists another way to construct a sequence of domains such that F (Ω ) → 0, this method is based on an homogenization technique, the key result is the following (see Theorem 1.14 in [START_REF] Girouard | Sharp isoperimetric upper bounds for planar steklov eigenvalues[END_REF]): Theorem 2.3 (Girouard-Karpukhin-Lagacé [START_REF] Girouard | Sharp isoperimetric upper bounds for planar steklov eigenvalues[END_REF]). There exists a sequence of domains Ω ⊂ R 2 such that for every k ∈ N the following holds

σ k (Ω )P (Ω ) → 8πk µ k (Ω )|Ω | → 0
From now on we will restrict ourselves to the class of convex domains. As recalled in the Introduction, a minimizing (or a maximizing) sequence of plane convex domains Ω has the following behaviour: i either the minimizing (maximizing) sequence Ω converges to a segment (for the Hausdorff metric). ii or the minimizing (maximizing) sequence Ω converges to a convex open set Ω In the second case (ii), we deduce that there exists a minimizer (maximizer) for the functional F (Ω) in the class of convex domains. Indeed, the four quantities area, perimeter, µ 1 and σ 1 are continuous for Hausdorff convergence of plane convex domains (see [START_REF] Henrot | Shape variation and optimization[END_REF] for the first three and [START_REF] Bogosel | The Steklov spectrum on moving domains[END_REF] or [START_REF] Bucur | L ∞ bounds of Steklov eigenfunctions and spectrum stability under domain variation[END_REF] for Steklov eigenvalues).

Convex case: Thin Domains

We start by defining the following space of functions [START_REF] Bonnesen | Les problémes des isopérimétres et de isèphipanes[END_REF] L := {h ∈ L ∞ (0, 1) : h non negative, concave and

1 0 h = 1}.
Given two functions h -∈ L and h + ∈ L, we define the class of thin domains Ω in the following way (see Remark 3.6): We notice that the functional F (Ω) is scale invariant so without loss of generality we have fixed D(Ω ) = 1 for every .

(6) Ω = {(x, y) ∈ R 2 | 0 ≤ x ≤ 1, -h -(x) ≤ y ≤ h + (x)}. h + (x) -h -(x) (0, 0) (1, 0)
In the next lemma we give a compactness result for the space of functions L Lemma 3.1. Let h n ∈ L be a sequence of functions, then there exists a function h ∈ L such that, up to a subsequence that we still denote by h n , we have

h n → h in L 2 (0, 1)
h n → h uniformly on every compact subset of (0, 1).

Proof. From the concavity of the functions h n and from the fact that ||h n || L 1 (0,1) = 1, we conclude that ||h n || L ∞ (0,1) ≤ 2. Let us assume first that the functions h n are smooth, say C 1 inside (0, 1). We fix a parameter 0 < δ < 1 and we consider the following interval

I δ = [δ, 1 -δ].
The functions h n being uniformly bounded in I δ , from the concavity and the uniform bound we conclude

- 2 δ ≤ - h n (x) δ ≤ h n (x) ≤ h n (x) δ ≤ 2 δ ∀ x ∈ I δ .
We can now apply Ascoli-Arzelà Theorem and we conclude that there exists a function h ∈ C([0, 1]) such that, for every 0 < δ < 1, up to a subsequence that we still denote by h n h n → h uniformly in I δ . From the convergence above and from the fact that h n is concave for every n we infer that h is also concave in I δ . So for every interval of the type I δ we found the limit function h. Now we need to analyze what happens on the two extremities of the interval [0, 1]. We consider the bounded sequence h n (0), up to a subsequence, this sequence has a limit, we extend the function h that we found above to be equal at that limit in x = 0, so h(0) = lim n→∞ h n (0). We use the same argument for the point x = 1. Now it is straightforward to check (by passing to the limit in the concavity inequality for h n ) that h is a concave function on the interval [0, 1] and that

h n → h in L 2 (0, 1).
We finally argue by density to extend the previous result to a general sequence h n .

3.1. Asymptotic behaviour of eigenvalues. In order to obtain the asymptotics given in Theorem 1.1 we determine the behaviours of µ 1 (Ω ) and σ 1 (Ω ) where Ω are thin domains.

We start with the analysis of σ 1 (Ω ) :

Lemma 3.2.
Let Ω be a sequence of thin domains defined by h = h + + h -and let σ 1 (Ω ) be the sequence of the first Steklov eigenvalues. Then, we have:

σ 1 (Ω ) = σ 1 (h) 2 + o( ) as → 0,
where σ 1 (h) is the first non zero eigenvalue of

(7)    -d dx h(x) dv dx (x) = σ(h)v(x) x ∈ 0, 1 h(0) dv dx (0) = h(1) dv dx (1) = 0.
In the previous Lemma the problem [START_REF] Bucur | On the attainable eigenvalues of the Laplace operator[END_REF] is intended in weak sense. The function h ∈ L is allowed to vanish at the extremities of the interval [0, 1], therefore the operator d dx h(x) dv dx is not uniformly elliptic and the existence of eigenvalues and eigenfunctions does not follow in a classical way. For this reason before proving Lemma 3.2 we will prove that actually problem [START_REF] Bucur | On the attainable eigenvalues of the Laplace operator[END_REF] is an eigenvalue problem and we will also prove some continuity property of the eigenvalue σ 1 (h). Lemma 3.3. For every h ∈ L problem (7) posses a sequence of eigenvalues and eigenfunctions, moreover let h n ∈ L and h ∈ L be such that h n → h in L 2 (0, 1), then, we have

σ 1 (h n ) → σ 1 (h)
Proof. We give a sketch of the first part of the proof, for more detail see for instance [START_REF] Troesch | An isoperimetric sloshing problem[END_REF].

Let f ∈ L 2 (0, 1), the inverse of the operator -d dx h(x) dv dx with the boundary conditions h(0)v (0) = h(1)v (1) = 0 is given by the following integral representation:

(8) v(x) = 1 0 g(x, y)f (y)dy with g(x, y) = min(x,y) 0 t h(t) dt + 1 max(x,y) 1 -t h(t) dt.
From the concavity and positivity of h ∈ L it follows that there exists a constant K > 0 such that

(9) h(x) ≥ Kx(1 -x) for a. e. 0 ≤ x ≤ 1.
Using this lower bound in [START_REF] Bucur | L ∞ bounds of Steklov eigenfunctions and spectrum stability under domain variation[END_REF] it is easy to check that g(x, y)

∈ L 2 ([0, 1] × [0, 1]
). We conclude that the integral operator defined in ( 8) is an Hilbert-Schmidt integral operator and so problem [START_REF] Bucur | On the attainable eigenvalues of the Laplace operator[END_REF] posses a sequence of eigenvalues and eigenfunctions. Let h n ∈ L and h ∈ L be such that h n → h in L 2 (0, 1), we define

v n (x) = 1 0 g n (x, y)f (y)dy with g n (x, y) = min(x,y) 0 t h n (t) dt + 1 max(x,y) 1 -t h n (t) dt.
The aim is to prove that v n → v in L 2 (0, 1), this, by classical results (see [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]), will imply the convergence of the spectrum and in particular the convergence of the first eigenvalue. We know that up to a subsequence h n → h a. e. in [0, 1], now using the lower bound [START_REF] Bucur | Asymptotic behaviour of the Steklov spectrum on dumbbell domains[END_REF] we obtain an upper bound g n (x, y) ≤ C, for every n ∈ N and for every (x, y)

