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Abstract

Pressurised membranes are used in various situations involving humans (protections, sports, etc).2

In this context, impacts mechanics of membranes is critical since under or over inflated mem-3

branes may create injuries. The effect of inflation pressure on contact time is investigated on a4

model experiment using a spherical membrane. Both gas pressure and impact speed decrease con-5

tact time. Direct measurements of gas pressure and temperature variations indicate an adiabatic6

compression in strong interaction with the membrane. The contact time of an inflated membrane7

is described by three dimensionless numbers, (i) the relative inflation P̃, (ii) the presso-elactic8

number PE that considers the gas-membrane interaction and (iii) the presso-inertial number IP that9

scales membrane inertia to pressure forces. A model of pressurised membrane impact is provided10

and compared with experiments. It shows that contact time depends mainly on IP with corrections11

on PE and P̃.12

Keywords: pressurised membrane, impact, fluid-structure interaction, contact time

1. Introduction

Inflatable structures are used for their capabilities: easy storage and transport, fast deployment,13

reduced weight and adjustable mechanical properties. Notably, pressurised membranes are used in14

various situations involving impacts with human beings. Pressurised membranes are widely used15

in sports (football, basketball, handball, etc.) but may generate injuries by a single or repetitive16

impacts [1, 2]. Specifically in football, inflation pressure and impact speed have been shown17
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Parameters

P Absolute inner pressure

Patm Atmospheric pressure 986 kPa

∆P Pressure variations during impact

V Gas volume

T Inner gas temperature

R Membrane radius

h Release height

U0 Impact speed

g Gravity acceleration

t Time

x Indentation

xg Membrane center of mass

tc Contact time

Membrane parameters

R0 Radius (deflated) 8.2 cm

m Mass 179 g

E Young modulus 4.2 MPa

e Thickness 2 mm

Dimensionless numbers

γ Laplace coefficient -

P̃ Reduced pressure

PE Presso-elastic number

IP Presso-Inertial number

Table 1: Parameter and notations used in the paper. (ẋ) denotes the time derivative of x, index max denotes maximal

value during impact.
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to increase head accelerations during ball-to-head impacts [3]. In rare situations, gas expansion18

is used to create impacts, for instance with a pneumatic jackhammer [4]. However, pressurised19

membranes are most often used to milden impacts: running shoes equipped with heel air pockets20

or foam (ensemble of small air pockets) protect from running impacts [5], inflatable bike helmet21

[6] or car air-bag [7] protect from traumatic brain injuries (TBI). During an impact, the membrane22

reaction force depends on inflation pressure which is, for instance, a major concern for airbag-23

deployment and gas dosage as it may cause facial or eye injuries [8, 9]. The inertial forces created24

by pressurised membranes are proportional to the typical acceleration U/tc where U is the impact25

speed and tc the contact time. Short contact time occurs for high pressure membranes and may be26

harmful. The relation between pressure, velocity and contact time is thus necessary to predict the27

danger of an impact of a pressurised membrane.28

Contact time has already been observed on various objects. Contact time of inelastic balls has29

been investigated to understand granular material dynamics [10]. Impacting droplets were studied30

in order to reduce contact time to avoid possible pinning and keep surfaces clean [11, 12]. Contact31

time of soap bubbles has also been measured and modelled [13]. Pressurised membranes differ32

from those system by having their mass in the membrane and gas as a spring.33

The static deformation of pressurised structures have been studied on spherical and ellipsoidal34

models [14, 15], and is due to the competition between pressure and bending forces. An elastic35

shell deforms with an inverted cap instability [16], whereas the contact area of a pressurised mem-36

brane remains flat [17]. The dynamics of a membrane is mainly driven by gas pressure, membrane37

shape and bending rigidity[18–20]. During the impact, gas compression has been proposed to be38

adiabatic [18] or isothermal [21]. However, it has never been measured directly. Measurements39

