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ABSTRACT

Although the prediction performance is crucial for a classifier, its cost of use is also an essential issue
for practical application. The aim of this article is to propose a prediction method that controls not
only the error rate but also the cost of the construction of the classifier. The main idea is that some
examples are easier to predict than others and can be predicted using fewer variables i.e. with a
lower prediction cost. Our method, called CASCARO, is based on a cascade of reject classifiers of
increasing cost. The first classifier of the cascade required only one variable, if the prediction is not
reliable the second classifier requiring one more variable is used. The principle is repeated until the
last classifier using all variables. This type of cascade raises two scientific problems: the structure of
the cascade (the order of the classifiers) and the simultaneous computation of the rejection regions of
the classifiers. The experiments show that CASCARO produces significant improvements in the use

cost without decreasing prediction performance..

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The quality of a prediction system is generally based on the
accuracy of new observations. However, from a practical point
of view, it is important to consider the price to acquire the vari-
ables required by the classifier to make a prediction. For exam-
ple, in a medical application context, the classifier requires a set
of biological variables for each patient and the cost represents
the price of the different medical exams to obtain these vari-
ables. Note that the cost does not necessarily represent money,
it may represent time in the online classifiers, memory in big
data based classifiers, tolerance to side effects of treatment in
medical application, or any other finite resource. Another case
is data confidentiality: if the quality of the classifier is suffi-
cient without personal data, it is better, from ethical and legal
matters, not to use it. Another example is given by radiology
where X-ray gives very useful diagnostic but is dangerous for
the patient. Minimizing the quantity of X-ray exposition is an
important health issue.

The objective of this paper is to propose a classifier with reli-
able predictions and reduced costs. The main idea is that some
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examples are easier to predict than others and do not need all
variables. For these examples, a reliable prediction can be done
with a small subset of variables and can be therefore less ex-
pensive (or faster, or more ethical). We thus propose a new
supervised classification approach using a cascade of classifiers
with a rejection option, called CASCARO. This cascade is a se-
quential set of classifiers of increasing cost. The examples are
submitted to the first classifier to obtain a prediction. If this pre-
diction is not judged reliable, the example is rejected to the next
classifier of the cascade needing additional variables. The pro-
cess is repeated until a reliable prediction has been done. This
approach allows reducing the cost of the base classifier using all
variables. In this approach, there is a trade-off between the ac-
curacy and the cost of the predictions. The two main questions
of our method are : (i) the computation of the rejection region
of each classifier of the cascade and (ii) the optimal order of the
variables that forms the structure of the cascade.

Section two presents the related works about the minimiza-
tion of prediction cost and the cascade classifiers. Section three
gives the formulation of our cascade model, and the approaches
used for the rejection regions computation and variables order
selection. Section four presents the results of CASCARO and
compares them with the state of the art.

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
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2. State of the art

Many classifying procedure, including random forests, are
based on ensembles techniques (Rida et al., 2019; Gislason
et al., 2006; Nanni and Lumini, 2007). Classifiers are executed
sequentially and individual contributions of each observations
are accumulated to compute the final scores. The ensemble
methods are well known for reducing both the bias and the vari-
ance compare to single classifiers. Opposite to our proposal, all
variables can contribute to each classifiers and optimization of
feature acquisition price is not an aim of ensemble methods.
On the other side, feature selection reduces the price of feature
acquisition but do not have the advantage of ensemble meth-
ods (Pudil et al., 1994; Gao et al., 2018). Moreover the basic
assumption is to use the same subset of variables for all obser-
vations even if it is well known that the assignment of some
observations to a given class can be obvious while some other
observations are very difficult to classify.

The reduction of the prediction cost problem is related to the
active feature acquisition problem in the cost-sensitive learning
domain (Saar-Tsechansky et al., 2009), the learner must decide
whether to acquire new variable information about the case at
hand to deliver more accurate a prediction. A well-known for-
malization of this problem is in terms of reinforcement learning
and Markov decision processes, as illustrated by (Kapoor and
Horvitz, 2009; Tan and yen Kan, 2010; Nan et al., 2015). Re-
spectively, Kapoor (Kapoor and Horvitz, 2009) formalizes ac-
tive learning policies. Tan (Tan and yen Kan, 2010) proposes
an attribute value acquisition algorithm driven by the expected
cost saving of acquisition in the support vector machine setting.
Nan (Nan et al., 2015) presents an extension of the random for-
est approach, dealing with the cost of the variables. Another
approach deployed to learn variable-effective decision-maker
relies on designing cascades of classifiers.

