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Abstract

While many numerical methods for the linear transport equation are available in the
literature in 1D or on Cartesian meshes, fewer works are dedicated to the resolution
of this model on unstructured meshes. In the context of radiative hydrodynamics, we
need a method capable to handle a wide range of radiation regimes going from free-
streaming to diffusion and to be coupled with a Lagrangian hydrodynamics solver.
In this paper we design a method based on the micro-macro paradigm and to the
Discrete Ordinates (SN) angular discretization, which fulfills these requirements. It
allows to choose the limit transport scheme and the limit diffusion scheme. It is
compared on challenging test problems to a Discontinuous Finite Element (DFE)
method.
Keywords:
Finite Volume; radiative transfer; asymptotic analysis; computational transport;
monotone anistotropic diffusion; unstructured meshes.

1. Introduction

In this paper, we are interested in the transport of photons in astrophysical
phenomena or in Inertial Confinement Fusion experiment (refer to [24, 59, 71] for
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an overview of radiation driven physics). To this end, we consider the grey radiative
transfer equations [59] {

1
c
∂tI + ω ·∇I + σI = σB(TM),

∂tEM = cσ (Er − aT 4
M) ,

where c is the speed of light, I denotes the grey radiative intensity, σ the cross
section, B is the Planck function at the matter temperature TM , ω the direction,
EM the matter energy density, and Er the radiative energy density. One of the
problem encountered when dealing with these equations is that they are non-linear5

and coupled. One solution to deal with this difficulty is the linearization used by
Fleck and Cummings in [36]. This brings us, at each time iteration n, to the following
linear problem on the time interval [tn, tn + ∆t]{

1
c
∂tI + ω ·∇I + σnI = fnσnBn + (1− fn)σn < I >,

∂tEM = fncσn (Er − Φn) ,
(1)

where < · > accounts for the angular mean value, f = 1/ (1 + βcσ∆t) denotes the10

factor of Fleck, β = dΦ
dEM

, Φ = aT 4
M , and the superscript n denotes quantities taken

at time tn.
The System (1) involves very different length and time scales. These scales are

related to the scaled mean free path of the photons, called the Knudsen number.
For Knudsen numbers close to unity, the transport of photons can be modeled by a15

hyperbolic kinetic equation. However, as the Knudsen number tends to zero (for in-
stance in opaque media), it is well-known (refer for instance to [8]) that this equation
tends to a diffusion equation (that is of parabolic type). That poses major difficul-
ties for the numerical simulation, since a standard discretization constrains the time
and space step proportionally to the Knudsen number. One way to circumvent20

this problem, is to decompose the calculation domain into a diffusive domain (small
Knudsen number) and a transport domain (large Knudsen number), as explained for
instance in [7, 32, 31, 38, 40, 48, 53]. Unfortunately, this solution is complicated
to apply in our case, because the boundaries between diffusion and transport are
fuzzy and moving, due to ablation processes. The alternative is to design numeri-25

cal schemes able to handle all the radiative regimes without loss of accuracy or too
drastic time-step restriction. These type of scheme is called Asymptotic Preserving
(AP), and has been the subject of a considerable amount of work since the seminal
work of Larsen et al [51, 52] (refer also to Jin and Levermore [46], who introduced the
expression Asymptotic Preserving). A comprehensive description of the work that30

has since been done in this area is beyond the scope of this paper, and we invite
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the interested reader to refer to the review papers [44, 45]. Most of the numerical
methods described in these papers are dedicated to 1D calculation or restricted to
Cartesian meshes. However, there are relatively few numerical schemes capable of
taking into account general meshes in multi-D. Early works in this field are based on35

a Discontinuous Finite Element (DFE) discretization [2, 3, 5, 6, 25, 65], which has
been proven to capture the diffusive regime by construction. Another method [18]
uses a Treffz Discontinuous Galerkin basis. Some recent works are based on Finite
Volume schemes with an approximate Riemann solver. For instance, Franck and co-
authors [16, 17, 37] (see also [33]) adapt the methods of Jin and Levermore [46] and40

Gosse [39] to the nodal approximate Riemann solver of the Lagrangian Glace hydro-
dynamic scheme [22, 57]. Another step in this direction was achieved by Berthon,
Turpault and co-authors [10, 11, 12, 13], based on the HLL approximate Riemann
solver (see for instance [69]). In [42], an AP scheme based on the DDFV formal-
ism [41] is proposed.45

Since we want to couple our radiation solver with a Lagrangian hydrodynamic
scheme for the Euler system (as [19, 22, 56, 70]), we desire our solver to fulfill the
following properties:

P1 to be consistent on general meshes (meaning any polytopal valid mesh),

P2 to enforce conservation of radiative energy,50

P3 to be able to handle all the radiation regimes from free-streaming to diffusion
(Asymptotic Preserving),

P4 to have the radiative energy degrees of freedom located at the centers of the
elements to ensure the compatibility with the hydrodynamic scheme.

Moreover, one of the major drawback of the Discrete Finite Element method on55

general meshes, is their algorithmic cost in the diffusion regime. While they are
indeed Asymptotic Preserving, in the sense that the accuracy of the result and the
time-step are independent of the Knudsen number, the CPU consumption strongly
depends on acceleration technics as DSA (Diffusion Synthetic Acceleration) [4] or
Transport Synthetic Acceleration (TSA) [63]. The development of these methods is60

still a field of research. This is why we want to free ourselves from these algorithms,
and even be able

P5 to choose the diffusion scheme towards which our method tends when the Knud-
sen number becomes low.
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To our knowledge, no existing scheme fulfills all these requirements. That is why we65

were interested in designing a new scheme. To achieve this, we were inspired by a
very popular method in the AP community, called micro-macro formulation. This
method was introduced in [49] and popularized by Lemou and co-authors [9, 54]. It
consists in decomposing the unknown (the radiative intensity in our case) into an
equilibrium part (the angular mean value) and a deviation. Since the radiation is70

isotropic (does not depend on angle) in the diffusion limit, the deviation part tends
to zero with the Knudsen number. This principle has been widely used for designing
numerical AP schemes during the past two decades ([27, 29, 34, 47, 50, 64] among
others), and has similarities with some earlier methods called Variable Eddington
Factor (described for instance in [59] p503). However, to our knowledge, no extension75

to general meshes has been achieved. It may be because the limit diffusion scheme
arising from the discretization proposed in [54] is a two-point flux approximation,
which is known to be inconsistent on most of the meshes (refer for instance to [35]). In
this paper, we propose a micro-macro scheme for the linear transport equation which
can be proven to fulfill the propositions P1 to P5. To achieve this, we first perform80

the angular semi-discretization of the transport equation, using a Discrete Ordinate
method. Then we perform the micro-macro decomposition, and obtain a transport
equation for the angular dependant variables (deviation), and a diffusion equation
for the angular main value (Section 2). The spatial and semi-implicit temporal
discretization are described in Section 3. It is shown that our temporal discretization85

permits to choose any diffusion scheme for the main angular value. It allows us to
choose a diffusion scheme which preserves the positivity of the energy e, which is an
important property, especially in this regime (in which radiation is strongly coupled
with the matter temperature). Finally, we assess the new method on several test
problems in a wide range of regime, and compare it either to analytical solutions (if90

they exist) or to Discrete Finite Element method results in Section 5.