of gas temperature, gas pressure and volume are performed simultaneously during the impact of a40

pressurized membrane.41

In the following, we chose a spherical membrane (i.e. without bending rigidity) as a model42

experiment. The restoring force was only due to the combination of gas pressure and membrane43

shape. Differently from [21] where pressure elevation was not taken into account and from [18]44

where interaction between gas and membrane is not considered, we show that the main source45

of non-linearity arises from the membrane-gas interaction during the impact. Although impacts46
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are usually characterised by contact time and coefficient of restitution, we mostly focused on the47

contact time of the impact.48

In this paper, we first report measurements of the impact properties of pressurised membrane49

(contact time and coefficient of restitution) by systematically varying impact speed, inflation pres-50

sure and gas nature. We also describe the observed kinematics of the membrane during the impact.51

The second part of the paper is devoted to the gas dynamics during the impact and its strong in-52

teraction with the membrane elasticity. In a third part, we propose a model of the impact of a53

pressurised membrane. The impact time of a pressurised membrane is shown to be mainly de-54

pendent on two dimensionless numbers, the presso-inertial number and the presso-elastic number.55

A rationale is given for the dependency of the contact time with impact velocity arising from the56

non-linear equations of contact and gas dynamics of the pressurized membrane.57

2. Impacts on pressurised membranes : Experiments58

An impact is characterised by the contact time tc, and the coefficient of restitution η = |Uout/U0|.59

η = 1 corresponds to a lossless impact where the outgoing speed is equal to the ingoing speed.60

We report here measurements of the impact properties of a pressurised membranes varying impact61

speed U0, inflation pressure P − Patm and gas nature.62

2.1. Material and Methods63

Most studies of impacts on pressurized membranes have been carried out on sport balls [18,64

21, 22] for application to sports but also for supply and cost reasons. Tests were carried out on a set65

of 4 identical beach-volley balls (Decathlon KIPSTA™, BV100 fun). Those spherical membranes66

were chosen to be a reference experimental model. They have a minimal composition, they are67

formed of a single layer of rubber equipped with a valve for inflation, and they are soft enough68

to expand when inflated at usual inflation pressures and thus to exhibit a strong coupling between69

gas pressure and membrane elasticity. The membrane weighted m =179 g and had a thickness70

e =2.00 ± 0.12 mm. The Young modulus of the membrane was measured on a traction bench,71

E =4.22 ± 0.10 MPa. The deflated membrane radius was R0 =8.2 ± 0.1 cm. All experiments72
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were performed in the elastic range of the membrane (inflation between 5 and 35 kPa). The main73

membrane properties and notations are gathered in Table 1.74

Membranes were inflated at four inflation pressures P − Patm = 0.1, 0.15, 0.25 and 35 kPa and75

their pressure cross checked with a precise manometer (MPX4250A, NXP). Three different gases76

were used for inflation, (i) air (diatomic gas with Laplace coefficient γ=7/5), (ii) pure Helium and77

(iii) pure Argon which are both monoatomic gases (γ = 5/3). The pressurised membranes were78

released at heights (top of the membrane, h+2R) 0.5, 0.75, 0.875, 1, 1.25, 1.35, 1.5, 1.75, 1.85 and79

2 m with no velocity. The membranes impacted on a massive and non deformable marble stone,80

figure 1. Impacts were recorded thanks to a high-speed camera (Photron Miro 110) at 5000 frames81

per second.82

Impact velocities recorded in the experiment varied from 1 to 6 m/s.Positions were determined83

by tracking the circular shape on each frame using Matlab® 2015b algorithm. The algorithm works84

as follows, (i) first the scale in pixels per mm is defined and an approximate membrane radius is85

given after conversion in pixels. (ii) Second, the ith image is loaded. (iii) Third, the membrane86

location is found using imfindcircle Matlab® function based on the circular Hough transform. This87

function outputs the radius and center of the circular shape of the pressurized spherical membrane.88