Wang applied the cascade mechanism to the ranking set-
ting, taking into account variable costs within a greedy cas-
cade approach (Wang et al., 2011). Trapeznikov and Saligrama
(Trapeznikov and Saligrama, 2013) propose a multi-stage
multi-class system where the reject decision at each stage is
addressed as a supervised binary classification problem; the as-
sociated generalization error is bounded depending on the cas-
cade complexity using VC dimension. Another approach is
built upon the boosting mechanism (Benbouzid et al., 2012),
where the cascade is implemented by skipping some of the clas-
sifiers in the boosting ensemble, depending on the case and the
decision of the former classifiers. Raykar et al. Raykar et al.
(2010) investigate a cascade of classifiers with a reject option:
they design a soft cascade where each stage accepts or rejects
examples according to a probability distribution induced by the
previous stage. Each stage of the cascade is limited to linear
classifiers, but these are learned jointly and globally take into
account the variable cost. Chen (Chen et al., 2012) re-weights
and re-orders the weak learners obtained from boosting meth-
ods. After the initial training, a dictionary of classifiers is re-
organized into a chain of cascades where each can reject an
input or pass it on to the subsequent stage. The combination of
rejection rule and cascade of classifiers is introduced by Ferri
(Ferri et al., 2004). A model based on small sequences of re-
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ject classifiers has been proposed in the context of personalized
medicine context (Hanczar and Bar-Hen, 2016).

In most of the published methods, the structure of the cas-
cade, depending on the order of the variables or classifiers, is
fixed. Moreover, these methods are generally developed and
tested for small cascades. The approach that we propose in this
paper, aims at overcoming these limitations. We will learn the
structure of the cascade and build long cascades.

3. CASCARO : Cascade of classifiers with reject option

3.1. Formulation of the cascade

We consider a classification problem with two classes (pos-
itive ”’1” and negative ”’0”) and D variables {vi,...,vp}. Let a
training set of N examples {(xy, y1), ..., (Xy, Yn)} Where x; € RP
is the variable vector and y; € {0, 1} is the label. We denote c;
be the cost for acquiring the i-th variable of an example. Let’s
¥ : RP — {0, 1}. basic classifier, a classifier constructed from a
usual supervised learning procedure and making predictions in
using all variables. Our objective is to construct a cascade that
obtains better performances than the basic classifier.

In this context, the performance of a classifier is measured by
two values: its error rate, i.e. the probability that the prediction
does not correspond to the true label, £ = p(¥(x) # y) and
its cost that is the total acquisition cost of all variables required
by the classifier, denoted C = E, [Ziev(x) ci] where V(x) is the
index of variables used to classify the example x. These values
are combined into a new loss function, that represents the total
performance of the classifier and is defined by:

L=C+AE (D

A > 01is a parameter that represented the penalty of a misclas-
sification. In our cascade, this parameter controls the trade-off
between the cost and the error rate. For the basic classifier, the
cost C is constant since we always have to pay for all variables.
Our objective is to construct a cascade with a loss lower than
the loss of the basic classifier.

3.2. Classifier with rejection option

The base element of our cascade system is the classifier with
reject option (Chow, 1970). This type of classifier can reject
examples if it does not enough confidence in the predictions.
No class is assigned to rejected examples. Let’s W a classifier
whose output w(x) is a continuous value. In fixing a threshold
t on this output, we define a classic classifier that assigns one
of the two classes to each example. In fixing two thresholds
{to, 11}, we define a classifier that rejects some examples and
assigns one of the two classes to the non-rejected examples.