∈ [0, 1]×[0, 1].
We can apply the dominated convergence on the sequence g n (x, y) and we can conclude that g n (x, y) → g(x, y) for every (x, y)

∈ [0, 1] × [0, 1].
Using a similar argument we can conclude also that v n (x) → v(x) for every x ∈ [0, 1]. Thanks to this convergence and thanks to the uniform bound on g n (x, y) we can use the dominated convergence to conclude that

1 0 (v n (x) -v(x)) 2 dx → 0.
we now prove Lemma 3.2

Proof of Lemma 3.2. We consider a sequence of collapsing thin domains Ω , parametrized by the function h = h + + h -. Let v 1 be the eigenfunction of the problem (7) associated to the eigenvalue σ 1 (h), we define the function

V 1 (x 1 , x 2 ) = v 1 (x 1 ) for every (x 1 , x 2 ) ∈ Ω .
We define the mean value of the function V 1 on ∂Ω :

M V := 1 P (Ω ) ∂Ω V 1 ds = 1 P (Ω ) 1 0 v 1 ( 1 + ( h + ) 2 + 1 + ( h -) 2 )dx 1 .
From [START_REF] Bucur | On the attainable eigenvalues of the Laplace operator[END_REF] it is straightforward to check that 1 0 v 1 = 0, so we have the following limit [START_REF] Bucur | Stability and instability issues of the Weinstock inequality[END_REF] lim

→0 M V = 0.
We can use the function V 1 -M V as a test function in the variational formulation (1), we obtain

σ 1 (Ω ) ≤ Ω |∇V 1 | 2 dx ∂Ω (V 1 -M V ) 2 ds = 1 0 (v 1 ) 2 hdx 1 1 0 (v 1 -M V ) 2 ((1 + ( h + ) 2 ) 1 2 + (1 + ( h -) 2 ) 1 2 )dx 1 .
From [START_REF] Bucur | Stability and instability issues of the Weinstock inequality[END_REF] and the above inequality we can conclude that for small enough

(11) σ 1 (Ω ) ≤ 2 1 0 (v 1 ) 2 hdx 1 1 0 (v 1 ) 2 dx 1 + o( ) = σ 1 (h) 2 + o( ),
where the last equality follows from the variational characterization of the eigenvalue σ 1 (h).

On the other hand, let us denote Ω 1 the convex domain corresponding to = 1. Let v be the first Steklov eigenfunction on the domain Ω normalized in such a way that ||v || L 2 (∂Ω ) = 1. We define the following function

v (x 1 , x 2 ) = v (x 1 , x 2 ) ∀ (x 1 , x 2 ) ∈ Ω 1 .
We start with the bound of ||∇v || L 2 (Ω 1 ) ,

Ω 1 |∇v | 2 dx ≤ Ω 1 ∂v ∂x 1 2 + 1 2 ∂v ∂x 2 2 dx = 1 Ω |∇v | 2 dy = σ 1 (Ω ) ≤ C
where we did the change of coordinates y 1 = x 1 , y 2 = x 2 and the last inequality is true because of [START_REF] Cheng | Eigenvalue comparison theorems and its geometric applications[END_REF]. We want now to bound ||v || L 2 (Ω 1 ) . By the Poincaré-Friedrichs inequality or the variational characterization of Robin eigenvalues (we denote by λ R 1 (Ω, β) the first Robin eigenvalue of the domain Ω with the boundary parameter β), we get ( 12)

Ω v 2 dx ≤ 1 λ R 1 (Ω , 1) Ω |∇v | 2 dx + ∂Ω v 2 ds .
Using Bossel's inequality, see [START_REF] Bossel | Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger[END_REF], we infer λ R 1 (Ω , 1) ≥ h(Ω )-1 where h(Ω ) is the Cheeger constant of Ω . Now by monotonicity of the Cheeger constant with respect to inclusion, we have h(Ω ) ≥ h(R ) where R is a rectangle of length 1 and width 4 . Now the Cheeger constant of such a rectangle can be computed explicitely, see [START_REF] Kawohl | Characterization of Cheeger sets for convex subsets of the plane[END_REF] and it turns out that, for any , h(R ) ≥ 2/ . Therefore, using [START_REF] Ftouhi | The diagram (λ1, µ1)[END_REF] and the normalization ∂Ω v 2 ds = 1 we finally get

Ω v 2 dx ≤ (C + 1) ≤ 2 .

Now, coming back to v , we have

Ω 1 v 2 dx = 1 Ω v 2 dx ≤ 2
therefore we conclude that there exists V ∈ H 1 (Ω 1 ) such that (up to a sub-sequence that we still denote by v )

(13) v V in H 1 (Ω 1 ),
and strongly in L 2 .

We also know that V does not depend on x 2 , indeed

Ω 1 ∂v ∂x 2 2 dx = Ω ∂v ∂x 2 2 dx ≤ C 2 → 0.
We define the function V as the restriction of V to the variable x 1 . We want to prove that 1 0 V dx 1 = 0 and V is not a constant function. By definition of v and v the following equality holds

0 = ∂Ω v ds = 1 0 v (x 1 , h + (x 1 )) 1 + ( h + ) 2 dx 1 + 1 0 v (x 1 , h -(x 1 )) 1 + ( h -) 2 dx 1 .
Now, v converges strongly in L 2 to V while 1 + ( h + ) 2 converges weakly in L 2 to 1, thus passing to the limit yields ( 14)

1 0 V dx 1 = 0.
Now from the fact that ||v || L 2 (∂Ω ) = 1, using similar arguments we conclude that:

1 0 V 2 dx 1 = 2,
from this equality and ( 14) we conclude that V cannot be a constant function.

Using the convergence given in [START_REF] Girouard | From Steklov to Neumann via homogenisation[END_REF] and the relations that we have just obtained, we conclude that for small enough we have the following lower bound (15)

σ 1 (Ω ) = Ω |∇v | 2 dx ∂Ω v 2 ds ≥ Ω 1 |∇v | 2 dx 2( 1 0 V 2 dx 1 + o(1)) ≥ 2 1 0 (V ) 2 hdx 1 1 0 V 2 dx 1 + o( ) ≥ σ 1 (h) 2 + o( ).
The last inequality is true because σ 1 (h) has the following variational characterization

σ 1 (h) = min 1 0 (v ) 2 hdx 1 1 0 v 2 dx 1 : v ∈ H 1 (0, 1), 1 0 vdx 1 = 0 .
From ( 11) and ( 15) we finally conclude that

σ 1 (Ω ) = σ 1 (h) 2 + o( ) as → 0,
In the following Lemma we will get the asymptotic behaviour of the Neumann eigenvalue µ 1 (Ω ) where Ω are thin domains. Lemma 3.4. Let Ω be a sequence of thin domains parametrized by a function h = h + +h - and let µ 1 (Ω ) be the sequence of the first Neumann eigenvalues. Then, we have:

µ 1 (Ω ) = µ 1 (h) + o(1) as → 0,
Where µ 1 (h) is the first non zero eigenvalue of ( 16) 16) is intended in weak sense. As we did for the Steklov case, before proving Lemma 3.4 we will prove that problem ( 16) is an eigenvalue problem and we will also prove some continuity property for the eigenvalue µ 1 (h). Lemma 3.5. For every h ∈ L problem (16) posses a sequence of eigenvalues and eigenfunctions, moreover let h n ∈ L and h ∈ L be such that h n → h in L 2 (0, 1), then we have