(iv) Four, the ground position is detected automatically using the Hough transform for lines. Steps89

(ii) to (iv) are repeated for all images of the high speed film. With this algorithm, the center of90

the circle has been measured precisely even when the membrane was deformed, see figure 1b.91

The algorithm results, ground position, the positions of the center of the circular shape of the92

membrane and its radius, were post treated. Contact occurred when the distance between the93

center of the circle and the marble is less than the membrane radius R. Consequently, contact94

time tc was defined precisely by fitting linearly the circle center-ground distance vs time before95

and after impact. The absolute value of the slopes of those fits were used to determine the impact96

speed U0 and the outgoing speed Uout. From these measurements, the coefficient of restitution was97

computed as η = |Uout/U0|.98
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Figure 1: a. View of the experiment. The pressurised membrane is released without velocity from a height h.

1 Flicker-free lighting. 2 high speed camera. b. Definition of indentation x and membrane center of mass g

during impact. Zoom on membrane oval distortion. c. Chrono-photography of an impact event (h =1.85 m and

P − Patm =15 kPa).
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Figure 2: a. Contact time, tc as a function of inflation pressure P − Patm. Coloured lines are the non-dissipative model

prediction for contact time, Eq. (15), for different impact speeds. The speed color map will be conserved for all the

figures. Dashed line correspond to the linear model independent of impact speed U0. b. Coefficient of restitution η as

a function of inflation pressure P − Patm. Inflation gas: Argon, Helium and Air.

2.2. Evolution of contact time as a function of inflation pressure, impact speed and gas nature99

The contact time tc is reported in figure 2a as a function of inflation pressure P − Patm for100

different impact velocities. Impact velocities are colour-coded using the color scale of figure 1a.101

Contact time decreases with inflation pressure for a fixed impact speed. The spreading of impact102

times at a fixed inflation pressure is reduced when inflation pressure is increased.103

For information, the coefficient of restitution η = |Uout/U0| is plotted in figure 2b as a function104

of inflation pressure P−Patm for different impact velocities. The coefficient of restitution increases105

slightly with inflation pressure and decreases with impact speed.106

2.3. Kinematics of an impact of a spherical pressurised membrane107

During an impact onto the marble considered as a target of infinite mass and stiffness compared108

to the membrane, the spherical pressurised membrane may be described by the position of its109

center of mass xg or the indentation x, see figure 1b. The shape of the membrane during the impact110

is an indented spherical cap [18], which radius may slightly increase during the impact. The part of111

the membrane in contact with the ground is flattened and no ripples are observed. The volume, V ,112

of a spherical cap and the flat area in contact with the ground, A, of a sphere of radius R indented113
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by a length x reads,114

V(x) =
π

3

(
4 R3 + x3 − 3 R x2

)
and A(x) = 2πR x

(
1 −

x
2R

)
. (1)115

The actual shape of the indented membrane differs from a pure sphere because of oval distortion,116

see zoom in figure 1b. This effect is taken into account in our model applying a correction to the117

actual surface in contact with the ground, Acontact = βA with β < 1. The effect of oval distortion on118

the volume of the spherical cap remains negligible.119

The deformation of the ball moves its center of mass which is no longer located at the center of120

the spherical shape, see figure 1b. When the ball gets in contact with the ground, x = 0 (xg = R),121

the ball is not yet deformed and both the center of mass and the center of the sphere are at the same122

location. For larger and larger indentations the two centres separate one from another. Considering123

an homogeneous mass distribution of the membrane, the position of the center of mass during the124

contact reads125

xg = R
(
1 −

x
2 R

)2
. (2)126

3. Gas-membrane interaction during an impact127

3.1. Material and methods128

The behaviour of the gas and its interaction with the membrane during an impact has been129

explored experimentally. In order to assess the hypothesis that the gas compression-expansion is130

adiabatic, one has to show that the time scale of thermal exchanges is larger than the impact time131

scale. To this aim, a first static compression experiment is performed to measure the characteristic132

time of thermal leaks. Second, the gas dynamical behaviour is analysed during the impact to133

understand how gas and membrane interact.134

For both experiments, the membrane was punched with two holes of 5 mm of diameter. In each135

hole, a home-made hermetic feedthrough was inserted. The two feedthroughs allowed to place a136

micro-thermocouple and two pressure sensors inside the membrane simultaneously, see figure 3c.137