0 if w(x) <t
Yx)=4{ 1 if wx)>n 2)
r if th<wlx)<th

with the constraint #y < #; and 7o, #; € [0, 1]. r represents the
rejection of the example x. The performance of the classifier
depends on the following values: the error rate £ = p(W(x) #
v, ¥(x) # r) (represented by the FP and FN regions), the penalty
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Fig. 1. Cascade of D reject classifiers.

of an error Ag, the accuracy A = p(¥(x) = y) (represented by
the TP and TN regions), the penalty of a good classification
Aa, the rejection rate R = p(W(x) = r) (represented by the R
region) and the penalty of a rejection Ag. Note that we have
A+R+E = 1. The performance of a reject classifier for a given
example x is measured by its loss:

L\p(x) = /].AA + AgE + AgR (3)

The objective is to find the thresholds ¢y, and #; minimizing
the expected loss of the classifier.

3.3. Learning of the reject options into the cascade

Our cascade system is a sequence of D classifiers with re-
jectoption ¥y, ..., ¥p of increasing cost (the i-th classifer uses i
variables) illustrated by Figure 1. The i-th classifier P; receives
all examples rejected by the classifier ¥;_;, makes predictions
and sends all rejected examples to ;.. The last classifier ¥p
has no reject option and makes a prediction for all received ex-
amples. The first classifier ¥ receives all examples. For the
moment, we consider that the order of the variables is fixed, the
classifier ¥; uses only the i first variables so its cost is Zj-:] Cj.
For each classifier ¥, its error rate E;, accuracy A; and rejection
rate R; are computed as :

E; = p(¥i(x) #y,¥i(x) #R¥Y;j(x) =R Vje[l,i-1])
A; = p(¥i(x) = yI¥j(x) =RVje[li-1]) 4)
R; = p(¥i(x) =R¥;(x) =RVje[l,i—1])

From these formulas, we can define the loss L; of each classi-
fier of the cascade by a weighted combination of their error rate,
accuracy and rejection rate. The weight of a good classification
is the cost of the used variables, the weight of an error is the
cost of the used variables plus the penalty of misclassification.
When an example is rejected, it is sent to the next classifier so
the weight of rejection is the loss of the next classifier L;.;. The
loss of an entire cascade L can be computed recursively:

i i
Li =Ai Cj+Ei(ZCj+A)+RiLi+]
Jj=1 =1

J

&)

D

D
Lp=Ap Y c;+Ep() cj+A)
=1

J=1 J

with L = L. The error rate and the cost of the cascade are:

D i—1
E=(1-R)E + Y (1-R)| | RDE:
A
C=(=Rjer+ Y (=R |Rpe;

i=2 j=1

The optimization of the cascade consist of finding the opti-
mal rejection regions of each classifier that minimize the loss of
the cascade. For the i-th classifier ¥;, the rejection region is de-
fined by their two decision thresholds (1 . 1] ;))- The penalty

of a good classification is A4 = ', ¢;, the penalty of an

1

. J=1
error is Agg) = le:l ¢;j + A and the penalty of a rejection is
ARy = Liy1. In introducing these penalties in the formulas (5)
we derive the optimal rejection thresholds of the classifier ¥;

(proof in supp. mat.).

. Z}:] cj+A— Ly

Ly — lezl Cj
—  he= A

foiy = A

(7

Unfortunately, we can not simply use these formulas on each
classifier to obtain the optimal cascade. The problem is that the
classifiers and their performances are depending on each other.
When a new rejection region of a classifier is computed, the
sets of examples rejected to the next classifiers change, the per-
formances of the next classifiers and their penalties of rejection
change too. A new rejection region has therefore to be com-
puted. All rejection regions, performances and penalties of all
classifiers are circularly dependent.

The cascade is initialized as the basic classifier i.e. all clas-
sifiers reject all examples and all examples are sent to the last
classifier using all variables. The iterative procedure contains
three steps. The first one is to compute the accuracy, error rate
and rejection rate of all classifiers. Then the penalties of rejec-
tion of all classifiers (excepted the last one) are computed by us-
ing the formulas (5-6). The penalty of rejection depends on the
performances of the next classifier, the penalties are therefore
computed from the classifier ¥p_; to the classifier ¥';. Finally,
the two rejection thresholds are computed for each classifier
from the penalties of good classification, misclassification, and
rejection. This procedure is iterated until convergence.

