CASCARO: Cascade of classifiers for minimizing the cost of prediction
Blaise Hanczar, Avner Bar-Hen

To cite this version:
Blaise Hanczar, Avner Bar-Hen. CASCARO: Cascade of classifiers for minimizing the cost of prediction. Pattern Recognition Letters, 2021, 149, pp.37–43. 10.1016/j.patrec.2021.06.010. hal-03294049

HAL Id: hal-03294049
https://hal.science/hal-03294049
Submitted on 2 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
ABSTRACT

Although the prediction performance is crucial for a classifier, its cost of use is also an essential issue for practical application. The aim of this article is to propose a prediction method that controls not only the error rate but also the cost of the construction of the classifier. The main idea is that some examples are easier to predict than others and can be predicted using fewer variables i.e. with a lower prediction cost. Our method, called CASCARO, is based on a cascade of reject classifiers of increasing cost. The first classifier of the cascade required only one variable, if the prediction is not reliable the second classifier requiring one more variable is used. The principle is repeated until the last classifier using all variables. This type of cascade raises two scientific problems: the structure of the cascade (the order of the classifiers) and the simultaneous computation of the rejection regions of the classifiers. The experiments show that CASCARO produces significant improvements in the use cost without decreasing prediction performance.

1. Introduction

The quality of a prediction system is generally based on the accuracy of new observations. However, from a practical point of view, it is important to consider the price to acquire the variables required by the classifier to make a prediction. For example, in a medical application context, the classifier requires a set of biological variables for each patient and the cost represents the price of the different medical exams to obtain these variables. Note that the cost does not necessarily represent money, it may represent time in the online classifiers, memory in big data based classifiers, tolerance to side effects of treatment in medical application, or any other finite resource. Another case is data confidentiality: if the quality of the classifier is sufficient without personal data, it is better, from ethical and legal matters, not to use it. Another example is given by radiology where X-ray gives very useful diagnostic but is dangerous for the patient. Minimizing the quantity of X-ray exposition is an important health issue.

The objective of this paper is to propose a classifier with reliable predictions and reduced costs. The main idea is that some examples are easier to predict than others and do not need all variables. For these examples, a reliable prediction can be done with a small subset of variables and can be therefore less expensive (or faster, or more ethical). We thus propose a new supervised classification approach using a cascade of classifiers with a rejection option, called CASCARO. This cascade is a sequential set of classifiers of increasing cost. The examples are submitted to the first classifier to obtain a prediction. If this prediction is not judged reliable, the example is rejected to the next classifier of the cascade needing additional variables. The process is repeated until a reliable prediction has been done. This approach allows reducing the cost of the base classifier using all variables. In this approach, there is a trade-off between the accuracy and the cost of the predictions. The two main questions of our method are: (i) the computation of the rejection region of each classifier of the cascade and (ii) the optimal order of the variables that forms the structure of the cascade.

Section two presents the related works about the minimization of prediction cost and the cascade classifiers. Section three gives the formulation of our cascade model, and the approaches used for the rejection regions computation and variables order selection. Section four presents the results of CASCARO and compares them with the state of the art.
2. State of the art

Many classifying procedures, including random forests, are based on ensembles techniques (Rida et al., 2019; Gislason et al., 2006; Nanni and Luminii, 2007). Classifiers are executed sequentially and individual contributions of each observations are accumulated to compute the final scores. The ensemble methods are well known for reducing both the bias and the variance compare to single classifiers. Opposite to our proposal, all variables can contribute to each classifiers and optimization of feature acquisition price is not an aim of ensemble methods. On the other side, feature selection reduces the price of feature acquisition but do not have the advantage of ensemble methods (Pudil et al., 1994; Gao et al., 2018). Moreover the basic assumption is to use the same subset of variables for all observations even if it is well known that the assignment of some observations to a given class can be obvious while some other observations are very difficult to classify.