The total mass of the feedthroughs and sensors was 6 g, much lower than the membrane mass of138

179 g (3.2% of the total mass).139
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Ceramic rod

0.8 mm

K type

thermocouple
(7.6 µm wires)

Hot junction

to dacq

Support

a. b. c.

Figure 3: Instrumented membrane for gas pressure and temperature measurement. a. Building of a fast K-type ther-

mocouple. b. Cross section of the membrane showing the insertion of the thermocouple in the hermetic feedthrough.

Red arrow: thermocouple tip. Black star: membrane. c. Example of an instrumented mini-membrane (radius 57.5

mm) with two feedthroughs. One is devoted to temperature measurement (red arrow) with the micro-thermocouple

tip inside the membrane and the other is devoted to the absolute and differential pressure measurements (white star)

with the white arrow indicating that the pressure sensors are outside the membrane.

The first pressure sensor, sensor A, was an absolute pressure sensor (Freescale semiconductor140

MPXAZ6115A, probing with an accuracy of 3.45 kPa), used to measure the initial pressure inside141

the membrane. The second sensor, sensor B, was a differential sensor (Freescale semiconduc-142

tor MPXV7007) with accuracy of 500 Pa. This sensor was used to measure with accuracy the143

variations of pressure during impacts and static compression experiment. Differential pressure144

measurements were corrected by 1 ms, according to the sensor response time. Both sensors were145

linked to the same feedthrough. A manual valve allowed to set the reference of pressure for sensor146

B.147

The indentation of the membrane was optically measured with a high-speed camera (Photron148

MIRO 110). The images were processed with a home-made Matlab® code similar to the one149

described in Section 2.1.150

The temperature of the gas was recorded by a fast response type K thermocouple made by the151

welding of thin alumel and chromel wires (figure 3a,b). The welded hot junction is realised by a152

capacitance discharge device developed by the FEMTO-ST laboratory [23]. The thin wires were153

insulated from each other by a ceramic rod of diameter 0.8 mm. For the impact experiment, the154

use of extremely thin wires (7.6 µm in diameter) was required to get a sufficiently small thermal155
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inertia to respond to sudden changes of temperature. The thermocouple of 7.6 µm wires had a156

time constant of '5 ms in air (natural convection) [23]. Conversely such a small thermocouple is157

mechanically fragile. To avoid breakage, a K thermocouple with wires of 75 µm in diameter was158

used for the static compression experiment (time constant of '1 s). The home-made thermocouple159

was placed in the gas close to the membrane, figure 3b. Temperature signals were filtered for160

frequency content larger than 500 Hz and between 49.5 and 50.5 Hz.161

Tension signals were converted in absolute temperature using the tabulated Seebeck coefficient162

[24]. Sensitivity of the type K thermocouple was 40 µV K−1 at 293 K leading to an uncertainty of163

±0.2 K in our experiments. The main source of error was the noise due to antenna effect of the164

thermocouples.165

All sensors were linked to a NI instruments dacq for acquiring the signal through a Labview166

interface. Data were acquired at 104 Hz. During impact experiments, the high-speed camera was167

synchronised with the other measurements (pressures and temperature) with a trigger signal.168