   -d dx h(x) du dx (x) = µ(h)h(x)u(x) x ∈ 0, 1 h(0) du dx (0) = h(1) du dx (1) = 0, The problem (
µ 1 (h n ) → µ 1 (h) Proof. Let f ∈ L 2 (0, 1), the inverse of the operator -1 h(x) d dx h(x)
du dx with the boundary conditions h(0)u (0) = h(1)u (1) = 0 is given by the integral representation:

u(x) = 1 0 g(x, y)h(y)f (y)dy with g(x, y) = min(x,y) 0 t h(t) dt + 1 max(x,y) 1 -t h(t) dt.
The proof is a straightforward adaptation of the proof of Lemma 3.3 at this integral operator.

we now prove Lemma 3.4

Proof of Lemma 3.4. We consider a sequence of collapsing thin domains Ω , we define the following function h = h + + h -. Let u 1 the eigenfunction of the problem ( 16) associated to the eigenvalue µ 1 (h), we define the function U 1 (x 1 , x 2 ) = u 1 (x 1 ) for every (x 1 , x 2 ) ∈ Ω . We define the mean value of the function U 1

M U := 1 |Ω | Ω U 1 dx = 1 |Ω 1 | 1 0 u 1 hdx 1 .
From [START_REF] Hassannezhad | A note on Kuttler-Sigillito's inequalities[END_REF] it is straightforward to check that 1 0 u 1 hdx 1 = 0, so we have [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF] M U = 0.

Therefore, we can use the function U 1 as a test function in the variational formulation (2) and we obtain

µ 1 (Ω ) ≤ Ω |∇U 1 | 2 dx Ω U 2 1 dx = 1 0 (u 1 ) 2 hdx 1 1 0 u 2 1 hdx 1 .
From the above inequality we can conclude that for any

(18) µ 1 (Ω ) ≤ 1 0 (u 1 ) 2 hdx 1 1 0 (u 1 ) 2 hdx 1 = µ 1 (h),
where the last equality is true by the variational characterization for the eigenvalue µ 1 (h).

Let u be the first Neumann eigenfunction on the domain Ω normalized in such a way that ||u || L 2 (Ω ) = 1, we define the following function

u (x 1 , x 2 ) = 1 2 u (x 1 , x 2 ) ∀(x 1 , x 2 ) ∈ Ω 1 .
We start with the bound of ||∇u || L 2 (Ω 1 ) ,

Ω 1 |∇u | 2 dx ≤ Ω 1 ∂u ∂x 1 2 + 1 2 ∂u ∂x 2 2 dx ≤ Ω |∇u | 2 dy ≤ µ 1 (h)
where we did the change of coordinates y 1 = x 1 , y 2 = x 2 and the last inequality is true because of [START_REF] Henrot | Maximizing p 2 µ1 among symmetric convex sets[END_REF]. Using the same change of variable we obtain ||u || L 2 (Ω 1 ) = 1.

We conclude that there exists U ∈ H 1 (Ω 1 ) such that (up to a sub-sequence that we still denote by u ) [START_REF] Henrot | Shape variation and optimization[END_REF] u U in H 1 (Ω 1 ) and strongly in L 2 .

We also know that U does not depend on x 2 , indeed

Ω 1 ∂U ∂x 2 2 dx ≤ lim inf Ω 1 ∂u ∂x 2 2 dx = lim inf 2 Ω ∂u ∂x 2 2 dx = 0.
We define the function U that is the restriction of U to the variable x 1 . We want to prove that 1 0 U hdx 1 = 0 and U is not a constant function. By definition of u and u the following equality holds

Ω 1 u dx = 1 1 2 Ω u = 0 ∀
From the convergence results [START_REF] Henrot | Shape variation and optimization[END_REF] we know that, up to a subsequence, u converge a. e. to U so passing to the limit as goes to zero in the above equality we conclude that (20)

1 0 U hdx 1 = 0.
Now from the fact that ||u || L 2 (∂Ω 1 ) = 1, using similar arguments we conclude that:

1 0 U 2 hdx 1 = 1,
from this equality [START_REF] Hernández Cifre | Is there a planar convex set with given width, diameter, and inradius?[END_REF] and the fact that 1 0 h = 1 we conclude that U cannot be a constant function.

Using the convergence given in [START_REF] Henrot | Shape variation and optimization[END_REF] and the relations that we have just obtained, we conclude that for small enough we have the following lower bound [START_REF] Jimbo | Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels[END_REF] µ

1 (Ω ) = Ω |∇u | 2 dx Ω u 2 dx ≥ Ω 1 |∇u | 2 dx Ω 1 u 2 dx ≥ 1 0 (U ) 2 hdx 1 1 0 U 2 hdx 1 + o(1) ≥ µ 1 (h) + o(1).
The last inequality is true because µ 1 (h) has the following variational characterization

µ 1 (h) = min 1 0 (u ) 2 hdx 1 1 0 u 2 hdx 1 : u ∈ H 1 (0, 1), 1 0 uhdx 1 = 0 .
From ( 18) and ( 21) we finally conclude that

µ 1 (Ω ) = µ 1 (h) + o(1) as → 0,
Remark 3.6. We can consider the most general class of collapsing thin domains given by the following parametrization:

Ω = {(x, y) ∈ R 2 | 0 ≤ x ≤ 1, -g -( )h -(x) ≤ y ≤ g + ( )h + (x)}.
Where h -∈ L, h + ∈ L and g -( ), g + ( ) are positive functions that go to zero when goes to zero. We define the following limit

lim →0 g -( ) g + ( ) = K < +∞,
(if the limit above is +∞ we consider the inverse and in what follows we replace g + ( ) with g -( )). In this case the asymptotics of the eigenvalues σ (Ω ) and µ 1 (Ω ) become:

σ 1 (Ω ) ∼ σ 1 (h + + Kh -) 2 g + ( ) + o(g + ( )) as → 0 µ 1 (Ω ) ∼ µ 1 (h + + Kh -) + o(1) as → 0.
The proof of this asymptotics use the same arguments of the proofs of Lemma 3.2 and Lemma 3.4. We prefer to give the statments and the proofs for g + ( ) = g -( ) = in order to simplify the exposition and also because this kind of generality is not needed to study the asymptotic behaviour of F (Ω ).

Study of the asymptotic behaviour of F (Ω ). The proof of Theorem 1.1 immediately follows from the above results

Proof of Theorem 1.1. Without loss of generality we can rescale the sequence Ω in such a way that D(Ω ) = 1. we consider the sequence F (Ω ), from Lemma 3.2 and Lemma 3.4 we obtain the desired result by sending to zero.

Let h ∈ L, by Theorem 1.1, the functional

F (h) = µ 1 (h) 1 0 h(x)dx σ 1 (h)
describes the behaviour of the functional F (Ω ), when Ω is a sequence of thin domains that converges to a segment in the Hausdorff sense. We want to study the problem of finding in which way a sequence of thin domains Ω must collapse in order to obtain the lowest possible value of the limit F (Ω ). For this reason we prove the following theorem: Theorem 3.7. The minimization problem (resp. the maximization problem)

(22) inf{F (h) : h ∈ L}, ( resp. sup{F (h) : h ∈ L})
has a solution, moreover the constant function h ≡ 1 is a local minimizer.