The reduction of the prediction cost problem is related to the active feature acquisition problem in the cost-sensitive learning domain (Saar-Tsechansky et al., 2009), the learner must decide whether to acquire new variable information about the case at hand to deliver more accurate a prediction. A well-known formalization of this problem is in terms of reinforcement learning and Markov decision processes, as illustrated by (Kapoor and Horvitz, 2009; Tan and yen Kan, 2010; Nan et al., 2015). Respectively, Kapoor (Kapoor and Horvitz, 2009) formalizes active learning policies. Tan (Tan and yen Kan, 2010) proposes an attribute value acquisition algorithm driven by the expected cost saving of acquisition in the support vector machine setting. Nan (Nan et al., 2015) presents an extension of the random forest approach, dealing with the cost of the variables. Another approach deployed to learn variable-effective decision-maker relies on designing cascades of classifiers.

Wang applied the cascade mechanism to the ranking setting, taking into account variable costs within a greedy cascade approach (Wang et al., 2011). Trapeznikov and Saligruma (Trapeznikov and Saligruma, 2013) propose a multi-stage multi-class system where the reject decision at each stage is addressed as a supervised binary classification problem; the associated generalization error is bounded depending on the cascade complexity using VC dimension. Another approach is built upon the boosting mechanism (Benbouzid et al., 2012), where the cascade is implemented by skipping some of the classifiers in the boosting ensemble, depending on the case and the decision of the former classifiers. Raykar et al. Raykar et al. (2010) investigate a cascade of classifiers with a reject option: they design a soft cascade where each stage accepts or rejects examples according to a probability distribution induced by the previous stage. Each stage of the cascade is limited to linear classifiers, but these are learned jointly and globally take into account the variable cost. Chen (Chen et al., 2012) re-weights and re-orders the weak learners obtained from boosting methods. After the initial training, a dictionary of classifiers is re-organized into a chain of cascades where each can reject an input or pass it on to the subsequent stage. The combination of rejection rule and cascade of classifiers is introduced by Ferri (Ferri et al., 2004). A model based on small sequences of reject classifiers has been proposed in the context of personalized medicine context (Hanczar and Bar-Hen, 2016).

In most of the published methods, the structure of the cascade, depending on the order of the variables or classifiers, is fixed. Moreover, these methods are generally developed and tested for small cascades. The approach that we propose in this paper, aims at overcoming these limitations. We will learn the structure of the cascade and build long cascades.

3. CASCARO : Cascade of classifiers with reject option

3.1. Formulation of the cascade

We consider a classification problem with two classes (positive “1” and negative “0”) and D variables \{v_1, ..., v_D\}. Let a training set of N examples \{(x_1, y_1), ..., (x_N, y_N)\} where \(x_i \in \mathbb{R}^D\) is the variable vector and \(y_i \in \{0, 1\}\) is the label. We denote \(c_i\) be the cost for acquiring the i-th variable of an example. Let’s \(\Psi : \mathbb{R}^D \rightarrow \{0, 1\}\), basic classifier, a classifier constructed from a usual supervised learning procedure and making predictions in using all variables. Our objective is to construct a cascade that obtains better performances than the basic classifier.

In this context, the performance of a classifier is measured by two values: its error rate, i.e. the probability that the prediction does not correspond to the true label, \(E = p(\Psi(x) \neq y)\) and its cost that is the total acquisition cost of all variables required by the classifier, denoted \(C = E_x \left[\sum_{i \in V(x)} c_i \right] \) where \(V(x)\) is the index of variables used to classify the example \(x\). These values are combined into a new loss function, that represents the total performance of the classifier and is defined by:

\[
L = C + \Lambda E
\]

(1)

\(\Lambda \geq 0\) is a parameter that represented the penalty of a misclassification. In our cascade, this parameter controls the trade-off between the cost and the error rate. For the basic classifier, the cost \(C\) is constant since we always have to pay for all variables. Our objective is to construct a cascade with a loss lower than the loss of the basic classifier.