3.4. Order of the variables

The second problem to construct the cascade is to find the op-
timal order of the variables. The performance of the cascade is
highly dependent on this order. We want the most informative
and less expensive variables at the beginning of the cascade and
the less informative and most expensive at the end. However,
the amount of information brought by a variable for prediction
is not correlated to its cost, a combination of these two quanti-
ties has therefore to drive the order computation. Moreover, the
amount of information of a variable is depending on the pre-
vious variables selected in the cascade. A variable correlated
with the label and highly redundant with previously selected
variables, is not very informative for the classification. There-
fore, the computation of the usefulness of the variables and their
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position in the cascade is not an easy task. One solution is to
test all orders and select the one that produces the cascade with
the lowest loss. However, there are D! different orders, this so-
lution is tractable only for low dimension data. For D = 10
there are already 3,628,800 orders. We propose a heuristic to
find a good variable order, based on the monte carlo tree search
(MCTS). The MCTS is a heuristic search algorithm for decision
processes, it is particularly efficient and popular in game play-
ing Browne et al. (2012) and has already been used to solve
problems of variables selection for classification tasks (Gaudel
and Sebag, 2010).

For the variable order problem, all orders are represented in
a tree of depth D + 1. Each node of the tree, except the root,
represents a variable. The root of the tree represents the null
set, the second level represents the variable in the first position,
the i-th level represents the variable in the (i-1)-th position. An
order is therefore represented by a path from the root to a leaf.
We call a partial order, a path from the root to a node that is not
a leaf. It represents the beginning of an order to be completed.
The MCTS tries to maximize a reward value representing the
performance of each node in the tree. In our case, the reward
depends on the performance of the cascade constructed from
the partial order corresponding to a given node. The MCTS
algorithm asymmetrically grows the search tree to explore the
most promising order. It is an iterative algorithm containing
four steps: selection, expansion, simulation and backpropaga-
tion.

Selection: Starting from the root, we select successively the
best child for each node n. The best child of 7 is the next vari-
able in the partial order represented by the path root to n. We
select the variable v* maximizing the following selection crite-

rion:
k.In(T
v = argmacy, {ny + || ®)
n,v

where f1,,, is the average reward for selecting the variable v from
the node n, T, is the number of times the node n has been vis-
ited, t,, is the number of times v has been selected from the
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node n, V), is the set of variables not selected in the partial or-
der. This criterion is a trade-off between exploitation and explo-
ration of the tree. f1,, represents the exploitation and the square
root term the exploration. k is controlling this trade-off.

Expansion: The selection step stops when we reach a leaf
or a node whose selection criterion is higher than the selection
criterion of all of its children. A child of this node is created
and added to the tree by selecting randomly a variable from V.

Simulation: The partial order represented by the newly cre-
ated node, is completed by adding randomly the rest of the vari-
ables. A reward of this order must be computed. We should
construct a cascade with this variable order, compute the rejec-
tion regions and estimate its performance on the validation set.
This performance will be used as the reward of the tested order.
Unfortunately, this approach is not tractable in a MCTS proce-
dure because of the computation time of the rejection options
computation. We propose an approximation of the cascade per-
formance without computing the rejection options.

For the i-th classifier of the cascade, we associate to the
rejection thresholds (fy, #;) a half normal distribution N(0, o)
with 75 < 0 and #; > 0, where o is the empirical standard
deviation of the output of the i-th classifier computed on the
validation set. From this distribution, we can compute the
probability of rejection for each example of the validation set
Pri(x) = 2(1)(—|va+»fo) where @ is the cumulative normal distri-
bution. An estimation of the rejection rate and error rate of the
i-th classifier are given by:

N N,
R 1 & . I
R; = o j:EI Pri(x)) E; = N ]E:l 1¥i(x)) #y;1 9)

where I[a] = 1 of a is true, 0 otherwise. In using these formu-
las in the equations (1) and (4), we obtain an estimation of the
loss of the cascade for the tested order whatever the rejection
regions. This loss is used to compute the reward of the order
as reward = %A — Lcas. This reward is very fast to compute, it
needs only to compute and keep in memory the predictions and
outputs of the validation set for all classifiers of the cascade.

Backpropagation: The average reward of each node form-
ing the tested order, is updated with the computed reward in the
simulation step.