2. Problem and properties

2.1. Continuous transport equation
We focus on the following linear integro-differential transport equation, which is

indeed of the form of Eq. (1)95

1

v
∂tu(t,x,ω)+ω · ∇u(t,x,ω)+σtu(t,x,ω) = q(t,x,ω)+σs

∫
S2

u(t,x,ω′)
dω′

4π
, (2)

where
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• x ∈ Ω is the space coordinates in the open domain Ω ⊂ Rd, with d the
dimension of the problem;

• t ∈ R+ is the time;100

• u(t,x,ω) ∈ R the distribution function;

• v ∈ R+ is the norm of the velocity of the particles (equal to the speed of light
in the case of photons);

• ω ∈ S2 accounts for the direction of the velocity of the particles, S2 being the
unit sphere;105

• σt = σa+σs, with σt, σa and σs respectively the total, absorption, and scattering
cross sections;

• q(t,x,ω) is a given source term.

We introduce the two first moments of u with respect to ω

e =< u >=

∫
S2

u(ω′)
dω′

4π
, f =

∫
S2

ω′u(ω′)
dω′

4π
. (3)110

By averaging Eq. (2) over all directions ω, we obtain a balance equation satisfied
by e

1

v
∂te+∇ · f + σae = s, (4)

with the isotropic part of the source

s(t,x) =

∫
S2

q(ω′)
dω′

4π
. (5)115

It is shown in [23] that if q > 0, σa > 0 and σs > 0, Eq. (2) satisfies positivity.
Moreover, in [30], we have that if σa = 0, and q = 0, u and e satisfies a conservation
law and verify a global maximum principle (umin ≤ u ≤ umax and emin ≤ e ≤
emax, where umin, umax, emin, emax depend only on the initial state and the boundary
conditions). It is well known (refer for instance to [24, 59]), that Eq. (2) satisfies a
diffusion limit, in thick media, in the sense that when σs → ∞, σa → 0 and q → 0,
up to O( 1

σ2
s
):

u = e− 1

σs
ω · ∇e, f = − 1

3σs
∇e and

1

v
∂te =∇·

(
1

3σs
∇e
)
.
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2.2. Semi-discrete angular equation
We introduce K > 0 angular directions, noted ωk. Each direction is weighted by

a positive weight wk. Following the recommendations of [20, 21], we impose on the
couples (wk,ωk) the following constraints:

K∑
k=1

wk = 1,

K∑
k=1

wkωk = 0,

K∑
k=1

wkωk ⊗ ωk =
1

3
IK .

(6)120

This leads to an even number of directions, opposite in pairs and of equal weights
1/K. This quadrature is called quadrature Equal Weights [20]. It is then sufficient to
discretize the sphere uniformly and then apply a renormalization to all the discrete
directions to restore the coefficient 1/3 of the moment of order 2.In this work, we
have chosen to use a simple uniform angular grid which is controlled by its number125

of degrees of freedom N ≥ 1, and yields a number of discrete ordinates K = 4N2 (in
2D). Thus, with uk ≡ u(t,x,ωk), we are able to write the K semi-discrete equations
associated to the transport equation (2):

1

v
∂tuk + ωk · ∇uk + σtuk = qk + σs

K∑
k′=1

uk′wk′ . (7)

It yields the semi-discrete formula for e, f and s:

e(t,x) ≈
K∑
k=1

wkuk, f(t,x) ≈
K∑
k=1

wkukωk and s(t,x) ≈
K∑
k=1

wkqk.

Likewise, the semi-discrete diffusion limit comes down to:

∀t,when σs →∞, σa → 0 and q → 0, and up to O
(

1
σ2
s

)
,

uk = e− 1
σs
ωk ·∇e (∀k), f = − 1

3σs
∇e, 1

v
∂te =∇ ·

(
1

3σs
∇e
)
.
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2.3. Semi-discrete micro-macro formulation130

In order to have an Asymptotic-Preserving scheme, and to clearly distinguish
between transport terms and diffusion terms, we introduce δuk ≡ uk−e, the deviation
to isotropy.

By substracting (4) to (7), we obtain:

1

v
∂tδuk + ωk ·∇δuk + σtδuk =∇ · f− ωk ·∇e+ δqk, (8)135

where δqk ≡ qk − s.
Thus, the first two angular moments of δuk are:

K∑
k=1

wkδuk = 0,
K∑
k=1

wkδukωk = f . (9)

It leaves unchanged the balance law for e (4) except for the definition (9) of f as a
function of the δuk. Since no further approximation has been made, we still have the
semi-discrete diffusion limit, hence:

when σs →∞, σa → 0 and qk → 0, and up to O
(

1
σ2
s

)
,

δuk = − 1
σs
ωk ·∇e (∀k), f = − 1

3σs
∇e, 1

v
∂te =∇ ·

(
1

3σs
∇e
)
.

3. 2D planar spatio-temporal discretization on unstructured mesh

We aim at solving the system (4)-(8) with the closure relations (9), on a 2D un-
structured mesh. Since our ambition is to couple it with Lagrangian hydro schemes
as [22, 56, 70] (even if it is out of the scope of this paper), the geometric quality
of the mesh is not controlled. This is why our discretization choices are guided by
the concern of robustness. The conservation property of e is very important for the
targeted applications and has to be preserved. Moreover, we want our numerical
method to be able to deal with all range of radiation regime, going from pure trans-
port to diffusion. We give ourselves a regular meshM of Ω. We consider here that
M is defined by a finite collection of cells j that partition Ω(t). Specifically, we have

1.∀j ∈M, j ⊂ Ω,

2.∀x ∈ Ω, ∃j ∈M s.t. x ∈ j̄,

3.∀j1, j2 ∈M, j1 ∩ j2 6= ∅ ⇐⇒

∣∣∣∣∣∣
j1 = j2,
or
∂j1 ∩ ∂j2 6= ∅ and j1 ∩ j2 = ∅.
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The last relationship indicates that if two distinct cells intersect, it can only be140

through a piece of their edge (possibly a vertex). We define the following notations
depicted on Fig. 1.
Notations

• j : cell index, and by extension the cell,

• r : node index, and by extension the dual cell,145

• n : time iteration index,

• p : optional sub-iteration index,

• Vj : volume of cell j,

• Vr : volume of dual cell r,

• xj = 1
Vj

∫
j
x : center of cell j,150

• xr : position of node r,

• xj1j2 : vector equals to xj2 − xj1 ,

• l : edge of the primal cell j,

• l̃ : edge of the dual cell associated to a vertex r,

• r(j) : designates a node r of the cell j,155

• j(r) : designates a cell j which owns the node r,

• r′(r) : designates a node r′ which is adjacent to the node r,

• l(j) : designates an edge l which is contained by the cell j,

• Cjr :=∇xrVj : outgoing unit normal at node r with respect to cell j,

• Crj := ∇xj
Vr : outgoing unit normal at the center of the cell j with respect160

to the dual cell r,

• njl : outgoing normal at edge l with respect to the cell j,

• nrl̃ : outgoing normal at edge l̃ with respect to the dual cell r.
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r•

j
•

l
njl

Cjr

Figure 1: Notations (primal mesh)

j•

r•r′• l̃
nrl̃

Crj

Figure 2: Notations (dual mesh)

We also need to define a dual mesh. It is built by joining the center of the cells
j, and is depicted on Fig. 2.165

We use a finite volume method for the spatial discretization. We integrate the
Eq. (4) on the primal mesh, which gives

1

v
∂t

∫
j

e+

∫
j

∇ · f +

∫
j

σae =

∫
j

s, (10)
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We use the Green formula, a second-order accurate quadrature at nodes to approxi-
mate the boundary integrals, and define 1

Vj

∫
j
ϕ := ϕj, which yields170

Vj
1

v
∂tej +

∑
r(j)

f r ·Cjr + Vjσa,jej = Vjsj, (11)

With this quadrature formula, the flux f r has to be evaluated at the nodes. As we
saw previously, the angular discretization of f r, writes:

f r =
K∑
k=1

wkδuk,rωk. (12)

This is why we choice to perform a staggered discretization, and to writes the discrete175

balance of δuk,r at the nodes. Eq. (8) is then approximated with:

1
v
∂tδuk,r + [ωk ·∇δuk]r + σt,rδuk,r

=
K∑
k′=1

wk′ [ωk′ ·∇δuk′ ]r − ωk · [∇e]r + δqk,r.
(13)

The notation [ϕ]r accounts for a spatial discretization of ϕ at the nodes, which is
explained in the following.