Proof. The existence of the minimizer or the maximizer follows directly from the compactness result given in Lemma 3.1 and the continuity results given in Lemma 3.2 and Lemma 3.4. The proof of the fact that h ≡ 1 is a local minimizer is divided in two steps, in the first step we prove that the first optimality condition holds and in the second step we prove that the second optimality condition holds. Before we start the proof we fix the notation, we consider t > 0 a positive number, and we define the following derivatives:

• for every φ ∈ L we define µ t,φ := µ 1 (1+tφ) and we denote by u t,φ the corresponding eigenfunction. We use the following notation for the derivatives of the eigenvalues:

μφ := d dt µ 1 (1 + tφ) t=0 μφ := d 2 dt 2 µ 1 (1 + tφ) t=0 ,
and the following notation for the derivative of the eigenfunctions:

uφ := d dt u t,φ t=0 üφ := d 2 dt 2 u t,φ t=0 .
• for every φ ∈ L we define σ t,φ := σ 1 (1+tφ) and we denote by v t,φ the corresponding eigenfunction. We use the following notation for the derivatives of the eigenvalues:

σφ := d dt σ 1 (1 + tφ) t=0 σφ := d 2 dt 2 σ 1 (1 + tφ) t=0 ,
and the following notation for the derivative of the eigenfunctions:

vφ := d dt v t,φ t=0 vφ := d 2 dt 2 v t,φ t=0 .
We notice that (23) µ 0,φ = σ 0,φ = π 2 and u 0,φ (x) = v 0,φ (x) = √ 2 cos(πx)

Step 1. We start by proving the following inequality

d dt F (1 + tφ) t=0 ≥ 0 ∀ φ ∈ L.
The derivative of F (h) has the following expression ( 24)

d dt F (1 + tφ) t=0 = μφ π 2 + 1 0 φdx - σφ π 2
. Since this kind of perturbation is classical, we just perform a formal computation here, the complete justification would involve an implicit function theorem together with Fredholm alternative. Moreover the eigenvalues µ 0,φ and σ 0,φ are simple eigenvalues so in particular they are twice differentiable. We start by computing σφ , from [START_REF] Bucur | On the attainable eigenvalues of the Laplace operator[END_REF] we know that

d dt - d dx (1 + tφ) dv t,φ dx t=0 = d dt [σ t,φ v t,φ ] t=0
, so we obtain the following differential equation satisfied by vφ ( 25)

-(φ v 0,φ + φv 0,φ + v φ ) = σφ v 0,φ + σ 0,φ vφ .
Multiplying both side of the above equation by v 0,φ and integrating, recalling [START_REF] Kubota | Einige ungleischheitsbezichungen uber eilinien und eiflachen[END_REF], we obtain

(26) σφ = 2π 2 1 0 φ sin 2 (πx)dx.
We now compute μφ , from [START_REF] Hassannezhad | A note on Kuttler-Sigillito's inequalities[END_REF] we know that

d dt - d dx (1 + tφ) du t,φ dx t=0 = d dt [µ t,φ (1 + tφ)u t,φ ] t=0
, so we obtain the following differential equation satisfied by uφ ( 27) -(φ u 0,φ + u φ ) = μφ u 0,φ + µ 0,φ uφ .

Multiplying both side of the above equation by u 0,φ and integrating, recalling [START_REF] Kubota | Einige ungleischheitsbezichungen uber eilinien und eiflachen[END_REF], we obtain

(28) μφ = 2π 2 1 0 φ(sin 2 (πx) -cos 2 (πx))dx.
Using the explicit formulas given by ( 26) and ( 28) in [START_REF] Kuttler | Inequalities for membrane and Stekloff eigenvalues[END_REF] we finally obtain

d dt F (1 + tφ) t=0 = - 1 0 φ cos(2πx)dx ∀ φ ∈ L.
Now it is well known (see [START_REF] Wang | Convex functions and Fourier coefficients[END_REF]) that the first cosine Fourier coefficent of a concave function is non positive. Moreover it is easy to check that if φ ∈ L then 1 0 φ cos(2πx)dx = 0 if and only if φ is a linear function. So we have two cases i The function φ ∈ L is not a linear function. In this case

d dt F (1 + tφ) t=0 > 0
and we conclude that h ≡ 1 is a local minimizer for this kind of perturbation. ii The function φ is of the form φ(x) = B + Ax, in this case

d dt F (1 + t(B + Ax)) t=0 = 0.
In order to conclude the proof we need to study the second variation of the functional F (h) for perturbation of the form φ(x) = B + Ax.

Step 2. Given two real numbers (A, B) ∈ R 2 \ (0, 0), we want to prove that

(29) d 2 dt 2 F (1 + t(B + Ax)) t=0 > 0.
We start by noticing that for every k ∈ R different from zero we have that F (kh) = F (h), so in order to prove inequality [START_REF] Scott | Inequalities for convex sets[END_REF] it is enough to prove that (30)

d 2 dt 2 F (1 + tAx) t=0 > 0.
This second derivative has the following expression

(31) d 2 dt 2 F (1 + tAx) t=0 = μAx π 2 + μAx A π 2 - σAx A π 2 - 2 σAx μAx π 4 - σAx π 2 + 2 σ2
Ax π 4 . From ( 26) and [START_REF] Sachs | Ungleichungen für Umfang, Flächeninhalt und Trägheitsmoment konvexer Kurven[END_REF] it is easy to check that: [START_REF] Wang | Convex functions and Fourier coefficients[END_REF] μAx = 0 and σAx = Aπ 2 2 .

We start by computing σAx , from [START_REF] Bucur | On the attainable eigenvalues of the Laplace operator[END_REF] we know that

d 2 dt 2 - d dx (1 + tAx) dv t,Ax dx t=0 = d 2 dt 2 [σ t,Ax v t,Ax ] t=0 .
After a similar computation as the one we did in order to compute σφ we obtain

(33) σAx = 2 1 0 Ax v Ax v 0,Ax -σAx vAx v 0,Ax dx.
Now we have to find the function vAx and then compute the integral above. From ( 25), ( 23) and ( 32) we can conclude that vAx must satisfies the following differential equation

-v Ax (x) -π 2 vAx (x) = Aπ 2 √ 2 -Ax √ 2π 2 cos(πx) -A √ 2π sin(πx).
We are free to choose a normalization for the eigenfunctions of the problem ( 7), so we can assume that, for every t, we have

1 0 v 2 t,Ax dx = 1.
From this we conclude that:

2 1 0 vAx v 0,Ax dx = d dt 1 0 v 2 t,Ax dx = 1 t=0 = 0.
From the boundary conditions of the problem ( 7) we obtain the following boundary conditions for vAx

v Ax (0) = d dt v t,Ax (0) t=0 = 0 v Ax (1) = d dt (1 + tA)v t,Ax (1) 
t=0 = 0.
We finally obtain that vAx must satisfy

           -v Ax (x) -π 2 vAx (x) = Aπ 2 √ 2 -Ax √ 2π 2 cos(πx) -A √ 2π sin(πx) x ∈ 0, 1 v Ax (0) = v Ax (1) = 0 1 0 vAx v 0,Ax dx = 0.
This problem admits a unique solution given by the following function: [START_REF] Weinstock | Inequalities for a classical eigenvalue problem[END_REF] vAx