These four steps are iterated many times. Once the iterations
are finished, the child of the root with the highest average re-
ward is identified. The corresponding variable is selected as the
first variable of the cascade. The selected child becomes the
root of the tree and the MCTS procedure is relaunched on this
sub-tree. The average reward, number of visits and standard
deviation of each node are kept. At each launch of the MCTS
procedure, a new variable is selected and is added to the cas-
cade. After D MCTS launches, we obtain the complete order
of the variables.

4. Experimental validation

4.1. Datasets and study design

We analyze the behavior of our method and compare its per-
formance through a set of experiments based on both artificial



and real datasets.

The artificial datasets are generated from Gaussian distribu-
tions in dimension D. The positive class follows the distribution
N(A, 0*I) and negative class N(0, 0I) where A = {61, ..., dp} is
a vector giving the center of the positive class. The value ¢; is
also an index of the discriminative power of the i-th variable. o
controls the variance of the two classes. The cost of variables is
randomly generated from a uniform distribution U[1, 10]. Then
the costs are normalized such that the sum gives 1. From this
model, four artificial datasets are generated. In Artif.1 all ¢;
are equal, all the variables have the same discriminatory power.
In consequence, the optimal order of a cascade depends only on
the cost of the variables. In Artif.2 and Artif.3 the y;s are gener-
ated from an uniform distribution U[0.5, 1.5]. Artif.3 and artif.4
have a higher dimensionality than Artif.1 and artif.2 (D = 20)
and is unbalanced. For each artificial dataset, 2000 examples
are generated for the training and 10000 examples for the test.

Eight real public datasets from UCI have been used. For
three datasets (lung, breast and pima) the real variables cost
is available. For the last five datasets (WDBC, magic04, spam,
sonar, and madelon) we generate artificial variable costs. The
cost of variables is randomly drawn from a uniform distribution
U[1, 10] and normalized to sum to 1. Even if these costs are not
realistic for their respective classification task, they allow mak-
ing a fair comparison of the algorithms. The magic04, spam,
and madelon datasets are randomly split into a training, vali-
dation to construct the cascade, and a test set to compute the
performances. For the sonar, WDBC, lung, breast, and pima
datasets, the performances are estimated by 10-times 10-fold
cross-validation.

4.2. Sensitivity analysis

In these experiments, we investigate the impact of the pa-
rameter A on the performance of the cascade. Figure 3 gives
respectively the error rate vs A, the cost of the cascade vs A and
the cost vs the error rate on an artificial dataset with the LDA
classifier. The dotted line represents the basic classifier and the
cross line is the cascade obtained with the CASCARO method.
A is increasing with the cost of the cascade and decreasing with
its error rate. A controls the trade-off between the error rate and
the variable cost. For a low value of A, the misclassifications
are more tolerated, fewer variables are therefore needed, but the
error rate increases. At the extreme, A < 2 in these figures, the
cascade keeps only the first variable for all examples. For a
high value of A, the misclassifications are very penalized, the
cascade needs more variables to get more information and min-
imize the risk of error. We see that the error rate of the cascade
is never lower than the error rate of the basic classifier. That
is logic since the basic classifier uses all information, i.e. all
variables for all examples. The error rate of the cascade can be
only higher or equal to the error of the basic classifier.

In Figure 3 left, we see that at A = 15 the error rate of the
cascade reaches the error rate of the basic classifier. The same
point at (0.399,0.237) can be observed in Figure 3 right. This
point is interesting because it represents the performance of a
cascade that does not increase the error rate with minimal cost.
This cascade makes predictions with the same accuracy as the
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basic classifier for a lower cost. In this example, the cost is
reduced by 60%. We call this point the SAMC (Same Accu-
racy Minimal Cost) point. For any classification problem, the
cascade has always a SAMC point. At the extreme the cost of
the SAMC point is 1, corresponding to the performance of the
basic classifier. In this case, the cascade cannot improve the
performance of the basic classifier.