Remark 3.1. Another possible choice of staggered discretization could be performed,180

in locating the δuk at the center of the edges instead at the nodes. In this case, the
advection step would be performed on the diamond dual mesh, and the final global
scheme would have the same properties than the one presented in this paper.

3.1. Temporal discretization
For this scheme, we use an implicit formulation. But, in order to avoid to solve185

a large linear system, we perform an hybrid time discretization, with sub-iterations.
The discrete version of Eq. (13) with this time discretization is:

1
v

δun+1,p+1
k,r −δunk,r

∆t
+ [ωk ·∇δuk]n+1,p+1/2

r + σnt,rδu
n+1,p+1
k,r

=
K∑
k′=1

wk′ [ωk′ ·∇δuk′ ]n+1,p+1/2
r − ωk · [∇e]n+1,p+1

r + δqnk,r,

(14)

where n is the time index and p the sub-iteration index. The index p + 1/2 means
that a part of discretization is performed at the sub-iteration p, while the other is190
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performed at the iteration p+ 1 as explained in the following. The term [∇e]n+1,p+1
r

is taken implicitly, which relies on an implicit diffusion equation on e, also explained
in the following.

A very important property for this formulation to be meaningful is the following.

Proposition 3.1 (Preservation of the meaning of e during time). With such195

a temporal discretization,
K∑
k=1

wkδu
n
k,r = 0, ∀n, ∀r, whatever the nodal approxima-

tion of [ωk ·∇δuk]r and [∇e]r (see proof in Appendix I).

It means that e indeed remains the discrete angular mean of uk with time.
The advection fluxes [ωk·∇δuk]r are discretized on the dual mesh, with an upwind

implicit iterative scheme200

[ωk ·∇δuk]n+1,p+1/2
r =

1

Vr

∑
l̃, nrl̃·ωk>0

|l̃| nrl̃ · ωkδu
n+1,p+1
k,r

+
1

Vr

∑
l̃, nrl̃·ωk<0

|l̃| nrl̃ · ωkδu
n+1,p
k,r′(r),

(15)

where l̃ is the edge intersecting the segment [rr′] joining the nodes r and r′ (two
centers of the dual cells), see Fig. 2.

Proposition 3.2 (stability of the advection scheme). The advection scheme cor-
responding to (14) with the flux (15), and without source terms, is unconditionally205

stable (see proof in Appendix E).

It remains to discretize the term ωk · [∇e]n+1,p+1
r , to this end, we use the same

nodal quadrature rule as before:

ωk · [∇e]n+1,p+1
r ≡ 1

Vr

∑
j(r)

en+1,p+1
j Crj · ωk.

Thanks to our time discretization, we can provide an analytical expression for δun+1,p+1
k,r .

Indeed, defining δur as the vector whose kth component is δuk,r, the Eq. (14) can
be put in the form of a K ×K system, local to each node:(

IK − anr ⊗ bnr
)
δun+1,p+1

r = An
r +Bn+1,p

r + Cn+1,p+1
r , (16)210
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where IK is the identity matrix of rank K, anr and bnr are the vectors of size K of
components

ank,r = 1/

1 + v∆tσnt,r + v∆t
Vr

∑
l̃, nrl̃·ωk>0

|l̃| nrl̃ · ωk

 ,

bnk,r = wk
v∆t
Vr

∑
l̃, ,nrl̃·ωk>0

|l̃| nrl̃ · ωk.

(17)

and An
r , Bn+1,p

r and Cn+1,p+1
r are the vectors of size K defined by:

Ank,r = ank,r
(
δunk,r + v∆tδqnk,r

)
,

Bn+1,p
k,r = ank,rv∆t(

K∑
k′=1

wk′
1

Vr

∑
l̃, nrl̃·ωk′<0

|l̃| nrl̃ · ωk′δu
n+1,p
k′,r′

− 1
Vr

∑
l̃, nrl̃·ωk<0

|l̃| nrl̃ · ωkδu
n+1,p
k,r′ ),

Cn+1,p+1
k,r = −ank,rv∆t ωk · [∇e]n+1,p+1

r .

(18)215

Here, to prove the invertibility of the linear system (16), we use a corollary of the
Sherman-Morrison lemma whose proof is provided in Appendix C. The statement
of the corollary is: Let IK be the identity matrix of size K ×K, and let a and b be
two vectors (columns) of size K. The matrix IK −a⊗ b is invertible if a · b 6= 1, and
its inverse is: (

IK − a⊗ b
)−1

= IK +
a⊗ b

1− a · b
.

Using that
∑

k wk = 1, it is easy to show that anr · bnr < 1, and consequently that the
system (16) is invertible. Moreover, we are able to express its solution δun+1,p+1

r

δun+1,p+1
r = αnr + βn+1,p

r + γn+1,p+1
r , (19)
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where αnr , β
n+1,p
r and γn+1,p+1

r are the vectors of size K defined by:

αnr =
(
IK + an

r⊗bnr
1−an

r ·bnr

)
An
r ,

βn+1,p
r =

(
IK + an

r⊗bnr
1−an

r ·bnr

)
Bn+1,p
r ,

γn+1,p+1
r =

(
IK + an

r⊗bnr
1−an

r ·bnr

)
Cn+1,p+1
r .

(20)220

The expression of γn+1,p+1
r can be simplified thanks to the following argument.

Recalling that the directions are opposite in pairs and of equal weights, meaning that
∀k ∈ [1;K], ∃k̄ ∈ [1;K] s.t.

{
k̄ 6= k, wk̄ = wk, ωk̄ = −ωk

}
, we infer from Eq. (17)

that ai
k̄,n

= aik,n and bi
k̄,n

= bik,n, s.t. ∀k:

γn+1,p+1
k,r = −v∆t

ank,r ωk + ank,r

K∑
k′=1

ank′,rb
n
k′,r

1− anr · bnr
ωk′︸ ︷︷ ︸

≡0

 · [∇e]n+1,p+1
r ,

which means that γn+1,p+1
r reduces to:

γn+1,p+1
r = Cn+1,p+1

r .

It gives the discrete approximate solution of Eq. (8).
It remains now to solve the Eq. (4). To avoid a drastic parabolic CFL, we perform

an implicit backward Euler time discretization of (11):

1

v

en+1
j − enj

∆t
+

1

Vj

∑
r(j)

fn+1
r ·Cjr + σna,je

n+1
j = snj . (21)

Since fn+1,p+1
r =

K∑
k=1

wkδu
n+1,p+1
k,r ωk, the expression (19) of δun+1,p+1

k,r yields225

fn+1,p+1
r =

N∑
k=1

wkωk
(
αnk,r + βn+1,p

k,r + γn+1,p+1
k,r

)
,

=
K∑
k=1

wkωkα
n
k,r +

K∑
k=1

wkωkβ
n+1,p
k,r − D

n

r [∇e]n+1,p+1
r ,

(22)
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where D
n

r is an anisotropic tensor diffusion coefficient defined by

D
n

r = v∆t
K∑
k=1

wka
n
k,rωk ⊗ ωk. (23)

and αnk,r, β
n+1,p
k,r and γn+1,p+1

k,r are the kth components of vectors αnr , β
n+1,p
r and

γn+1,p+1
r .230

Inserting the discrete flux (22) into Eq. (21), we found the following discrete
balance equation for ej:(

1 + v∆tσna,j
)
en+1,p+1
j − v∆t

Vj

∑
r(j)

(
D

n

r [∇e]n+1,p+1
r

)
·Cjr

= enj + v∆t snj −
v∆t

Vj

∑
r(j)

K∑
k=1

wkωk
(
αnk,r + βn+1,p

k,r

)
·Cjr,

(24)

We have the important property for the tensor D
n

r .