(x) = A 4 √ 2 - A 2 √ 2 x cos(πx) + A 2 √ 2π + Aπ 2 √ 2 (x 2 -x) sin(πx).
Putting the expressions given by ( 23) and [START_REF] Weinstock | Inequalities for a classical eigenvalue problem[END_REF] in the formula [START_REF] Weinberger | An isoperimetric inequality for the N -dimensional free membrane problem[END_REF] we finally obtain

(35) σAx = A 2 8 (3 -π 2 ).
We now compute μAx , from [START_REF] Hassannezhad | A note on Kuttler-Sigillito's inequalities[END_REF] we know that

d 2 dt 2 - d dx (1 + tAx) du t,Ax dx t=0 = d dt [µ t,Ax (1 + tAx)u t,Ax ] t=0 ,
After a similar computation as the one we did in order to compute μφ we obtain

(36) μAx = 2 1 0 Ax( u Ax u 0,Ax -π 2 uAx u 0,Ax )dx.
Now we have to find the function uAx and then compute the integral above. From ( 28), [START_REF] Kubota | Einige ungleischheitsbezichungen uber eilinien und eiflachen[END_REF] and [START_REF] Wang | Convex functions and Fourier coefficients[END_REF] we can conclude that uAx must satisfy the following differential equation

-u Ax (x) -π 2 uAx (x) = -A √ 2π sin(πx).
We are free to choose a normalization for the eigenfunction of the problem ( 16), so we can assume that for every t we have 1 0 (1 + tAx)u 2 t,Ax dx = 1, by differentiating with respect to t this relation and computing the derivative at zero we conclude that

1 0 uAx u 0,Ax dx = A 1 0
x cos(πx)dx.

Using the same argument as above for the boundary conditions for uAx we can conclude that uAx must satisfy

         -u Ax (x) -π 2 uAx (x) = -A √ 2π sin(πx) x ∈ 0, 1 u Ax (0) = u Ax (1) = 0 1 0 uAx u 0,Ax dx = A 1 0
x cos(πx)dx. This problem admits a unique solution given by the following function:

(37) uAx (x) = A √ 2 1 π sin(πx) -x cos(πx)
Putting the expressions given by ( 23) and (37) in the formula (36) we finally obtain

(38) μAx = 3 2 A 2 .
Finally putting ( 35), ( 38) and ( 32) inside ( 31) we obtain

(39) d 2 dt 2 G(1 + tAx) t=0 = A 2 (9 + π 2 ) 8π 2 > 0
This concludes the proof.

Convex case: upper and lower bounds for F (h) and F (Ω)

In this section we prove Theorem 1.2 and Theorem 1.3. For every 0 < x 0 < 1 we define the following triangular shape function

T x 0 =    x x 0 x ∈ 0, x 0 ] 1-x 1-x 0 x ∈ x 0 , 1].
Before proving Theorem 1.2 let us state the following Lemma, that will be crucial in the proof of the upper bound for F (h) Lemma 4.1. For every 0 < x 0 < 1 the following equality holds

µ 1 (T x 0 ) σ 1 (T x 0 ) = 4.
Proof. We want to compute the eigenvalue σ 1 (T x 0 ), we introduce the parameter σ and we want to find a function v ∈ C 1 (0, 1) such that (40)

   xv (x) + v (x) + x 0 σv(x) = 0 x ∈ 0, x 0 ] (1 -x)v (x) -v (x) + (1 -x 0 )σv(x) = 0 x ∈ x 0 , 1].
The idea will be to solve the equation first on the interval 0, x 0 ] then on the interval x 0 , 1] and then find the condition on the parameter σ in order to have a good matching in the point x 0 . Let J 0 , Y 0 be the Bessel functions of the first and second kind respectively with parameter 0, we start by noticing that all the solutions of the second order ODE (40) (1st line) are given in the interval 0, x 0 ] by

v l = C 1 J 0 (2 √ σx 0 x) + Ĉ1 Y 0 (2 √ σx 0 x)
Now, since uY 0 (u) → 2/π when u → 0 we see that, in order the boundary condition T x 0 (x)v l (x) → 0 be satisfied, we must choose Ĉ1 = 0. Using the change of variable y = 1 -x is straightforward to check that, the solution of (40

) (2nd line) is given in the interval x 0 , 1]. by v r = C 2 J 0 (2 σ(1 -x 0 )(1 -x))
Now, we impose the following matching condition v l (x 0 ) = v r (x 0 ) and v l (x 0 ) = v r (x 0 ), this condition is equivalent to say that there exists a parameter σ for which the following system has a solution

   C 1 J 0 (2 √ σx 0 ) = C 2 J 0 (2 √ σ(1 -x 0 )) C 1 J 0 (2 √ σx 0 ) = -C 2 J 0 (2 √ σ(1 -x 0 )).
The system above has a solution if and only if the parameter σ is a root of the following transcendental equation

(41) J 0 (2 √ σx 0 )J 0 (2 √ σ(1 -x 0 )) + J 0 (2 √ σ(1 -x 0 ))J 0 (2 √ σx 0 ) = 0,
so σ 1 (T x 0 ) will be the smallest non zero root of the above equation. Now we want to compute the eigenvalue µ 1 (T x 0 ), we introduce the parameter µ and we want to find a function u ∈ C 1 (0, 1) such that (42)

   xu (x) + u (x) + µxu(x) = 0 x ∈ 0, x 0 ] (1 -x)u (x) -u (x) + µ(1 -x)u(x) = 0 x ∈ x 0 , 1].
We will find the conditions on µ by using the same arguments as before. For every constant C 1 the following function

u l = C 1 J 0 ( √ µx)
is a solution for (42) in the interval 0, x 0 ] (we can rule out the function Y 0 by the same argument). Using the change of variable y = 1 -x is straightforward to check that, for every constant C 2 , the function

u r = C 2 J 0 ( √ µ(1 -x))
is a solution for (42) in the interval x 0 , 1]. We impose the following matching condition u l (x 0 ) = u r (x 0 ) and u l (x 0 ) = u r (x 0 ), this condition is equivalent to say that there exists a parameter µ for which the following system has a solution

   C 1 J 0 ( √ µx 0 ) = C 2 J 0 ( √ µ(1 -x 0 )) C 1 J 0 ( √ µx 0 ) = -C 2 J 0 ( √ µ(1 -x 0 )).
The system above has a solution if and only if the parameter µ is a root of the following transcendental equation

(43) J 0 ( √ µx 0 )J 0 ( √ µ(1 -x 0 )) + J 0 ( √ µ(1 -x 0 ))J 0 ( √ µx 0 ) = 0,
so µ 1 (T x 0 ) will be the smallest non zero root of the above equation. Now comparing the transcendental equations ( 41) and ( 43) we can conclude that

µ 1 (T x 0 ) σ 1 (T x 0 ) = 4.
We are now ready to prove Theorem 1.2

Proof of Theorem 1.2. We start by the lower bound Lower bound. Let h * = 6x(1 -x), it is known (see for instance [START_REF] Troesch | An isoperimetric sloshing problem[END_REF]) that, for every h ∈ L, the following inequality holds

(44) σ 1 (h) ≤ σ 1 (h * ) = 12.
Now we want to prove that, for every h ∈ L, the following inequality holds

(45) µ 1 (h) ≥ π 2 .
Suppose by contradiction that there exists h ∈ L such that

µ 1 (h) < π 2 ,
by Lemma 3.4 we conclude that, for small enough, there exists a thin domain Ω such that: µ 1 (Ω ) < π 2 . We reach a contradiction because we know from Payne inequality (see [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF]) that for every convex domain Ω with diameter 1 µ 1 (Ω) ≥ π 2 . From (44) and (45) we conclude that, for every h ∈ L, the following lower bound holds

π 2 12 ≤ F (h).
Upper bound. We start by proving that, for every h ∈ L, the following inequality holds

(46) µ 1 (h) ≤ µ 1 (T 1 2 
).