3.2. Classifier with rejection option

The base element of our cascade system is the classifier with reject option (Chow, 1970). This type of classifier can reject examples if it does not enough confidence in the predictions. No class is assigned to rejected examples. Let’s \(\Psi\) a classifier whose output \(\omega(x)\) is a continuous value. In fixing a threshold \(t\) on this output, we define a classic classifier that assigns one of the two classes to each example. In fixing two thresholds \([t_0, t_1]\), we define a classifier that rejects some examples and assigns one of the two classes to the non-rejected examples.

\[
\Psi(x) = \begin{cases}
0 & \text{if } \omega(x) \leq t_0 \\
1 & \text{if } \omega(x) \geq t_1 \\
r & \text{if } t_0 < \omega(x) < t_1
\end{cases}
\]

(2)

with the constraint \(t_0 \leq t_1\) and \(t_0, t_1 \in [0, 1]\). \(r\) represents the rejection of the example \(x\). The performance of the classifier depends on the following values: the error rate \(E = p(\Psi(x) \neq y, \Psi(x) \neq r)\) (represented by the FP and FN regions), the penalty
Fig. 1. Cascade of \(D \) reject classifiers.

of an error \(\lambda_E \), the accuracy \(A = p(\Psi(x) = y) \) (represented by the TP and TN regions), the penalty of a good classification \(\lambda_A \), the rejection rate \(R = p(\Psi(x) = r) \) (represented by the R region) and the penalty of a rejection \(\lambda_R \). Note that we have \(A + R + E = 1 \). The performance of a reject classifier for a given example \(x \) is measured by its loss:

\[
L_{\Psi}(x) = \lambda_A A + \lambda_E E + \lambda_R R
\]

The objective is to find the thresholds \(t_0 \) and \(t_1 \) minimizing the expected loss of the classifier.

3.3. Learning of the reject options into the cascade

Our cascade system is a sequence of \(D \) classifiers with reject option \(\Psi_1, ..., \Psi_D \) of increasing cost (the \(i \)-th classifier uses \(i \) variables) illustrated by Figure 1. The \(i \)-th classifier \(\Psi_i \) receives all examples rejected by the classifier \(\Psi_{i-1} \), makes predictions and sends all rejected examples to \(\Psi_{i+1} \). The last classifier \(\Psi_D \) has no reject option and makes predictions for all received examples. The first classifier \(\Psi_1 \) receives all examples. For the moment, we consider that the order of the variables is fixed, the classifier \(\Psi_i \) uses only the \(i \) first variables so its cost is \(\sum_{j=1}^{i} c_j \).

For each classifier \(\Psi_i \), its error rate \(E_i \), accuracy \(A_i \) and rejection rate \(R_i \) are computed as:

\[
E_i = p(\Psi_i(x) \neq y, \Psi_i(x) \neq R) = R \forall j \in [1, i-1])
A_i = p(\Psi_i(x) = y \forall j \in [1, i-1])
R_i = p(\Psi_i(x) = R \forall j \in [1, i-1])
\]

From these formulas, we can define the loss \(L_i \) of each classifier of the cascade by a weighted combination of their error rate, accuracy and rejection rate. The weight of a good classification is the cost of the used variables, the weight of an error is the cost of the used variables plus the penalty of missclassfication. When an example is rejected, it is sent to the next classifier so the weight of rejection is the loss of the next classifier \(L_{i+1} \). The loss of an entire cascade \(L \) can be computed recursively:

\[
L_i = A_i \sum_{j=1}^{i} c_j + E_i(\sum_{j=1}^{i} c_j + \Lambda) + R_i L_{i+1}
\]

\[
L_D = A_D \sum_{j=1}^{D} c_j + E_D(\sum_{j=1}^{D} c_j + \Lambda)
\]

with \(L = L_1 \). The error rate and the cost of the cascade are:

\[
E = (1 - R_1)E_1 + \sum_{i=2}^{D} (1 - R_i)(\prod_{j=1}^{i-1} R_j)E_i
\]

\[
C = (1 - R_1)c_1 + \sum_{i=2}^{D} (1 - R_i)(\prod_{j=1}^{i-1} R_j)c_i
\]