Proposition 3.3 (definite positiveness of the diffusion tensor). D
n

r is definite235

positive (see proof in Appendix B).

The term
∑
r(j)

(
D

n

r [∇e]n+1,p+1
r

)
·Cjr in Eq. (24) is a discrete diffusion operator.

However, it would lead to a matrix which is not unconditionally invertible, and a
diffusion scheme which is not positive [37]. This is why we reformulate Eq. (24), in
order to use the diffusion scheme of our choice, and for which the outgoing fluxes are
taken at the edges and not at the nodes:∑

r(j)

(
D

n

r [∇e]n+1,p+1
r

)
·Cjr ≈

∑
l(j)

|l|
(
D

n

l [∇e]n+1,p+1
l

)
· njl,

where [∇e]l is the gradient of e evaluated at the center of the edge l. This is a
valid approximation since

∑
r(j)

ϕrCjr and
∑
l(j)

|l|ϕlnjl are two second-order accurate

approximations of
∫
∂j

ϕn (we recall the proof in Appendix A). It is the subject

of the following section to explain how we approximate [∇e]n+1,p+1
l . Since, the dif-240

fusion operator comes from the expression of γn+1,p+1
r , and more particularly from

D
n

r [∇e]n+1,p+1
r , it remains to define D

n

l from D
n

r .
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In order to obtain such a discretization, we define, for each edge l (defined by the
nodes r and r′)

D
n

l =
1

2
D

n

r +
1

2
D

n

r′

which is also a second-order accurate approximation. Thereby, we obtain a linear
system on e: (

1 + v∆tσna,j
)
en+1,p+1
j − v∆t

Vj

∑
l(j)

|l|
(
D

n

l [∇e]n+1,p+1
l

)
· njl

= enj + v∆t snj − v∆t
Vj

∑
r(j)

K∑
k=1

wkωk
(
αnk,r + βn+1,p

k,r

)
·Cjr,

(25)245

Finally, to complete the scheme, the last ingredient we need is the calculation of the
diffusion operator:

v∆t

Vj

∑
l(j)

|l|
(
D

n

l [∇e]n+1,p+1
l

)
· njl.

To achieve that, we use an implicit solver for diffusion which is an extension of [14]
to tensorial diffusion coefficient, and is presented in the following subsection.

3.2. Diffusion
Consider the following tensorial anisotropic diffusion problem :{

∂te−∇ · (D∇e) = h in (0, T )× Ω

e = g on (0, T )× ∂Ω

• Ω bounded open set of R2,

• h ∈ L2(Ω),250

• g ∈ H1/2(∂Ω),

• D : (0, T )× Ω→M2,2 is a bounded measurable function, s.t. D is a definite
positive symmetric tensor,

• e(t = 0,x) = e0 ∈ H1(Ω) initial condition.

By integration of the equation in a cell j, we obtain∫
j

∂e

∂t
+
∑
l∈∂j

(
−
∫
l

∇e · ñjl

)
=

∫
j

h,
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where ñjl = Dlnjl, with njl the outgoing normal (defined on previous section, refer255

to Fig. 1) to the edge l of the cell j. We consider the flux (notations are given on
Fig. 3)

Fj,l = −
∫
l

∇e · ñjl. (26)

×j ×m

•

•

r1 r3

r2 r4

ñjl

ñml

×

×

j

m

•

•

•

ñjl

ñml

r1
r3r2

r4

Figure 3: Expression of ñjl and ñml

Let us define xjr1 and xjr2 s.t. ñjl has non-negative coefficients when decomposed
into the basis (xjr1 ,xjr2) (refer to Fig. 3 for different examples). Then, we express
ñjl in the basis (xjr1 ,xjr2)

ñjl = λj
xjr1
||xjr1||

+ ηj
xjr2
||xjr2 ||

,

with λj ∈ R+ and ηj ∈ R+. Inserting this decomposition into (26) yields

Fj,l = −
∫
l

(
λj∇e ·

xjr1
||xjr1||

+ ηj∇e ·
xjr2
||xjr2||

)
.

Thanks to a Taylor expansion, we have

∇e · xjri
||xjri ||

=
e(xri)− e(xj)
||xjri ||

+O(∆x),

and then,

Fj,l = −|l|
(
λj
er1 − ej
||xjr1||

+ ηj
er2 − ej
||xjr2||

)
+O(∆x2).
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This last formulation involves er1 and er2 which are nodal evaluations of e at the
nodes ri. To achieve the computation of e at these nodes, we use a least-squares260

procedure as in [26]. We perform the same procedure for approximating the flux
Fm,l.

We can now define

F1 = −|l|
(
λj
er1 − ej
||xjr1||

+ ηj
er2 − ej
||xjr2||

)
and F2 = −|l|

(
λm

er3 − em
||xmr3||

+ ηm
er4 − em
||xmr4||

)
,

which gives us two consistent approximations of the flux. It yields our expression of
the flux from the cell j to the cell m as a convex combination of F1 and −F2

Fj,l = µ1(e)F1 − µ2(e)F2, (= −Fm,l),

with µ1 + µ2 = 1. It leads to the following expression for our discrete flux Fj,l

Fj,l = µ1|l|
(

λj
||xjr1||

+
ηj
||xjr2||

)
ej − µ2|l|

(
λm
||xmr3||

+
ηm
||xmr4||

)
em + µ1R1 − µ2R2,

where R1 and R2 depend respectively on er1 , er2 and er3 , er4 . Choosing µ1 and µ2 as
the solution of the following system{

µ1 + µ2 = 1,

µ1R1 − µ2R2 = 0,

we end up with a two-point but non-linear approximation of the flux Fj,l

Fj,l = µ1|l|
(

λj
||xjr1||

+
ηj
||xjr2||

)
ej − µ2|l|

(
λm
||xmr3||

+
ηm
||xmr4||

)
em,

since µ1 and µ2 now depend on e. We note that µ1 and µ2 are non-negative, provided
that the nodal interpolations of e are non-negative. To this end, we apply the same
trick as in [14]. As we explain in the next subsection, this procedure enforces the265

positivity of the diffusion scheme. However, a fixed point algorithm is required to
solve the non-linearity of the fluxes.

It remains to express the boundary conditions, for which we use the following
approximation

∇e · xjt = ej − et +O(∆x),

using λjxjt = Dl nj,l = ñj,l. With et = g(xt), we have

Fj,l = |l|λj(ej − g(xt)).

17



j

∂Ω

×

ñjl

t•

Figure 4: Boundary conditions notations

Finally, the implicit diffusion scheme is{
1

∆t
(en+1 − en) +M(en+1)en+1 = h+ g

en+1 ≥ 0
,

with
Φj,l = µ1|l|

(
λj
||xjr1||

+
ηj
||xjr2 ||

)
,

Φm,l = µ2|l|
(

λm
||xmr3||

+
ηm
||xmr4 ||

)
,

and 
[M(e)]jj = 1

Vj

 ∑
l∈M\∂Ω

Φj,l +
∑

l∈M∩∂Ω

|l|λj


[M(e)]jm = −Φm,l

Vj
if j 6= m

.