3.2. Experimental results169

The membrane has been statically compressed between two plans. The inner pressure rose170

quickly, figure 4a, and was maintained for more than 80 s before being released. The rise of171

pressure induced an increase of the gas temperature, see figure 4b. The delay was due to the172

response time ('1 s) of the 75 µm thermocouple. After reaching a maximum the temperature173

decreased following a damped exponential (straight line when plotted in lin-log scale, see inset).174

The characteristic time of decrease of temperature was τth =13.5 s.175

As the gas cooling is not uniform within the membrane, the characteristic time may depend176

on the position of the thermocouple relative to the membrane. The measured time τth =13.5 s177

compares well with a characteristic diffusive time τth ∼ l2/D '5 s where l =1 cm is the distance of178

the thermocouple to the membrane and D =20 × 10−6 m2 s−1 is the thermal diffusion coefficient in179

air. To get rid off this effect, one can compute an upper bound for thermal transfer by conduction,180

considering that the gas cools down to the membrane temperature over a thickness
√

Dtc181

δEth

Eth
=

3
√

Dtc

R
. (3)182
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Figure 4: Simultaneous evolution of a. gas pressure variations ∆P and b. temperature variations ∆T for a long

(>80 s) compression-expansion cycle. (inset) lin-log graph of the gas temperature decrease showing the typical time

τth =13.5 s.
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Figure 5: Simultaneous measurements of temperature variations ∆T , pressure variations ∆P and indentation x (for

impact conditions P =15.5 kPa and U0 '6 m s−1). Temperature sensor responds to temperature variations with a delay

and has a moderate noise level.

Using typical values, D =20 × 10−6 m2 s−1, tc =10 ms and R =10 cm, one obtains δEth/Eth ' 1.3%.183

The adiabatic hypothesis is well verified.184

The temperature variations, pressure variations and indentation were measured simultaneously185

for impacts at different heights h. A typical measurement is shown in Figure 5. The pressure and186

indentation evolved simultaneously due to the fast response of the sensors. Differently, the tem-187

perature only increased after a delay of '5 ms corresponding to the response time of the 7.6 µm188

thermocouple used in the experiment. The temperature increase shows that even for small inden-189

tation, gas compression is not isothermal and that gas temperature rises by few Kelvins.190
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3.3. Model of evolution of pressure during an impact191

The pressurised membrane was released at different heights 0.5 m< h <1.85 m. The impact192

speed was much lower than sound velocity (U0 �340 m s−1), it thus remained under the hypothesis193

of quasi-static compression. As shown previously, the gas compression was also adiabatic, it can194

be modelled by the Laplace relation,195

∆P
∆V

= −γ
P
V
, (4)196

where γ is the Laplace coefficient. γ = 5/3 for monoatomic gases, 7/5 for diatomic gases and197

γ → 1 for polyatomic gases. During the impact, the membrane is an indented sphere which radius198

slightly increases because of pressure. The increase of radius of a thin elastic sphere reads [25],199

R = R0 +
(P − Patm)R2

0

2eE
. (5)200

The dependence between membrane radius and inflation pressure is shown in figure 5a and fitted201

with E =4.2 MPa and e =2 mm to determine R0=8.2 cm. In the limit of small indentations x � R,202

one may linearise the membrane indented volume Eq (1), and the two above relations, Eqs. (4)203

and (5) to find the relation between gas pressure and indentation,204

∆P
P

=
γ

1 + (2 + 3γ)PE + (1 + 3γ)P2
E

(
x

R0

)2

with PE =
PR0

2Ee
. (6)205

PE is the presso-elastic number which scales the inflation pressure to the elasticity of the mem-206

brane. For PE � 1, the membrane is rigid and the increase of radius is negligible. In the contrary207

if PE � 1, the membrane is flexible, the membrane radius increases and pressure variations are208

reduced. In the case of the membrane studied experimentally PE is in the medium range with209

PE ' 0.56 (using values in Table 1). The relation between pressure and indentation is plotted in210

Figure 5b for all impact experiments (0.5 m< h <1.85 m), and compares well with the theory with-211

out fitting parameters. In the inset, the compression-expansion cycle is shown to occur without212

hysteresis.213
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a. b.