The optimization of the cascade consist of finding the optimal rejection regions of each classifier that minimize the loss of the cascade. For the \(i \)-th classifier \(\Psi_i \), the rejection region is defined by their two decision thresholds \((t_{0,i}^*, t_{1,i}^*) \). The penalty of a good classification is \(\lambda_{A(i)} = \sum_{j=1}^{i} c_j \), the penalty of an error is \(\lambda_{E(i)} = \sum_{j=1}^{i} c_j + \Lambda \) and the penalty of a rejection is \(\lambda_{R(i)} = L_{i+1} \). In introducing these penalties in the formulas (5) we derive the optimal rejection thresholds of the classifier \(\Psi_i \) (proof in supp. mat.).

\[
t_{0,i}^* = \frac{L_{i+1} - \sum_{j=1}^{i} c_j}{\Lambda}
\]

\[
t_{1,i}^* = \frac{\sum_{j=1}^{i} c_j + \Lambda - L_{i+1}}{\Lambda}
\]

Unfortunately, we can not simply use these formulas on each classifier to obtain the optimal cascade. The problem is that the classifiers and their performances are depending on each other. When a new rejection region of a classifier is computed, the sets of examples rejected to the next classifiers change, the performances of the next classifiers and their penalties of rejection change too. A new rejection region has therefore to be computed. All rejection regions, performances and penalties of all classifiers are circularly dependent.

The cascade is initialized as the basic classifier i.e. all classifiers reject all examples and all examples are sent to the last classifier using all variables. The iterative procedure contains three steps. The first one is to compute the accuracy, error rate and rejection rate of all classifiers. Then the penalties of rejection of all classifiers (excepted the last one) are computed by using the formulas (5-6). The penalty of rejection depends on the performances of the next classifier, the penalties are therefore computed from the classifier \(\Psi_{D-1} \) to the classifier \(\Psi_1 \). Finally, the two rejection thresholds are computed for each classifier from the penalties of good classification, missclassification, and rejection. This procedure is iterated until convergence.

3.4. Order of the variables

The second problem to construct the cascade is to find the optimal order of the variables. The performance of the cascade is highly dependent on this order. We want the most informative and less expensive variables at the beginning of the cascade and the less informative and most expensive at the end. However, the amount of information brought by a variable for prediction is not correlated to its cost, a combination of these two quantities has therefore to drive the order computation. Moreover, the amount of information of a variable is depending on the previous variables selected in the cascade. A variable correlated with the label and highly redundant with previously selected variables, is not very informative for the classification. Therefore, the computation of the usefulness of the variables and their
Fig. 2. Monte Carlo Search Tree procedure.

position in the cascade is not an easy task. One solution is to
test all orders and select the one that produces the cascade with
the lowest loss. However, there are $D!$ different orders, this solu-
tion is tractable only for low dimension data. For $D = 10$
there are already 3,628,800 orders. We propose a heuristic to
find a good variable order, based on the monte carlo tree search
(MCTS). The MCTS is a heuristic search algorithm for decision
processes, it is particularly efficient and popular in game play-
ing Browne et al. (2012) and has already been used to solve
problems of variables selection for classification tasks (Gaudel
and Sebag, 2010).

For the variable order problem, all orders are represented in
a tree of depth $D + 1$. Each node of the tree, except the root,
represents a variable. The root of the tree represents the null
set, the second level represents the variable in the first position,
the i-th level represents the variable in the (i-1)-th position. An
order is therefore represented by a path from the root to a leaf.
We call a partial order, a path from the root to a node that is not
a leaf. It represents the beginning of an order to be completed.
The MCTS tries to maximize a reward value representing
the performance of each node in the tree. In our case, the reward
depends on the performance of the cascade constructed from
the partial order corresponding to a given node. The MCTS
algorithm asymmetrically grows the search tree to explore the
most promising order. It is an iterative algorithm containing four steps: selection, expansion, simulation and backpropaga-
tion.