4.3. Results on real datasets

A set of experiments has been done to estimate the perfor-
mance of CASCARO and compare it with the state of the art.
CASCARO is compared with the following other approaches:

e Base classifier: It corresponds to the basic classifier using
all variables.

e Variable selection: A t-test score is used to rank all vari-
ables according to their discriminative power for the clas-
sification problem. Then the top d variables are selected to
construct the classifier.

e Wrapper: A sequential forward selection used to select a
set of d variables. Each set of variables is evaluated by the
corresponding classifier performance (Pudil et al., 1994).

e Cronus: A cascade is constructed with the Cronus algo-
rithm proposed by (Chen et al., 2012). In Cronus paper A4
corresponds to 1/A.

o SoftCascade: A cascade is constructed with the soft cas-
cade algorithm proposed by Raykar (Raykar et al., 2010).
In softcascade paper S corresponds to 1/A.

e Cheapest variable: A cascade is constructed where the
order of variables is given by their increasing cost. The
rejection regions are computed as described in section 3.3.

For a fair comparison, we use the same classification algo-
rithm for the methods “’base classifier”, Variable selection” and
CASCARO. The two classification algorithms used in our ex-
periments are the linear discriminant analysis (LDA) and the
support vector machine (SVM) with a Gaussian kernel. For the
”variable selection”, the number of selected variables d varies
from 1 to D. We report the results of each value of d. For the
cascade methods, we use several values of A € [1,30] to test
different trade-offs between the cost and error rate.

Figure 4 shows the results of the six tested methods using
the LDA classifier on three datasets. The dotted line repre-
sents the error rate of the base classifier. Note that the cost
of this classifier is 1, its performances should be represented by
a unique point, we use a line for a better visual comparison of
the performances of the methods. The full line represents the
performance of the “variables selection” method. The points
represent the performances of the cascade methods: Triangles
for Cronus, squares for SoftCascade, black dots for ”cheapest
variables” and crosses for CASCARO. For cascade methods,
different points are obtained by varying the value of A. For
all methods, the error rate is naturally decreasing with the cost.
We see on the four figures that CASCARO gives the best re-
sults (the crosses are closer to the bottom left corner than the
other points). The performance of SoftCascade and Cronus are
similar. The “cheapest variable” method is competitive with the
cascade methods for the Magic and spam datasets but gives bad
results on the WDBC and Sonar dataset. From these figures,
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we can identify the SAMC points for all cascade methods. This
point represents the performance of the cascade with minimal
cost at the same accuracy as the basic classifier. Table 1 gives
the cost reduction without decreasing the accuracy from these
SAMC points. We conclude that the use of the cascade methods
allows decreasing drastically the cost of the predictions and the
best cost reduction is given by CASCARO.

The error rates of the different methods are never signifi-
cantly lower than the error rate of the “base classifier”. The
“base classifier” uses all variables for all test examples, it is,
therefore, logical that it obtains the lower error rate. Note that in
high dimension setting, the datasets may contain many redun-
dant variables or variables non-related to the classes that can
affect badly the classifier construction. In this case, the “vari-
ables selection” and cascade methods may obtain a lower error
rate than the base classifier. It is not the case in our experiments
because all variables are more or less relevant.

Table 2 gives the loss of the different methods on the eight
real datasets with the LDA and SVM classification rules for A =
10. For the "variable selection” and ”wrapper” , we choose the
d minimizing the loss on the validation set. The “variable se-
lection” and “wrapper” improve the performances of the “base
classifier” for real datasets in dropping weakly informative vari-
ables. The “’cheapest variables” significantly improves the per-
formance of “base”, “’variable selection” and “wrapper” meth-
ods and are competitive with SoftCascade and Cronus. Cronus

gives better results than SoftCascade and “cheapest variables”
with LDA and has a similar performance of “cheapest vari-
ables” with SVM. CASCARO gives the lowest loss with any
classification rule expected for the sonar dataset where Cronus
is better than CASCARO with LDA. CASCARO outperforms
all other methods.

Figure 5 gives the number of test examples classified by each
classifier of CASCARO. We see that the number of examples
classified by a classifier is decreasing with its position in the
cascade. The first classifiers deal with the largest part of the
examples that are easy to classify. Note that the number of ex-
amples in the last classifier is high, this corresponds to the ex-
amples difficult to classified that are rejected by all other classi-
fiers. A large part of the errors of the cascade comes from these
difficult examples.