3.3. Properties of the diffusion scheme and of the global scheme
The diffusion scheme fulfills the following properties.

Proposition 3.4 (Positivity (monotony) of the diffusion scheme). The diffu-270

sion scheme is positive and is unconditionnaly stable.

This property is also called monotony in other publications [55, 60, 68]. It means
that if en ≥ 0, h ≥ 0 and g ≥ 0, then en+1 ≥ 0. The proof is displayed in Appendix
G.
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Proposition 3.5 (Convergence). Providing that en ≥ 0, h ≥ 0 and g ≥ 0, the275

scheme has a unique solution, and the fixed-point strategy can be proven to converge
under a parabolic CFL restriction.

The proof can be found in [14].

Proposition 3.6 (Conservation of the diffusion scheme). The diffusion scheme
is conservative.280

See the proof in Appendix F.

We are now able to demonstrate the following property on the global balance of
energy (25).

Proposition 3.7 (Conservation of the global scheme). The global scheme is con-285

servative.

See the proof in Appendix H.
We finally prove that the global scheme is Asymptotic Preserving.

Proposition 3.8 (Asymptotic Preserving behaviour of the scheme). In the
limit

v∆tσnt,r >> 1, v∆tσna,j << 1, v∆t|snj | << enj , and v∆t|qnk,r| << |δnk,r|,

the system (14)-(25) tends to the following discrete implicit diffusion operator

en+1 − en = ∆tMen+1,

where e ∈ R#j is the vector of components ej and of size the number of cells #j,
and M ∈ R#j × R#j is the diffusion matrix corresponding to the discretization of290 ∑
l(j)

|l|
(

1

3σs,j
[∇e]n+1

l

)
· njl with the algorithm described in this section.

See the proof in Appendix J.

Remark 3.2 (About the Asymptotic Preserving property). Despite that the
transport scheme used to solve Eq. (8) is a simple upwind discretization, the global
scheme is Asymptotic Preserving. This is due to the fact that all the δuk tends to295

zero in the diffusive regime, and then only the equation on e matters.
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4. Summary of the scheme

Time iterations (n):

I calculation of anr , b
n
r , and αnr , with Eq. (17), (18) and (20),

I Do (sub-iterations p):300

• construction of the diffusion matrix (see section (3.2)),

• initialization of δun+1,p=0
k,r = δunk,r,

• calculation of βn+1,p
r with (18) and (20),

• construction of the system on e (25),

• calculation of en+1,p+1
j by solving the linear system (25),305

• deduction of γn+1,p+1
r with (18) and (20),

• deduction of δun+1,p+1
r with (19),

I While (stopping criterion) max
j

∣∣en+1,p+1
j − en+1,p

j

∣∣ > ε and max
k,r

∣∣δun+1,p+1
k,r − δun+1,p

k,r

∣∣ >
ε, with ε = 10−9.

It is important to notice that there is only one loop on p for the fixed point310

algorithm for e and the implicit solve of δu.

5. Numerical experiments

In this last section, we are first interested in four 1D tests, which aim to validate
the numerical scheme. We perform them on a Cartesian mesh and on an unstructured
mesh, and compare the results with those of a Discontinuous Finite Element (DFE)315

code on a Cartesian mesh, and to an analytical solution if it exists. In order to test
the scheme efficiency on a fully 2D configuration, we perform a fifth and final test:
the lattice problem. This problem has been studied in numerous publications in the
past decades [16, 28, 42, 43, 58, 62, 66, 67], and the reader is invited to refer to
them for comparison. Moreover, we also provide the results obtained with the DFE320

method.
Before detailing the test problems and the results, we give a short description of

the DFE method we use for the sake of comparison.
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5.1. Short description of the Discontinuous Finite Element (DFE) method
The P1 Discontinuous Finite Element (P1 DFE) is widely used to solve the trans-325

port equation especially for photons. Its ability to give good results in transparent
and opaque media and in the last case, without meshing at the mean free path length,
explains this popularity. Several extensions to general polygonal (resp. polyhedral)
meshes in 2D (resp. 3D) which degenerate in 1D into P1 DFE and still possess the
diffusion limit have been proposed: the Upstream Corner Balance, Simple Corner330

Balance [1], Bailey methods [5]. The unknowns of these three methods are the values
of the radiative intensity at the vertices of the cell. The main features of the DFE
method are:

• Accuracy The P1 DFE is second order accurate in space, at least on Cartesian
mesh. As a consequence, positivity is not guaranteed if no limiter is used.335

• Diffusion limit 1D P1 DFE method has the diffusion limit [51]. The limit
scheme is a valid discretization of the diffusion equation by P1 continuous finite
elements. 1D P1 DFE also captures the boundary layers accurately even using
a crude mesh [51]. Note that the P0 Discontinuous Finite Element (the well
known donor cell scheme), does not recover the diffusion limit.340

• Implicitness In order not to constraint the time step, the scheme is made im-
plicit in time. The source term which couples all directions is usually lagged.
This allows to solve the angular discretized problem by direction. This tech-
nique is named the source iteration method. In opaque media, the convergence
of the iterated process can be arbitrary slow. Solving between iterations some345

low order problem (DSA [4], TSA [63]) is often used to accelerate the conver-
gence.

The discretization of the transport term leads to solve by direction a large
linear system whose the unknowns are the values of the radiative intensity at
the vertices of the cells. The properties of the transport operator allow to350

make this system block triangular by ordering the cells. Solving the whole
linear system directly block by block is much cheaper than solving it with an
iterative method. By cell, each block is a N(j) × N(j) matrix with N(j) the
number of the vertices of the cell. Finally, compute the unknowns needs to
solve a N(j)×N(j) linear system per cell. Such ordering exists in 2D if only355

convex cells are present. In 3D, this is no longer the case. Graph algorithms
allow to recover such an ordering at the expense of lagging some intensities at
the previous iteration in the source iteration method [61].
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In this article, the Bailey method for the spatial discretization and an acceleration
technique TSA [63]) is used.360

5.2. 1D tests

Regarding the first four tests:

• The first test free streaming limit aims to check the consistency and the good
behavior (stability, precision) of the new scheme within the free streaming limit.

• The second test diffusion in homogeneous media aims to check theAsymptotic-365

Preserving property of the new scheme, as well as its ability to support arbi-
trarily large time steps as would do a classical solver for implicit diffusion.

• The third test transport/diffusion interfaces aims to evaluate the behavior
(robustness, precision) of the new scheme in the presence of an heterogeneous
media, made of a succession of transport zones and diffusion zones.370

• The fourth test stationary boundary layer aims to check the ability of the
new scheme to solve a non-trivial stationary problem, and to evaluate the
accuracy of the results on a coarse mesh in the presence of a boundary layer.

In the figures, one can observe two or three curves: one curve corresponding to
our finite volume scheme (named FV), one curve corresponding to the DFE method,375

and for the tests one and two, a last curve corresponds to the analytical solution.
To compare Cartesian mesh to unstructured mesh results in 1D, we use the spatial
discretization of the boundary obtained on the Cartesian mesh as the basis for the
unstructured discretization. For instance, when we say that the discretization cor-
responds to 100 cells along the x-axis, it means that if we use 100 edges of squares380

(resp. 100 edges of triangles) discretizing the y = ymin boundary for the Cartesian
mesh (resp. for the unstructured mesh).

5.2.1. First test: free streaming limit
The analytical solution is obtained using the characteristic method. We work on

the domain Ω = [−1,+1]× [−0.08, 0.08]. The type of unstructured mesh we use for
this test is shown on Fig. 5. Initial condition is

u(t = 0,x, µ) = 11x∈[−0.5;+0.5], q = σa = σs = 0.