Selection: Starting from the root, we select successively the
best child for each node n. The best child of n is the next vari-
able in the partial order represented by the path root to n. We
select the variable v^* maximizing the following selection crite-

\[v^* = \arg\max_{v \in V_n} \left\{ \hat{\mu}_{n,v} + \sqrt{\frac{k \ln(T_n)}{t_{n,v}}} \right\} \] (8)

where $\hat{\mu}_{n,v}$ is the average reward for selecting the variable v from
the node n, T_n is the number of times the node n has been
visited, $t_{n,v}$ is the number of times v has been selected from the
node n, V_n is the set of variables not selected in the partial or-
der. This criterion is a trade-off between exploitation and explo-
ration of the tree. $\hat{\mu}_{n,v}$ represents the exploitation and the square
root term the exploration. k is controlling this trade-off.

Expansion: The selection step stops when we reach a leaf
or a node whose selection criterion is higher than the selection
criterion of all of its children. A child of this node is created
and added to the tree by selecting randomly a variable from V_n.

Simulation: The partial order represented by the newly cre-
nated node, is completed by adding randomly the rest of the vari-
able. A reward of this order must be computed. We should
construct a cascade with this variable order, compute the rejec-
tion regions and estimate its performance on the validation set.
This performance will be used as the reward of the tested order.
Unfortunately, this approach is not tractable in a MCTS pro-
cedure because of the computation time of the rejection options
computation. We propose an approximation of the cascade per-
formance without computing the rejection options.

For the i-th classifier of the cascade, we associate to the
rejection thresholds (t_0, t_1) a half normal distribution $N(0, \sigma_i)$
with $t_0 \leq 0$ and $t_1 \geq 0$, where σ_i is the empirical standard
deviation of the output of the i-th classifier computed on the
validation set. From this distribution, we can compute the
probability of rejection for each example of the validation set
$Pr_i(x) = 2\Phi(-\frac{t_1}{\sigma_i})$ where Φ is the cumulative normal
distribution. An estimation of the rejection rate and error rate of the
i-th classifier are given by:

\[\hat{R}_i = \frac{1}{N_v} \sum_{j=1}^{N_v} Pr_i(x_j) \]
\[\hat{E}_i = \frac{1}{N_v} \sum_{j=1}^{N_v} I[\Psi_i(x_j) \neq y_j] \] (9)

where $I[a] = 1$ of a is true, 0 otherwise. In using these formula-
s in the equations (1) and (4), we obtain an estimation of the
loss of the cascade for the tested order whatever the rejection
regions. This loss is used to compute the reward of the order
as $\text{reward} = \frac{1}{2} \Lambda - L_{cas}$. This reward is very fast to compute, it
needs only to compute and keep in memory the predictions and
outputs of the validation set for all classifiers of the cascade.

Backpropagation: The average reward of each node form-
ing the tested order, is updated with the computed reward in the
simulation step.

These four steps are iterated many times. Once the iterations
are finished, the child of the root with the highest average re-
ward is identified. The corresponding variable is selected as the
first variable of the cascade. The selected child becomes the
root of the tree and the MCTS procedure is relaunched on this
sub-tree. The average reward, number of visits and standard
deviation of each node are kept. At each launch of the MCTS
procedure, a new variable is selected and is added to the cas-
cade. After D MCTS launches, we obtain the complete order of the
variables.

4. Experimental validation

4.1. Datasets and study design

We analyze the behavior of our method and compare its per-
formance through a set of experiments based on both artificial
and real datasets.