Suppose by contradiction that there exists h ∈ L such that (47)

µ 1 (h) > µ 1 (T 1 2 
).

We introduce the following family of thin domains, first Ω defined thanks to this function h and then R defined as follows:

R = {(x, y) ∈ R 2 | 0 ≤ x ≤ 1, - 1 2 T 1 2 ≤ y ≤ 1 2 T 1 2 },
this class of domains R can be seen as flattering rhombi. By Lemma 3.4 and (47) we conclude that, for small enough, we have:

µ 1 (Ω ) > µ 1 (R ),
we reach a contradiction because we know from [START_REF] Bañuelos | On the "hot spots" conjecture of J. Rauch[END_REF], [START_REF] Cheng | Eigenvalue comparison theorems and its geometric applications[END_REF] that for every thin domain Ω and for every small enough

µ 1 (Ω ) ≤ lim →0 µ 1 (R ) = 4j 2 01 .
Now we prove that, for every h ∈ L, the following lower bound for σ 1 (h) holds

(48) σ 1 (h) ≥ h( 1 2 )σ 1 (T 1 2 
).

Let v be an eigenfunction associated to σ 1 (h), using the variational characterization for σ 1 (h) and using the fact that h is concave and positive we conclude that

σ 1 (h) = 1 0 (v ) 2 hdx 1 0 v 2 dx ≥ h( 1 2 
)

1 0 (v ) 2 T 1 2 dx 1 0 v 2 dx ≥ h( 1 2 )σ 1 (T 1 2 ),
where in the last inequality we used the variational characterization for σ 1 (T 1 2

). From ( 46) and (48) we conclude that:

(49) F (h) ≤ µ 1 (T 1 2 ) σ 1 (T 1 2 ) 1 0 hdx h( 1 2 ) ≤ 4,
where the last inequality comes from the fact that h ∈ L and Lemma 4.1.

We turn to the proof of Theorem 1.3. Let τ ∈ [0, 1] be a parameter, in order to prove the upper bound in Theorem 1.3, we need to introduce the following family of polynomials of degree four:

P τ (y) = 1 4
τ y 4 -2y 3 + 5τ y 2 -4τ 2 y + τ 3 .

In the next Lemma we prove that the polynomials P τ have always positive roots and we give some explicit estimates on its roots, this estimates will be useful in the proof of the upper bound for F (Ω).

Lemma 4.2. Let 0 < τ < 1, then the polynomial P τ has four positive roots. Let {y 1 (τ ), y 2 (τ ), y 3 (τ ), y 4 (τ )} be its roots ordered in increasing order, then the following holds:

i if 0 < τ ≤ √ 3 2 , then y 1 (τ ) ∈ (0, 2 3 τ ), y 2 (τ ) ∈ ( 2 3 τ, τ + 1 2 τ 2 ), y 3 (τ ) ∈ (τ + 1 2 τ 2 , 2 + √ 2) and y 4 (τ ) ∈ (2 + √ 2, +∞) ii if √ 3 2 ≤ τ ≤ 0.9, then y 1 (τ ) ∈ (0, 1 2 ), y 2 (τ ) ∈ ( 1 2 , τ + 1 2 τ 2 ), y 3 (τ ) ∈ (τ + 1 2 τ 2 , 2 + √ 2) and y 4 (τ ) ∈ (2 + √ 2, +∞), iii if 0.9 ≤ τ < 1, then y 1 (τ ) ∈ (0, 2 - √ 2), y 2 (τ ) ∈ (2 - √ 2, τ + 1 2 τ 2 ), y 3 (τ ) ∈ (τ + 1 2 τ 2 , 2 + √
2) and y 4 (τ ) ∈ (2 + √ 2, +∞).

Moreover P τ (y) ≥ 0 in [0, y 1 (τ )] ∪ [y 2 (τ ), y 3 (τ )] ∪ [y 4 (τ ), +∞).
Proof. We start by noticing that for every 0 < τ < 1 we have that P τ (0) > 0 and lim y→+∞ P τ (y) = +∞, the idea of the proof will be to find three consecutive points 0 < a < b < c < +∞ for wich P τ (a) < 0, P τ (b) > 0 and P τ (c) < 0. Before passing to and the x 1 axis is parallel to (one of) the diameter(s). We know the following inequalities for µ 1 (Ω) and σ 1 (Ω)

µ 1 (Ω) ≥ π 2 D(Ω) 2 , σ 1 (Ω) ≤ |Ω| ∂Ω x 2 1 ds ≤ 6|Ω| D(Ω) 3 .
The inequality for µ 1 is Payne inequality (see [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF]) and the inequality for σ 1 (Ω) is obtained by using the function u(x 1 , x 2 ) = x 1 as a test function in (2) and then using the fact that

∂Ω x 2 1 ds ≥ D 2 -D 2 x 2 1 dx 1 .
Let Ω ∈ C δ , using the inequalities above we obtain (53)

F (Ω) ≥ π 2 6δ .
Now we consider the class of domains C c δ , i. e. convex domains such that P (Ω) > δD(Ω). We start by recalling the following result (see [START_REF] Sachs | Ungleichungen für Umfang, Flächeninhalt und Trägheitsmoment konvexer Kurven[END_REF] for a geometric proof or [START_REF] Hall | A class of isoperimetric inequalities[END_REF] for a proof based on Fourier series)

(54) min ∂Ω (x 2 1 + x 2 2 )ds P (Ω) 3 : Ω ⊂ R 2 convex = 1 54 ,
and the minimum is achieved by the equilateral triangle. Assuming that the origin is at the center of mass of the boundary, and using in the variational characterization (1) the coordinates functions x 1 and x 2 we obtain after summing 54) and (55) we conclude that for every Ω ∈ C c δ the following holds (56)

(55) σ 1 (Ω) ≤ 2|Ω| ∂Ω (x 2 1 + x 2 2 )ds . Now from Payne inequality, (µ 1 (Ω) ≥ π 2 /D 2 ), (
F (Ω) ≥ δ 2 π 2 108 .
We notice that the lower bounds in (53) and (56) coincide when δ = 3 √ 18, so we finally obtain:

F (Ω) ≥ π 2 6 3 √
18 Upper bound. Given a bounded convex set Ω ⊂ R 2 , we denote by r(Ω) its inradius and by w(Ω) its minimal width. We know the following estimate from below for σ 1 (Ω) (see [START_REF] Kuttler | Inequalities for membrane and Stekloff eigenvalues[END_REF])

σ 1 (Ω) ≥ µ 1 (Ω)r(Ω) 2(1 + µ 1 (Ω)D(Ω)) ,
we also know the following upper bound for µ 1 (Ω), see [START_REF] Henrot | Maximizing p 2 µ1 among symmetric convex sets[END_REF]:

µ 1 (Ω) ≤ π 2 w(Ω) 2 |Ω| 2 ,
we also use the following geometric inequality (see [START_REF] Bonnesen | Les problémes des isopérimétres et de isèphipanes[END_REF])

|Ω| r min P (Ω) ≤ 1.
Using the three inequalities above we conclude that (57) F (Ω) ≤ 2 1 + πw(Ω)D(Ω) r(Ω)P (Ω) .