Figure 6: a. Membrane radius vs Inflation pressure. Colours correspond to impact speed following colour map of

figure 1. Black line corresponds to Eq. (5) with E =4.2 MPa, e =2 mm and R0 =8.2 cm. b. Example of normalised

pressure vs. normalised indentation squared for an impact from height h=0.5 m. Black line corresponds to Eq. (5)

with PE = 0.56 and γ = 7/5(P =114 kPa, E =4.2 MPa, e =2 mm and R0 =8.2 cm).

4. Effect of gas nature and pressure on contact time214

4.1. Conservation of momentum215

In the chosen parametrisation, we compute the acceleration of the center of mass as a function216

of x by double differentiation of Eq. (2),217

ẍg = −

(
1 −

x
2 R

)
ẍ +

ẋ2

2 R
. (7)218

The right-hand-side of this equation is compounded of two terms: the first one corresponds to the219

variation of momentum due to the acceleration of the mass of the membrane that is not in con-220

tact with the ground, m (1 − x/2 R). The second term corresponds to the variation of momentum221

associated to the membrane mass that actually reaches the ground during a given time interval,222

mẋ/2 R, which velocity drops from ẋ to zero. When the membrane is not much squashed on the223

ground, x � R, the second term is much lower than the first one and the acceleration of the center224

of mass simply reduces to ẍg = −ẍ (1 − x/2 R).225

The force exerted by the membrane onto the ground is the inner pressure, P + ∆P(x) − Patm226

times the surface of contact, A. Conservation of momentum reads,227

mẍg = βA(x) (P + ∆P − Patm) , (8)228
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where β ' 1/2 is the fraction of the flattened membrane in contact with the marble, see figure 1b.229

Under the hypothesis of small indentation ẋ2/2R � ẍ, one obtains230

−mẍ = 2βπRx (P − Patm)
(
1 +

∆P
P − Patm

)
. (9)231

The variation of radius due to the increase of pressure is negligible compared to the variation of232

inner pressure during the impact as ∆R/R = R0PE∆P/PR < ∆P/P � ∆P/(P− Patm). The quantity233

∆P/(P − Patm) which corresponds to the relative increase of pressure during the impact is thus the234

main source of force non-linearity in Eq (9). In the following, we neglect variations of membrane235

radius R. At this step, we define the dimensionless variables x̃ = x/R, t̃ = tU0/R and make Eq.(9)236

dimensionless. We obtain the presso-inertial number IP = mU2
0/2βπR3(P − Patm) and the reduced237

pressure P̃ = (P−Patm)/P. For convenience, we note B = γ(1 + P2
E)/(1 + (2 + 3γ)PE + (1 + 3γ)P2

E).238

Combining Eq. (9) and (6), one finds the dimensionless equation of evolution of the indentation,239

¨̃x = −
x̃
IP
−

Bx̃3

IPP̃
. (10)240

With the initial condition at t̃ = 0, x̃ = 0 and ˙̃x = 1, the first integral of Eq. (9) reads241

˙̃x = ±

√
1 −

1
IP

(
x̃2 +

B
2P̃

x̃4
)
. (11)242

4.2. Pressure, temperature and indentation maxima243

The maximal indentation occurs when ˙̃x = 0. There exists a single physical solution that reads244

xmax

R
=

√
P̃
B

√1 +
2BIP

P̃
− 1

1/2

. (12)245

Under the hypothesis of slow impact Ip � 1, one gets246

xmax

R
=

√
Ip

(
1 −

BIP

4P̃

)
+ o

(
I3/2

P

)
. (13)247

Consequently, one finds the maximum of pressure and temperature elevations248

∆Pmax

P
= B

( xmax

R

)2
and

∆Tmax

T
=

(γ − 1)
γ

∆Pmax

P
. (14)249

The comparison of the predicted maxima to the experimental values is shown in Figure 7. The250

model predicts the right order of magnitude and tendency for indentation, pressure and tempera-251

ture.252
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a.

b.

c.