Zero incoming flux conditions are applied on boundaries

u(t, x = −1, y,ω · nx > 0) = u(t, x = 1, y,ω · nx < 0) = 0,
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Figure 5: Unstructured mesh used for the free streaming problem.

where nx = (1, 0)T is the unit normal along the x axis. Final time of the calculation
is t = 0.2, and we use a time-step ∆t = 0.02. The number of cells along the x-axis is385

100 for the Cartesian cells. We compare the plot e(x) obtained with our new method
(FV) to the analytical solution, and the DFE result, for N = 1 (K = 4 directions,
Fig. 6 and 7), and N = 6 (K = 144 directions Fig. 8 and 9).

Results are very close to each other and in good agreement with the analytical
solution, whatever the kind of mesh (Cartesian or unstructured). Our scheme is390

more diffusive than DFE, but DFE exhibits small overshoots and undershoots, which
makes the solution goes below zero, which relies on the second-order accuracy of these
methods.

The angular convergence is illustrated for N = 6 (K = 144), on Fig. 8 and 9.
We have done tests with very large CFL numbers, to verify that the new method395

indeed restores the purely transport regime in an unconditionally stable way, whereas
the algorithmic complexity of the solver is comparable to the one of an implicit
diffusion type solver.

5.2.2. Second test: diffusion in homogeneous media
In this test, initial and boundary conditions are unchanged, except for the scat-400

tering cross section, which is taken as σs = 105. In these conditions, the problem is
steep enough for the diffusion limit to be valid. This problem is intended to verify
that our new scheme is Asymptotic Preserving. In addition, we do not expect any
dependence of the result w.r.t. angular discretization. The analytical solution of the
test is the solution of the diffusion equation ∂te = D∂2

x2e with D = v/(3σs) associ-405

ated with the initial condition e(t = 0, x) = 11x∈[−0,5;+0,5].
The time-step ∆t = 1 is used for all the results in this section. The type of unstruc-
tured mesh used for this test is the same than for the previous one (see Fig. 5, with
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Figure 6: Comparison of e between finite volume and DFE, on Cartesian mesh, for the free stream-
ing problem, with N = 1 (K = 4) and ∆t = 0.02.

100 cells along the x-axis. We plot the curve of e(x) at time t = 103, with two differ-
ent angular discretizations N = 1 (K = 4), see Fig. 10 and 11 and N = 6 (K = 144),410

see Fig. 12 and 13. We observe a very good agreement between the two methods.
The solution does not depend on the angular discretization, and is superimposed to
the analytical solution, even on these coarse meshes. The unstructured mesh result
is as satisfactory as that of the Cartesian mesh, and respects the maximum principle
on e. Moreover, it behaves like a classical implicit diffusion solver, whereas the DFE415

method requires the use of an acceleration technique (DSA or TSA).

5.2.3. Third test: transport/diffusion interfaces
This problem requires a sufficient number of angular directions to be interesting,

and we take N = 11 (K = 484 directions) for the finite volume method and K = 496
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Figure 7: Comparison of e between finite volume and DFE, on unstructured mesh, for the free
streaming problem, with N = 1 (K = 4) and ∆t = 0.02.

directions for the in the DFE method in the following1. For this test, the scattering
cross section is discontinuous:

σs = 10211|x|∈[0.3;0.4] + 10311|x|∈[0.5;0.6] + 10411|x|∈[0.7;0.8]11|x|≥0.9,

and we have
q = 0, σa = 0.

1The angular quadrature formula implemented being different for the two methods, we cannot
use exactly the same number of directions. However, we checked that the angular convergence is
achieved.
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Figure 8: Comparison of the angular moment e between finite volume and DFE, on Cartesian mesh,
for the free streaming problem, with N = 12 (K = 576 for FV and K = 544 for DFE) and
∆t = 0.02.

The initial condition is

u(t = 0,x, µ) = 11x∈[−0.1;+0.1].

The unstructured mesh is depicted on Fig. 14.
We draw the profile e(t, x) at time t = 1, 10 and 100, and compare our new

scheme with the DFE method. Results for t=1 are given on Fig. 15 and 16.420

All the curves agree well for |x| > 0, 4. The precision with which these waves are
captured in the x < 0.3 zone obviously does not influence the precision for x ≥ 0.3,
which is reassuring. In particular, the height of the flat area for x ∈]0.4; 0.5[ fits
perfectly between methods, whatever the mesh (Cartesian or unstructured).

Results for t=10 and for t=100 are displayed on Fig. 17 and 18 and Fig. 19425

and 20, respectively. The results of our method fit very well the results of the DFE
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Figure 9: Comparison of the angular moment e between finite volume and DFE, on unstructured
mesh, for the free streaming problem, with N = 12 (K = 576 for FV and K = 544 for DFE)
and ∆t = 0.02.

method. In addition, the positions of the discontinuities of the derivative of e match
those of the cross section, as expected. We observe that our method fulfills the
maximum principle on e, while small oscillations occur in the DFE calculations,
again because of the second order accuracy of the method.430

5.2.4. Fourth test: stationary boundary layer
This test is freely inspired from the analysis of Larsen & Morel [51]. It aims

at verifying the ability of our method to handle unresolved boundary layers due to
the steep variation of the cross sections. The objective is to be able to calculate
the correct slope of e on coarse meshes. As for the previous problem, this problem435

requires a sufficient number of angular directions to be interesting. We take N = 4
(K = 64 directions in 2D) in the following. We are then interested in the profile
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Figure 10: Comparison of the angular moment e between finite volume and DFE, on Cartesian
mesh, for the diffusion in homogeneous media problem, with N = 1 (K = 4) and ∆t = 10.

of the moment of order 0, e, in particular close to the interface located at x = 0.8
where a boundary layer develops.

For this test, we have :440

q = 11|x|≤0,1, σa = 11|x|<0.8 + 1011|x|∈[1.0;1.2] and σs = 10211|x|∈[0.8;1.0].

The initial condition is :
u(t = 0,x, µ) = 0.

The code used being unsteady, we reach the solution of this stationary problem
by taking in practice:

v = 1, u (t = 0,x, µ) = 0, t = 109,
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Figure 11: Comparison of the angular moment e between finite volume and DFE, on unstructured
mesh, for the diffusion in homogeneous media problem, with N = 1 (K = 4), ∆t = 10.

with a single iteration in time (∆t = 109). The presence of an absorption term σa > 0
quickly makes the solution tends towards 0 for |x| > 1 and thus preserves it from the
influence of the boundaries of the domain.

We take Ω = [−1.2,+1.2] × [−1; +1] for the Cartesian mesh. On unstructured445

mesh, we work on the domain Ω = [−1.2,+1.2]× [−0.2, 0.2]. An example of unstruc-
tured mesh used for this test is shown on Fig. 21.

In order to simplify the initialization (of δu and e), we divide the calculation
domain in three different areas.

The results on Cartesian and unstructured meshes are displayed on Fig. 22. For450

the comparison purpose, the DFE method is used with a very fine mesh, to obtain
a DFE reference solution. Our results, on both structured and unstructured grids,
agree very well with the reference DFE calculation.
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Figure 12: Comparison of the angular moment e between finite volume and DFE, on Cartesian
mesh, for the diffusion in homogeneous media problem, with ∆t = 10.