5. Conclusion

CASCARO is a first step to incorporate the prediction cost
within classifiers. The experiments show that CASCARO pro-
duces a better trade-off cost-error rate than the other cascade
methods. Note that in this paper we add only one variable to
each stage of the cascade. We can easily extend this to more
general cases by considering v; as a subset of variables and c;
as the sum of the cost of the variables in this subset. Future
works include optimization of the method in the function of the



Methods Artif.1 Artif2  Artif 3 Artif4 | MagicO4 WDBC  Spam  Sonar Breast Lung Pima  Madelon
Cheapest variables 8% 25% 39% 59% 12% 81% 83% 57% 55% 57% 49% 51%
SoftCascade 17% 39% 52% 72% 31% 84% 76% 59% 71% 86% 78% 58%
Cronus 17% 44% 63% 81% 31% 83% 83% 58% 70% 82% 83% 56%
CASCARO 16% 41% 66% 91% 56% 89% 84% 63% 77% 91% 86% 62%
Table 1. Cost reduction without decreasing the accuracy of each cascade methods on all real datasets.
Methods Artif.1 Artif.2  Artif.3  Artif 4 [ Madelon ~ Pima  Lung  Breast  Magic04 WDBC  Spam  Sonar
Linear Discriminant Analysis
Base classifier 2.74 2.84 237 2.55 5.39 3.30 4.93 1.89 3.41 2.12 2.13 2.79
Variable selection 2.78 2.69 233 233 4.79 272 4.17 0.74 3.65 1.42 1.57 2.68
Wrapper 2.69 2.68 2.19 2.37 4.55 2.90 4.21 0.64 3.59 1.69 1.71 2.60
Cheapest variables 222 2.57 223 2.20 4.67 2.80 4.29 0.76 322 1.35 143 2.32
CASCARO 2.31 242 2.07 2.01 4.47 2.54 4.12 0.54 2.98 1.21 1.31 2.21
Support Vector Machine
Base classifier 2.57 2.81 2.28 240 542 2.46 4.64 1.38 332 1.97 2.03 2.69
Variable selection 2.55 2.90 2.03 2.29 4.74 2.10 4.17 0.64 3.18 1.45 1.41 221
Wrapper 2.56 2.77 2.11 2.20 4.94 2.22 4.02 0.51 3.17 1.41 1.47 2.12
Cheapest variables 2.16 2.57 1.92 2.08 4.51 1.98 4.09 0.67 3.07 1.32 1.39 1.93
CASCARO 2.28 2.39 1.80 1.89 4.33 1.84 3.94 0.48 2.89 1.20 1.14 1.72
State of the art
SoftCascade 233 241 2.19 2.19 4.59 1.89 4.03 0.51 3.41 1.30 1.47 235
Cronus 2.29 245 1.86 2.09 4.84 2.01 4.09 0.48 3.09 1.29 1.35 2.10
Table 2. Performances of the methods on the real datasets where A = 10.
MaglC04 WDBC Chen, M., Xu, Z.E., Weinberger, K.Q., Chapelle, O., Kedem, D., Saint Louis,
. M., 2012. Classifier cascade for minimizing feature evaluation cost., in:
“1[ “iJ[LJ AISTATS, pp. 218-226.
8 D[ i D7 Chow, C., 1970. On optimum recognition error and reject tradeoff. IEEE Trans-
B ?T?%?T\% L *DEJDIHDJDU actions on Information Theory 16, 41-46.
Ferri, C., Flach, P., Herndndez-Orallo, J., 2004. Delegating classifiers, in: Pro-
Spam Sonar ceedings of the twenty-first international conference on Machine learning,
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Fig. 5. Number of examples classified by each stages of CASCARO.

distribution of the costs as well as work on multi-cost problems
i.e. datasets where there are several acquisition costs for each
variable, for example, money and time. Selection of variables
and high dimension setup are still open questions.

These cascades should be able to reduce significantly the cost
of the use of predictive models in many domains. The main mo-
tivation of the use of cascades is not necessarily the economy
of resources, it can also be the increase of population that will
benefit from this model by redeploying the saved resources. For
example, in medical diagnosis, it would be possible to test many
more patients and improve the general public health policy. It
is important to note some risks of the use of cascades. Some
people may choose to reduce the accuracy of the model to max-
imize their economy by choosing a cascade whose cost is less
than the SMAC point. This could have a harmful effect on some
critical domains like medical applications.
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