Figure 7: Maximal values of a. indentation x, b. pressure variation ∆P and c. temperature variation ∆T , with

release height of the membrane. Dashed lines correspond to the exact model prediction, Eq. (12) and (14) using

γ = 7/5, P =114 kPa, T =293.15 K and membrane characteristics given in Table 1. Light grey lines correspond to the

approximated predictions, Eq. (13) and (14) with the same set of parameters.
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Figure 8: Comparison of contact time prediction and measurement for trial at P − Patm =10 kPa. Black line: model

prediction Eq.(15).

Since dissipation is not taken into account in this model, the contact time is twice the time253

needed to get to the maximal indentation,254

tc =
2R
U0

∫ x̃max

0

dx̃√
1 − 1

IP

(
x̃2 + B

2P̃ x̃4
) =

2R
U0

√√√ 2IP√
1 + 2BIP

P̃ + 1
K

−
√

1 + 2BIP
P̃ − 1√

1 + 2BIP
P̃ + 1

 . (15)255

where K is the first complete elliptic integral.We plot tc for various inflation pressure and velocities256

in Figure 2a. The model is in good agreement with the data trends. A discrepancy between model257

and data exists when comparing the magnitude of the contact time, figure 8. This discrepancy258

comes from the term in ẋ2 in Eq 7 that increases the contact time and from ball oval distortion.259

5. Discussion260

The model developed for the dynamics of a pressurised membrane impacting a rigid surface261

relies on several assumptions which should be discussed. First, we assumed that no energy was262

dissipated during the impact (neither sound emission [22], vibrations nor visco-elasticity dissipa-263

tion [21, 26]), that leads to overestimate the maximal indentation xmax and to underestimate the264

contact time tc. This point will be addressed in a future study on coefficient of restitution, however265

it is thought to have little effect on the contact time tc. Indeed, using a linear damped oscillator266

model, one may estimate the lost energy as 2mξU2
0 where ξ is the reduced damping coefficient.267

This compares to the lost energy during the impact (1 − η2)mU2
0/2. One finds ξ ' (1 − η2)/4.268
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The reduced damping coefficient changes the contact time as tc,damp = tc/
√

1 − ξ2. For η = 0.9,269

(tc,damp − tc)/tc ' 10−3.270

Second, we made the hypothesis of small indentations of the membrane (x/R � 1) and con-271

sequently neglected the term ẋ2/2R in equation (7), this may induce an underestimation of the272

contact time. This term do not involve any loss of energy. Finally, we have accounted for oval273

distortion that arise because of membrane inertia through a simple corrective factor β. This is a274

raw assumption and taking into account the deformation of the ball due to inertia would be the next275

step of this theory. The quasi-static assumption is quite well verified in the limit of slow impact276

but may not be exact for impact at large velocities (approaching sound velocity or wave velocity277

in the membrane), possibly changing the physics of the impact.278

Under these assumptions, we showed that the impact of a pressurised membrane is ruled by279

four dimensionless numbers. (i) P̃ is the normalised overpressure inside the membrane; (ii) the280

presso-elastic number PE compares the inflation pressure with the membrane elasticity; (iii) IP281

scales the initial kinetic energy with the work of the inner gas compression during the contact;282

finally, (iv) γ is the Laplace coefficient that depends on gas nature. The first three parameters283

have a major influence of the contact dynamics. In the contrary, γ is bounded between 5/3 for the284

adiabatic compression of a mono-atomic gas and 1 for an isothermal compression. In this range285

of variations (40%) it has only little influence on the contact time. The physical properties of the286

inflation gas (mono-atomic, polyatomic, etc. . . ) only change marginally the bouncing dynamics of287