We now focus on the behaviour of e at the boundary layer, close to x = 0.8.
Results are given on Fig. 24.455

On this coarse mesh, the discontinuity of e at x = 0.8 is poorly restored in the
FV code, but the good agreement of the slope in the diffusion zone (x > 0.8) testifies
that the net flux at the interface is correct. With the DFE code, we can observe a
discontinuity of e at x = 0.8. As DFE methods are known to very well capture these
boundary layers [51], the very good agreement with our method is very satisfactory.460

It means that the net flux at the interface is correctly calculated by the new method.

Then we perform a spatial convergence study on the test 4. Results are displayed
on Fig. 25. It shows that the slope is correctly calculated even on the 24 cells mesh.465
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Figure 13: Comparison of the angular moment e between finite volume and DFE, on unstructured
mesh, for the diffusion in homogeneous media problem, with ∆t = 10.

In addition, it shows the quick convergence of our new algorithm to the reference
DFE solution obtained on a very fine mesh (20000 degrees of freedom).

5.3. Lattice problem
We consider the lattice problem as described in [15]. The domain is Ω = [0, 7]×

[0, 7].470

We divide the domain as in Fig. 26. The white area, bulk of the lattice, corre-
sponds to a scattering material and eleven blue area to absorbing regions. The black
region in the center is a scattering region, where a source of photons is emitted. Let
ΩA be the union of the eleven striped squares (absorption region) and let ΩC = [3, 4]2
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Figure 14: Unstructured mesh used for the transport/diffusion interfaces problem.

be the center region.

Then, we have :

{
σa(x) = 10 and σs(x) = 0 if x ∈ ΩA

σa(x) = 0 and σs(x) = 1 else

The source is concentrated in the center (in the black square), such as

{
s(x) = 1 if x ∈ ΩC

s(x) = 0 else

We used a 140× 140 mesh, with ∆t = 10−2. The test is performed on Cartesian
and unstructured meshes for our method, and on a Cartesian mesh for the DFE
method. The kind of unstructured mesh used for this first test is given on Fig. 27.

We plot the map of e(x, t) at time t = 3.2 on Fig. 28 to Fig. 33. Our results are475

comparable to those obtained in other publications [16, 28, 42, 43, 58, 62, 66, 67].

We compare our results in 2D on Cartesian mesh, unstructured mesh and a test
carried out with DFE on Fig. 34 and Fig. 35. The left figure represents the results
obtained on Cartesian mesh with the new scheme, the right figure represents the
results obtained with the new scheme on unstructured mesh, and finally, the middle480

figure is that obtained with the DFE.
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Figure 15: Comparison of the angular moment e between finite volume and DFE, on Cartesian
mesh, for the transport/diffusion interfaces problem, with N = 11 (K = 484) and ∆t = 1, plot
at time t = 1.

6. Conclusion

We have presented in this article a finite-volume scheme for a linear transport
equation derived from a linearization of the radiative transfer equations. This scheme
as been implemented on 2D unstructured meshes, and satisfies the following proper-485

ties:

P1 to be consistent on general meshes,

P2 to enforce the conservation of radiative energy,

P3 to be able to handle all the radiation regimes from free-streaming to diffusion
(Asymptotic Preserving),490
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Figure 16: Comparison of the angular moment e between finite volume and DFE, on unstructured
mesh, for the transport/diffusion interfaces problem, with N = 11 (K = 484) and ∆t = 1, plot
at time t = 1.

P4 to have the radiative energy degrees of freedom located at the centers of the
elements to ensure the compatibility with the hydrodynamic scheme.

P5 to allow us to use the limit diffusion scheme of our choice.

As our scheme is implicit, we used a system of sub-iterations to avoid to solve a global
linear system (of size equal to the cells number× directions number), while remaining495

stable. In addition, this sub-iterations system is acting as a fixed point loop, in order
to get rid of the non-linearity of the diffusion scheme. Thanks to the properties of
our diffusion scheme, we enforce the energy to remain positive in this regime, for
which radiation and matter temperature are strongly coupled. We have conducted
numerical 1D tests on structured and unstructured 2D meshes, which assess that the500
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Figure 17: Comparison of the angular moment e between finite volume and DFE, on Cartesian
mesh, for the transport/diffusion interfaces problem, with N = 11 (K = 484) and ∆t = 1,
plot at time t = 10.

expected properties are respected. Finally, we carried out the Lattice problem test
to compare our results with existing methods, in particular the Discontinuous Finite
Element (DFE) discretization. In the future, we aim at designing a scheme which
enforces the positivity of the energy in all regimes.
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Figure 18: Comparison of the angular moment e between finite volume and DFE, on unstructured
mesh, for the transport/diffusion interfaces problem, with N = 11 (K = 484) and ∆t = 1,
plot at time t = 10.

Appendix A. Proof of the accuracy of the boundary integral approxima-505

tion

In the following we prove that
1

|∂j|

∫
∂j

ϕn =
1

|∂j|
∑
l(j)

|l|ϕlnjl +O(h2),

1

|∂j|

∫
∂j

ϕn =
1

|∂j|
∑
r(j)

ϕrCjr +O(h2),
(A.1)
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Figure 19: Comparison of the angular moment e between finite volume and DFE, on Cartesian
mesh, for the transport/diffusion interfaces problem, with N = 11 (K = 484) and ∆t = 1,
plot at time t = 100.

where h = max
l(j)
|l|.

∫
∂j

ϕn =
∑
l(j)

∫
l

ϕnjl, l are straight,

=
∑
l(j)

∫
l

(
ϕlnjl + (∇ϕ)l(x− xl) +O(h2)

)
, Taylor expansion,

=
∑
l(j)

|l|ϕlnjl +O(h3),
∫
l(j)

(x− xl) = 0.

Since |∂j| = O(h), it proves the first line of (A.1).
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Figure 20: Comparison of the angular moment e between finite volume and DFE, on unstructured
mesh, for the transport/diffusion interfaces problem, with N = 11 (K = 484) and ∆t = 1,
plot at time t = 100.

Now, we define l(r(j)) as the edges sharing the vertex r in the cell j and r(l(j))
as the vertices of the edge l of the cell j. Using Cjr = 1

2

∑
l(r(j)) |l|njl, and ϕl =

1
2

∑
r(l(j)) ϕr +O(h2), we deduce

∑
r(j)

ϕrCjr =
1

2

∑
r(j)

∑
l(r(j))

ϕr|l|njl,

=
1

2

∑
l(j)

∑
r(l(j))

ϕr|l|njl,

=
∑
l(j)

|l|ϕlnjl +O(h3).
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Figure 21: Unstructured mesh used for test four: stationary boundary layer.

Using |∂j| = O(h), yields the second line of (A.1). �510

Appendix B. Proof that D
n

r is symmetric definite positive

Due to the definition of D
n

r = v∆t
K∑
k=1

wka
n
k,rωk ⊗ ωk, it is obvious that it is

symmetric and non negative. The only non obvious property is the invertibility of
the tensor. Let x ∈ Rd (d the dimension of the space) , we have to prove that
xTD

n

rx = 0 ⇔ x = 0. The sufficient part of the condition is obvious. Simple
algebra shows that

xTv∆t
K∑
k=1

wka
n
k,rωk ⊗ ωkx = v∆t

K∑
k=1

wka
n
k,r(ωk · x)2.

Since ∆t, v, wk and ak,r are positive and non zero, the condition xTD
n

rx = 0 is
equivalent to

ωk · x = 0, ∀k.

Since there is at least d independent vectors ωk, the set of ωk spans Rd, meaning
that x is orthogonal to all vectors of Rd. So x = 0. �
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Figure 22: Comparison of the angular moment e between the DFE method and the FV method
in Cartesian and unstructured meshes, for the stationary boundary layer problem, with N = 4
(K = 64) and ∆t = 109. The DFE reference uses 10000 cells (20000 degrees of freedom).