The artificial datasets are generated from Gaussian distributions in dimension D. The positive class follows the distribution $N(\Delta, \sigma^2 I)$ and negative class $N(0, \sigma^2 I)$ where $\Delta = [\delta_1, ..., \delta_D]$ is a vector giving the center of the positive class. The value δ_i is also an index of the discriminative power of the i-th variable. σ^2 controls the variance of the two classes. The cost of variables is randomly generated from a uniform distribution $U[0.5, 1.5]$. Artif.3 and artif.4 have a higher dimensionality than Artif.1 and artif.2 ($D = 20$) and is unbalanced. For each artificial dataset, 2000 examples are generated for the training and 10000 examples for the test.

Eight real public datasets from UCI have been used. For three datasets (lung, breast and pima) the real variables cost is available. For the last five datasets (WDBC, magic04, spam, sonar, and madelon) we generate artificial variable costs. The cost of variables is randomly drawn from a uniform distribution $U[0.5, 1.5]$. Artif.3 and artif.4 have a higher dimensionality than Artif.1 and artif.2 ($D = 20$) and is unbalanced. For each artificial dataset, 2000 examples are generated for the training and 10000 examples for the test.

4.2. Sensitivity analysis

In these experiments, we investigate the impact of the parameter Λ on the performance of the cascade. Figure 3 gives respectively the error rate vs d, the cost of the cascade vs Λ and the cost vs the error rate on an artificial dataset with the LDA classifier. The dotted line represents the basic classifier and the cross line is the cascade obtained with the CASCARO method. Λ is increasing with the cost of the cascade and decreasing with its error rate. Λ controls the trade-off between the error rate and the variable cost. For a low value of Λ, the misclassifications are more tolerated, fewer variables are therefore needed, but the error rate increases. At the extreme, $\Lambda \leq 2$ in these figures, the cascade keeps only the first variable for all examples. For a high value of Λ, the misclassifications are very penalized, the cascade needs more variables to get more information and minimize the risk of error. We see that the error rate of the cascade is never lower than the error rate of the basic classifier. That is logic since the basic classifier uses all information, i.e. all variables for all examples. The error rate of the cascade can be only higher or equal to the error of the basic classifier.

In Figure 3 left, we see that at $\Lambda = 15$ the error rate of the cascade reaches the error rate of the basic classifier. The same point at $(0.399, 0.237)$ can be observed in Figure 3 right. This point is interesting because it represents the performance of a cascade that does not increase the error rate with minimal cost. This cascade makes predictions with the same accuracy as the basic classifier for a lower cost. In this example, the cost is reduced by 60%. We call this point the SAMC (Same Accuracy Minimal Cost) point. For any classification problem, the cascade has always a SAMC point. At the extreme the cost of the SAMC point is 1, corresponding to the performance of the basic classifier. In this case, the cascade cannot improve the performance of the basic classifier.

4.3. Results on real datasets

A set of experiments has been done to estimate the performance of CASCARO and compare it with the state of the art. CASCARO is compared with the following other approaches:

- **Base classifier**: It corresponds to the basic classifier using all variables.
- **Variable selection**: A t-test score is used to rank all variables according to their discriminative power for the classification problem. Then the top d variables are selected to construct the classifier.
- **Wrapper**: A sequential forward selection used to select a set of d variables. Each set of variables is evaluated by the corresponding classifier performance (Pudil et al., 1994).
- **Cronus**: A cascade is constructed with the Cronus algorithm proposed by (Chen et al., 2012). In Cronus paper λ corresponds to $1/\Lambda$.
- **SoftCascade**: A cascade is constructed with the soft cascade algorithm proposed by Raykar (Raykar et al., 2010). In softcascade paper β corresponds to $1/\Lambda$.
- **Cheapest variable**: A cascade is constructed where the order of variables is given by their increasing cost. The rejection regions are computed as described in section 3.3.

For a fair comparison, we use the same classification algorithm for the methods "base classifier", Variable selection" and CASCARO. The two classification algorithms used in our experiments are the linear discriminant analysis (LDA) and the support vector machine (SVM) with a Gaussian kernel. For the "variable selection", the number of selected variables d varies from 1 to D. We report the results of each value of d. For the cascade methods, we use several values of $\Lambda \in [1, 30]$ to test different trade-offs between the cost and error rate.