the membrane. Differently, the increase of the inner pressure implies an increase of P̃ and PE and288

provokes a reduction of the maximal indentation and of the contact time. When the impact speed289

is increased keeping the overpressure P̃ constant, IP becomes larger and induces a larger maximal290

indentation and a shorter contact time.291

In order to compare the model predictions with experiments, we characterised the impact dy-292

namics of a model pressurised membrane onto a rigid substrate for different inflation pressures and293

impacting speeds. These experiments lied on the range of parameters where PE < 1 and IP < 1,294

corresponding to small membrane elasticity and slow impacts. The good agreement between these295

observations and model predictions justify the approximations discussed previously. One perspec-296

tive of this work would be to change the properties of the membrane in order to explore the limit297
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where the non-dimensional numbers PE and IP are larger than unity and verify model predictions298

in this limit.299

This model of contact time of pressurised membranes allows to discuss the properties of in-300

flated protections and sport balls. Biological damages are difficult to relate to a unique impact301

property as, for instance, traumatic brain injuries causes and criteria are numerous and complex302

[27]. Nevertheless, biological damages are somehow dependent of the maximum force level. In303

the case of a free pressurised membrane the maximum force is related to the contact duration as304

Fmax ∼ mU/tc. Increasing contact time by decreasing inflation pressure or by choosing softer305

membrane may thus allow to reduce impact injuries. This should help to design safer sports balls306

[3].307

In this paper, we considered an ideal target of infinite mass and stiffness. This may represent308

quite well the impact of a pressurised sport ball on a hard ground such concrete or wooden floor309

that may be encountered in basketball or handball. Differently, for outdoor sports such as football310

or rugby, the field is soft enough to be deformed elastically or plastically by the ball during the311

impact, changing the properties of impact [28, 29]. This remark stands also for impact of pres-312

surized balls or pressurised protections on humans which soft tissues (skin, muscles, etc.) may313

deform under impact. To take into account the mass of the target one has to consider the relative314

velocities in the frame of the center of mass. Compared to the case of infinite target mass mt → ∞,315

the amount of momentum exchanged during the impact is reduced by a factor mt/(mi + mt) where316

mi is the mass of the impactor. Regarding the stiffness, the springs of the target kt and impactor317

ki are in series what decreases the total stiffness of the system kikt/(ki + kt) and increases contact318

time consequently. Thus taking into account a real target decreases the amount of momentum319

exchanged and increases contact time. The case of an impact on an ideal target represents thus an320

upper limit for inertial forces.321

Regarding sports, it is unlikely that increasing contact time may increase precision since human322

response time is much larger than ball contact time. Differently, longer contact time may favour323

handling and control of the ball since it mostly relies on motion coordination rather than reflex.324

This explain why ball deflation has been used to cheat in American football where each team325

uses its own ball, [30]. Questions also arise for the level of trajectory modification following the326
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impact of a spinning ball depending on its inflation pressure since it will increase indentation,327

contact surface and contact time.328

6. Conclusion329

We have shown that the contact dynamics of a pressurised membrane is made non-linear by330

the increase of the internal pressure resulting from the adiabatic compression of the gas. We have331

proposed a non-linear model that rationalizes the dependency of the contact time with the inflation332

pressure and the impacting speed. In addition, this model predicts a small effect of the gas nature,333

a fact that is observed in practice. Our model implies that the contact force F depends on the334

indentation x in a supra-linear way: F ∝ x̃ + Bx̃3/P̃. The bouncing dynamics of a pressurised335

membrane strongly differs from the Hertzian law F ∝ x3/2 which rules the impact of filled spheres336

made of elastic materials. It is also different from the linear law for shells before buckling F ∝ x337

if x < e and the sub-linear law for shells after buckling F ∝ x1/2 for x > e [31]. It would be338

interesting to study the implications of such differences in sports where these distinct types of339

balls are employed.340
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