We introduce the parameter τ = w(Ω) D(Ω) , we know the following geometric inequality (see [START_REF] Kubota | Einige ungleischheitsbezichungen uber eilinien und eiflachen[END_REF], [START_REF] Scott | Inequalities for convex sets[END_REF])

D(Ω) P (Ω) ≤ 1 2 √ 1 -τ 2 + 2τ arcsin(τ ) =: g(τ ).
Now, in order to obtain an upper bound for the functional F (Ω), we need an upper bound for the quantity w(Ω) r(Ω) where the quantity τ = w(Ω) D(Ω) is fixed. The complete system of inequalities for the triplet (w(Ω), D(Ω), r(Ω)) is known, in [START_REF] Hernández Cifre | Is there a planar convex set with given width, diameter, and inradius?[END_REF]we can find the Blaschke-Santaló diagram where x(Ω) = τ = w(Ω) D(Ω) and y(Ω) = 2r(Ω) D(Ω) . Let us fix the the quantity τ , in order to obtain an upper bound for w(Ω) r(Ω) it is enough to obtain a lower bound for y(Ω). From [START_REF] Hernández Cifre | Is there a planar convex set with given width, diameter, and inradius?[END_REF] we know that the following inequality holds

P τ (y(Ω)) = 1 4 τ y(Ω) 4 -2y(Ω) 3 + 5τ y(Ω) 2 -4τ 2 y(Ω) + τ 3 ≥ 0.
In particular from Lemma 4.2 we know that y(Ω) ∈ [0, y 1 (τ )] ∪ [y 2 (τ ), y 3 (τ )] ∪ [y 4 (τ ), +∞), we now prove that y(Ω) ≥ y 2 (τ ). Suppose by contradiction that y(Ω) ∈ [0, y 1 (τ )], from the Blaschke-Santaló diagram (w(Ω), D(Ω), r(Ω)) we see that y(Ω) ≥ 2 3 τ , but now from Lemma 4.2 we know that y 1 (τ ) < 2 3 τ and this is a contradiction. Note that we can prove in the same way that y(Ω) < y 4 (τ ).

We conclude that y(Ω) ≥ y 2 (τ ), so we finally obtain the following upper bound

πw(Ω)D(Ω) r(Ω)P (Ω) ≤ 2πg(τ )τ y 2 (τ ) =: f (τ ).
We introduce the following constant

K = max τ ∈[0,1] f (τ )
numerically one can check that K ≤ 3.52 (see Figure 2), from (57) we finally conclude that [START_REF] Bucur | On the attainable eigenvalues of the Laplace operator[END_REF], (µ 1 (Ω) µ 2 (Ω)) (the Neumann eigenvalues) in [START_REF] Antunes | On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian[END_REF], (λ 1 (Ω), µ 1 (Ω)) in [START_REF] Ftouhi | The diagram (λ1, µ1)[END_REF] or (λ 1 (Ω), T (Ω)) (where T (Ω) is the torsion) in [START_REF] Berg | On the relations between principal eigenvalue and torsional rigidity[END_REF], [START_REF] Lucardesi | On Blaschke-Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue[END_REF].

π 2 6 3 √ 18 ≤ F (Ω) ≤ 2(1 + K) ≤ 9.04.
Here we are interested in plotting the set of points (x, y) with

E = {(x, y) where x = σ 1 (Ω)P (Ω), y = µ 1 (Ω)|Ω|, Ω ⊂ R 2 } E C = {(x, y) where x = σ 1 (Ω)P (Ω), y = µ 1 (Ω)|Ω|, Ω ⊂ R 2 , Ω convex.}.
5.1. The Blaschke-Santaló diagram E. We start with the diagram E (no constraint on the sets Ω).

Theorem 5.1. The following equality holds

E = [0, 8π] × [0, µ 1 (D)π]
where µ 1 (D) = j 2 11 is the first Neumann eigenvalue of the unit disk. Proof. We recall the following classical result by Szegö (for the simply connected case) and Weinberger [START_REF] Szegö | Inequalities for certain eigenvalues of a membrane of given area[END_REF] and [START_REF] Weinberger | An isoperimetric inequality for the N -dimensional free membrane problem[END_REF]. 

E ⊂ [0, 8π] × [0, µ 1 (D)π], now we want to prove that [0, 8π) × [0, µ 1 (D)π] ⊆ E.
We start by proving that for every y ∈ [0, µ 1 (D)π] there exists a simply connected domain Ω y for which µ 1 (Ω y )|Ω y | = y. For that purpose, let us consider a dumbbell domain D , we know that we can choose the width of the channel in order to have µ 1 (D )|D | = where is a small quantity, (see [START_REF] Jimbo | Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels[END_REF]). Now we can gradually enlarge the channel (preserving the -cone condition) until we reach a stadium, then we can modify this stadium continuously until we reach the ball. In all that process, the eigenvalue µ 1 and the area vary continuously. So we constructed a continuous path for the value µ 1 (Ω y )|Ω y | starting from and arriving to µ 1 (D)π, we conclude because was arbitrary small. Using the same argument (and [START_REF] Bucur | Asymptotic behaviour of the Steklov spectrum on dumbbell domains[END_REF]) we can prove that for every x ∈ [0, 2π] there exists a simply connected domain Ω x for which σ 1 (Ω x )P (Ω x ) = x (2π is the value of P (D)σ 1 (D).).

Let (x, y) ∈ [0, 8π]×[0, µ 1 (D)π] we want to prove that there exists a sequence of domains Ω such that σ 1 (Ω )P (Ω ) → x and µ 1 (Ω )|Ω | → y. From the discussion above we know that there exists a simply connected domain Ω y for which µ 1 (Ω y )|Ω y | = y, now we divide the proof in two cases: Case 1. Suppose x > σ 1 (Ω y )P (Ω y ), let β be a non negative and non trivial function, we introduce the following weighted Neumann eigenvalue

µ 1 (Ω, β) = min Ω |∇u| 2 dx Ω u 2 βdx : u ∈ H 1 (Ω), Ω uβdx = 0 .
From Theorem 1.11 in [START_REF] Girouard | Sharp isoperimetric upper bounds for planar steklov eigenvalues[END_REF] we know that for every domain Ω and every non negative and non trivial function β ∈ L 1 (log L) 1 (this space is a Orlicz space see [START_REF] Girouard | Sharp isoperimetric upper bounds for planar steklov eigenvalues[END_REF] for the details) there exists a sequence of subdomains Ω ⊆ Ω such that σ 1 (Ω )P (Ω ) → µ 1 (Ω, β)

Ω βdx, µ 1 (Ω )|Ω | → µ 1 (Ω)|Ω|.
Let us fix a parameter δ, from [START_REF] Girouard | Sharp isoperimetric upper bounds for planar steklov eigenvalues[END_REF] we know that there exists a function β 1 such that µ 1 (Ω, β 1 ) Ω β 1 dx ≤ 8π -δ, we also know (see [START_REF] Lamberti | Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues[END_REF]) that there exists a function β 2 such that |µ 1 (Ω, β 2 ) Ω β 2 dx -σ 1 (Ω)P (Ω)| ≤ δ. Let 0 ≤ t ≤ 1, we consider the following family of functions β t = tβ 1 + (1 -t)β 2 and we introduce the measures dµ t = β t dx. It is straightforward to check that the family of measures dµ t satisfies the conditions M1, M2 and M3 in page 26 of [START_REF] Girouard | Sharp isoperimetric upper bounds for planar steklov eigenvalues[END_REF], in particular for every z ∈ [σ 1 (Ω)P (Ω) + δ, 8π -δ] there exists t ∈ [0, 1] such that µ 1 (Ω, β t ) Ω β t dx = z.