Figure 4 shows the results of the six tested methods using the LDA classifier on three datasets. The dotted line represents the error rate of the base classifier. Note that the cost of this classifier is 1, its performances should be represented by a unique point, we use a line for a better visual comparison of the performances of the methods. The full line represents the performance of the "variables selection" method. The points represent the performances of the cascade methods: Triangles for Cronus, squares for SoftCascade, black dots for "cheapest variables" and crosses for CASCARO. For cascade methods, different points are obtained by varying the value of Λ. For all methods, the error rate is naturally decreasing with the cost. We see on the four figures that CASCARO gives the best results (the crosses are closer to the bottom left corner than the other points). The performance of SoftCascade and Cronus are similar. The "cheapest variable" method is competitive with the cascade methods for the Magic and spam datasets but gives bad results on the WDBC and Sonar dataset. From these figures,
Fig. 3. Behavior of the error rate and cost of the cascade in function on its cost on artif.3 datasets.

WDBC dataset Spam dataset Sonar dataset

\[+: \text{CASCARO}, \bullet: \text{Cheapest variable}, \square: \text{SoftCascade}, \triangle: \text{Cronus} \]

Full line: Variable selection, Dotted line: basic classifier

Fig. 4. Results on real datasets with the LDA classifier for the six tested methods.

we can identify the SAMC points for all cascade methods. This point represents the performance of the cascade with minimal cost at the same accuracy as the basic classifier. Table 1 gives the cost reduction without decreasing the accuracy from these SAMC points. We conclude that the use of the cascade methods allows decreasing drastically the cost of the predictions and the best cost reduction is given by CASCARO.

The error rates of the different methods are never significantly lower than the error rate of the "base classifier". The "base classifier" uses all variables for all test examples, it is, therefore, logical that it obtains the lower error rate. Note that in high dimension setting, the datasets may contain many redundant variables or variables non-related to the classes that can affect badly the classifier construction. In this case, the "variables selection" and cascade methods may obtain a lower error rate than the base classifier. It is not the case in our experiments because all variables are more or less relevant.

Table 2 gives the loss of the different methods on the eight real datasets with the LDA and SVM classification rules for \(\Lambda = 10 \). For the "variable selection" and "wrapper", we choose the \(d \) minimizing the loss on the validation set. The "variable selection" and "wrapper" improve the performances of the "base classifier" for real datasets in dropping weakly informative variables. The "cheapest variables" significantly improves the performance of "base", "variable selection" and "wrapper" methods and are competitive with SoftCascade and Cronus. Cronus gives better results than SoftCascade and "cheapest variables" with LDA and has a similar performance of "cheapest variables" with SVM. CASCARO gives the lowest loss with any classification rule expected for the sonar dataset where Cronus is better than CASCARO with LDA. CASCARO outperforms all other methods.

Figure 5 gives the number of test examples classified by each classifier of CASCARO. We see that the number of examples classified by a classifier is decreasing with its position in the cascade. The first classifiers deal with the largest part of the examples that are easy to classify. In this case, the "variables selection" and cascade methods may obtain a lower error rate than the base classifier. It is not the case in our experiments because all variables are more or less relevant.

Table 2 gives the loss of the different methods on the eight real datasets with the LDA and SVM classification rules for \(\Lambda = 10 \). For the "variable selection" and "wrapper", we choose the \(d \) minimizing the loss on the validation set. The "variable selection" and "wrapper" improve the performances of the "base classifier" for real datasets in dropping weakly informative variables. The "cheapest variables" significantly improves the performance of "base", "variable selection" and "wrapper" methods and are competitive with SoftCascade and Cronus. Cronus gives better results than SoftCascade and "cheapest variables" with LDA and has a similar performance of "cheapest variables" with SVM. CASCARO gives the lowest loss with any classification rule expected for the sonar dataset where Cronus is better than CASCARO with LDA. CASCARO outperforms all other methods.

Figure 5 gives the number of test examples classified by each classifier of CASCARO. We see that the number of examples classified by a classifier is decreasing with its position in the cascade. The first classifiers deal with the largest part of the examples that are easy to classify. In this case, the "variables selection" and cascade methods may obtain a lower error rate than the base classifier. It is not the case in our experiments because all variables are more or less relevant.

Table 2 gives the loss of the different methods on the eight real datasets with the LDA and SVM classification rules for \(\Lambda = 10 \). For the "variable selection" and "wrapper", we choose the \(d \) minimizing the loss on the validation set. The "variable selection" and "wrapper" improve the performances of the "base classifier" for real datasets in dropping weakly informative variables. The "cheapest variables" significantly improves the performance of "base", "variable selection" and "wrapper" methods and are competitive with SoftCascade and Cronus. Cronus gives better results than SoftCascade and "cheapest variables" with LDA and has a similar performance of "cheapest variables" with SVM. CASCARO gives the lowest loss with any classification rule expected for the sonar dataset where Cronus is better than CASCARO with LDA. CASCARO outperforms all other methods.

5. Conclusion

CASCARO is a first step to incorporate the prediction cost within classifiers. The experiments show that CASCARO produces a better trade-off cost-error rate than the other cascade methods. Note that in this paper we add only one variable to each stage of the cascade. We can easily extend this to more general cases by considering \(v_i \) as a subset of variables and \(c_i \) as the sum of the cost of the variables in this subset. Future works include optimization of the method in the function of the
Table 1. Cost reduction without decreasing the accuracy of each cascade methods on all real datasets.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Magic04</th>
<th>WDBC</th>
<th>Spam</th>
<th>Sonar</th>
<th>Breast</th>
<th>Lung</th>
<th>Pima</th>
<th>Madelon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheapest variables</td>
<td>8%</td>
<td>12%</td>
<td>25%</td>
<td>39%</td>
<td>59%</td>
<td>8%</td>
<td>57%</td>
<td>55%</td>
</tr>
<tr>
<td>SoftCascade</td>
<td>17%</td>
<td>31%</td>
<td>39%</td>
<td>52%</td>
<td>72%</td>
<td>44%</td>
<td>84%</td>
<td>76%</td>
</tr>
<tr>
<td>Cronus</td>
<td>17%</td>
<td>31%</td>
<td>44%</td>
<td>63%</td>
<td>81%</td>
<td>41%</td>
<td>83%</td>
<td>83%</td>
</tr>
<tr>
<td>CASCARO</td>
<td>16%</td>
<td>23%</td>
<td>41%</td>
<td>66%</td>
<td>91%</td>
<td>65%</td>
<td>89%</td>
<td>84%</td>
</tr>
</tbody>
</table>

Table 2. Performances of the methods on the real datasets where A = 10.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Magic04</th>
<th>WDBC</th>
<th>Spam</th>
<th>Sonar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoftCascade</td>
<td>2.33</td>
<td>2.41</td>
<td>2.19</td>
<td>2.19</td>
</tr>
<tr>
<td>Cronus</td>
<td>2.29</td>
<td>2.45</td>
<td>1.86</td>
<td>2.09</td>
</tr>
</tbody>
</table>

Fig. 5. Number of examples classified by each stages of CASCARO.

distribution of the costs as well as work on multi-cost problems i.e. datasets where there are several acquisition costs for each variable, for example, money and time. Selection of variables and high dimension setup are still open questions.

These cascades should be able to reduce significantly the cost of the use of predictive models in many domains. The main motivation of the use of cascades is not necessarily the economy of resources, it can also be the increase of population that will benefit from this model by re-deploying the saved resources. For example, in medical diagnosis, it would be possible to test many more patients and improve the general public health policy. It is important to note some risks of the use of cascades. Some people may choose to reduce the accuracy of the model to maximize their economy by choosing a cascade whose cost is less than the SMAC point. This could have a harmful effect on some critical domains like medical applications.

References