We know that x ∈ [σ 1 (Ω y )P (Ω y )+δ, 8π-δ], let t 0 be such that µ 1 (Ω y , β t 0 ) Ωy β t 0 dx = x, from the previous results we conclude that there exists a sequence of domains Ω ⊆ Ω y such that σ 1 (Ω )P (Ω ) → µ 1 (Ω y , β t 0 ) Ω β t 0 dx = x µ 1 (Ω )|Ω | → µ 1 (Ω y )|Ω y | = y. The result follows because δ was arbitrary. Case 2. Suppose x ≤ σ 1 (Ω y )P (Ω y ), form the fact that Ω y is simply connected we know from [START_REF] Weinstock | Inequalities for a classical eigenvalue problem[END_REF] that x ≤ 2π. By a previous step we know that there exists a simply connected domain ω such that σ 1 (ω)P (ω) = x, now from Theorem 2.2 (see [START_REF] Bucur | Stability and instability issues of the Weinstock inequality[END_REF] for details) we know that there exists a sequence of smooth open sets Ω such that Figure 3 shows the values of these quantities for 1000 random convex polygons. Each of this polygon is constructed by choosing 15 random points in the plane and then we compute the convex hull of this points. From Figure 3 it is natural to conjecture that 1 ≤ F (Ω) ≤ 2. Now we show some experiments that will give us informations about the behaviour of the extremal sets in the class of convex domains. In the Figure 4 we plotted the quantities σ 1 (Ω)P (Ω) and µ 1 (Ω)|Ω| for random triangles in the plane. From Figure 4 we see that for every triangle T ⊂ R 2 we have that F (T ) is slightly less than (and very close to) 2. Actually a more precise numerical computation shows that it is not true that F (T ) = 2 for every triangles. For example, let T 1 be an equilateral triangle of length 1, we know that µ 1 (T 1 ) = 16π 2 9 and let T 2 be a right triangle with both cathetus equal to 1, we know that µ 1 (T 2 ) = π 2 . A precise numerical computation of the first Steklov eigenvalue for T 1 and T 2 (using P 2 finite element methods) gives us the following values σ 1 (T 1 ) ≈ 1.2908 and σ 1 (T 2 ) ≈ 0.7310. Using these values inside the functional F (Ω) we finally obtain

F (T 1 ) ≈ 1.962 < 2, F (T 2 ) ≈ 1.977 < 2.
The value 2 can be reached asymptotically, let us consider the following sequence of collapsing triangles

Ω = {(x, y) ∈ R 2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ T 1 2 },
from Theorem 1.1 and Lemma 4.1 we conclude that

F (Ω ) → F (T 1 2 ) = 2.
We remark that, from Theorem 1.1 and Lemma 4.1, F (Ω ) → 2 for every sequence Ω of collapsing thin domains for which h = h + + h -= T x 0 , where 0 < x 0 < 1.

It remains to characterize the behaviour of the minimizing sequence. We introduce the following family of collapsing rectangles:

C = {(x, y) ∈ R 2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ }.
We plot the values of σ 1 (C )P (C ) and µ 1 (C )|C | when is approaching zero. seems that F (Ω) > 1 for every Ω ⊂ R 2 convex and the only way to approach the value 1 is given by a sequence of collapsing rectangles.

  inf{F (Ω) : Ω ⊂ R 2 bounded open set and Lipschitz} = 0, sup{F (Ω) : Ω ⊂ R 2 bounded open set and Lipschitz} = +∞.

Proposition 2 . 1 .

 21 The following equalities hold inf{F (Ω) : Ω ⊂ R 2 open and Lipschitz} = 0, sup{F (Ω) : Ω ⊂ R 2 open and Lipschitz} = +∞.
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 1 Figure 1. Description of the thin domain Ω
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 23 Figure 2. Plot of the function f (τ )

max{µ 1 (

 1 Ω)|Ω| | Ω ⊂ R 2 bounded, open and Lipschitz} = µ 1 (D)π, from [14] we also know that sup{σ 1 (Ω)P (Ω) | Ω ⊂ R 2 bounded, open and Lipschitz} = 8π.From the inequalities above it is clear that

σ 1 (

 1 Ω )P (Ω ) → σ 1 (ω)P (ω) = x µ 1 (Ω )|Ω | → µ 1 (Ω y )|Ω y | = y.This concludes the proof.We can give the following more precise conjecture:Conjecture 1. Prove that E = [0, 8π) × [0, πµ 1 (D)) ∪ {(2π, πµ 1 (D))}.5.2.The Blaschke-Santaló diagram E C . Now we turn to the convex case. To have some idea about the shape of this diagram, we produced random convex polygons in the plane and plot the corresponding quantities x = σ 1 (Ω)P (Ω), y = µ 1 (Ω)|Ω|.

Figure 4 .

 4 Figure 4. Blaschke-Santaló diagram with random triangles

Figure 5 .

 5 Figure 5. Blaschke-Santaló diagram with collapsing rectangles
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the three different cases, we give some inequalities that are true for every 0 < τ < 1. It is straightforward to check that the following inequalities hold:

(50)

We now prove separately the three cases.

2 , then the following inequality holds

the result follows from this inequality combined with (50) and (51). ii if

2 ≤ τ ≤ 0.9, then the following inequalities hold

the result follows from the inequalities above combined with (50) and (51). iii If 0.9 ≤ τ < 1, then the following inequalities hold

the result follows from the inequalities above combined with (50) and (51).

We now state Theorem 1.3 in a more precise way, in order to give more information about the explicit constant C 1 .

Theorem 4.3. Let K be the following constant

Then for every bounded convex open set Ω ⊂ R 2 , the following inequalities hold

Proof. We start by proving the lower bound Lower bound. Let δ ∈ [2, π], we define the following class of bounded convex domains (52) C δ := {Ω ⊂ R 2 : Ω is convex and P (Ω) ≤ δD(Ω)}.

We recall that the functional F (Ω) is invariant under translation and rotation, so without loss of generality, we can assume that the origin is the center of mass of the boundary of Ω Supported by these numerical evidences we state the following conjectures:

Conjecture 2. For every bounded, convex and open set Ω ⊂ R 2 the following bounds hold

Conjecture 3. The following minimization problem has no solution inf{F (Ω) | Ω ⊂ R 2 bounded, convex and open}.

In particular every minimizing sequence Ω must be of the form of collapsing rectangles.

We now consider only convex quadrilaterals in R 2 , in the following numerical experiment we will have in red random convex quadrilaterals and in green collapsing rectangles, starting form a square S of unit area (corresponding to the farthest green point from the origin) and asymptotically approach the segment.