Appendix C. Reminder about the Sherman-Morrison lemma

A corollary of the Sherman-Morrison lemma. Let IK be the identity matrix
of size K ×K, and let a and b be two vectors of size K. The matrix IK − a⊗ b is
invertible if a · b 6= 1, and its inverse is:(

IK − a⊗ b
)−1

= IK +
a⊗ b

1− a · b
.
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Figure 23: Comparison of the angular moment e between finite volume and DFE, on Cartesian
mesh, for the stationary boundary layer problem, with N = 4 (K = 64) and ∆t = 109. Zoom
around x = 0.8.

Proof:
We start by noting that (a⊗ b) (a⊗ b) = (a · b) (a⊗ b) ; indeed:

For i, j from 1 to K: [(a⊗ b) (a⊗ b)]i,j =
K∑
k=1

aibk akbj = (a · b) [(a⊗ b)]i,j .

Then, we suppose that a · b 6= 1 and we develop the product of matrices:(
IK − a⊗ b

)(
IK +

a⊗ b
1− a · b

)
= IK − a⊗ b+

a⊗ b
1− a · b

− (a⊗ b) (a⊗ b)
1− a · b

= IK ,

that proves the corollary �515
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Figure 24: Comparison of the angular moment e between finite volume and DFE, on unstructured
mesh, for the stationary boundary layer problem, with N = 4 (K = 64) and ∆t = 109. Zoom
around x = 0.8.

Appendix D. Proof that the advection scheme is conservative

At convergence of the sub-iterations, we have an advection scheme of the form:

δun+1
k,r − δunk,r
v∆t

+ [ωk ·∇δuk]n+1
r = 0,

with

[ωk ·∇δuk]n+1
r =

1

Vr

∑
l̃, nrl̃·ωk>0

|l̃| nrl̃ · ωkδu
n+1
k,r +

1

Vr

∑
l̃, nrl̃·ωk<0

|l̃| nrl̃ · ωkδu
n+1
k,r′(r),

where l̃ is the edge intersecting segment [rr′].
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Figure 25: Comparison of the angular moment e of the FV code, for different numbers of cells, for
test 4: stationary boundary layer, with N = 4 (K = 64) and ∆t = 109. The DFE reference use
10000 cells (20000 degrees of freedom). Zoom around x = 0.8.

We would like to show that the sum of the flux [ωk ·∇δuk]n+1
r on each node is520

equal to zero. It remains to show that the value Vrδuk,r is conserved.
In the following, we consider periodic boundary conditions.
Let r and r′ be two adjacent nodes.

We write the flux from node r to node r′, we get

Frr′ =

{
|l̃| nrl̃ · ωkδu

n+1
k,r if nrl̃ · ωk > 0

|l̃| nrl̃ · ωkδu
n+1
k,r′ if nrl̃ · ωk < 0

Thus, Frr′ + Fr′r = 0.
�525
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Figure 26: Lattice calculation domain.

Appendix E. Proof that the advection scheme is unconditionally stable

The advection scheme has the form

δun+1,p+1
k,r = δunk,r −∆tv [ωk ·∇δuk]n+1,p+1/2

r .

We can rewrite it with the expression of [ωk ·∇δuk]n+1,p+1/2
r , which gives

δun+1,p+1
k,r = δunk,r−∆tv

 1

Vr

∑
l̃, nrl̃·ωk>0

|l̃| nrl̃ · ωkδu
n+1,p+1
k,r +

1

Vr

∑
l̃, nrl̃·ωk<0

|l̃| nrl̃ · ωkδu
n+1,p
k,r′(r)

 .

Let νr = v∆t
Vr
|l̃| nrl̃ · ωk and ν = 1

Vr

∑
l̃, nrl̃·ωk>0

v∆t |l̃| nrl̃ · ωk =
∑

l̃, nrl̃·ωk>0

νr.530

Then, factorising by δun+1,p+1
k,r , we get

δun+1,p+1
k,r (1 + ν) = δunk,r −

∑
l̃, nrl̃·ωk<0

νrδu
n+1,p
k,r
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Figure 27: Unstructured mesh used for lattice problem.

⇒ δun+1,p+1
k,r =

1

1 + ν
δunk,r −

∑
l̃, nrl̃·ωk<0

νr
1 + ν

δun+1,p
k,r′ .

Given that
1

1 + ν
−

∑
l̃, nrl̃·ωk<0

νr
1 + ν

= 1, we obtain a convex combination of

δup+1,p+1
k,r depending on δunk,r and δu

n+1,p
k,r′ , ∀ν, which means ∀∆t. �
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Figure 28: Cartesian mesh 140× 140, lattice problem, map of e, N = 1 (K = 4), time t = 3.2.

Appendix F. Proof that the diffusion scheme is conservative535

We consider our diffusion scheme:

{
1

∆t
(en+1 − en) +M(en+1)en+1 = h+ g

en+1 ≥ 0

With
Φj,l = µ1|l|

(
λj
||xjr1||

+
ηj
||xjr2 ||

)
,

Φm,l = µ2|l|
(

λm
||xmr3||

+
ηm
||xmr4 ||

)
.
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Figure 29: Cartesian mesh 140× 140, lattice problem, map of e, N = 2 (K = 16), time t = 3.2.

and 
[M(e)]jj = 1

Vj

 ∑
l∈j\∂Ω

Φj,l +
∑

l∈j∩∂Ω

|l|αj


[M(e)]jm = −Φm,l

Vj
if j 6= m

We consider periodic boundary conditions, so we have [M(e)]jj = 1
Vj

(∑
l∈j

Φj,l

)
.

We need to prove that if h = 0, then ∀n ≥ 0,
∑
j∈M

Vje
n+1
j =

∑
j∈M

Vje
n
j , where Vj

corresponds to the volume of cell j.

The continuous version of it is d
dt

∫
Ω

e = 0.
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Figure 30: Cartesian mesh 140× 140, lattice problem, map of e, N = 3 (K = 36), time t = 3.2.

∀j ∈M,
1

∆t

(
en+1
j − enj

)
+
∑
m∈M

[M(en+1)]jme
n+1
m = 0,

⇒
∑
j∈M

Vje
n+1
j −

∑
j∈M

Vje
n
j + ∆t

∑
j∈M

Vj
∑
m∈M

[M(en+1)]jme
n+1
m = 0.

And,∑
j∈M

Vj
∑
m∈M

[M(en+1)]jme
n+1
m = Vj

∑
m∈M

[M(en+1)]mme
n+1
m +

∑
j∈M,j 6=m

Vj
∑
m∈M

[M(en+1)]jme
n+1
m

= Vj
∑
m∈M

∑
l∈m

Φm,l

Vj
en+1
m +

∑
j∈M,j 6=m

Vj
∑
m∈M

−Φm,l

Vj
en+1
m

=
∑
m∈M

∑
l∈m

Φm,le
n+1
m −

∑
m∈M

∑
j∈M,j 6=m

Φm,le
n+1
m
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Figure 31: Cartesian mesh 140× 140, lattice problem, map of e, N = 6 (K = 144), time t = 3.2.

=
∑
m∈M

∑
l∈m

Φm,le
n+1
m −

∑
m∈M

∑
l∈m

Φm,le
n+1
m ,

because [M(e)]jm = Φm,l = 0 if j and m are not adjacent.540

Then,
∑
j∈M

Vj
∑
m∈M

[M(en+1)]jme
n+1
m = 0, which implies:

∀n ≥ 0,
∑
j∈M

Vje
n+1
j =

∑
j∈M

Vje
n
j .

�
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Figure 32: Cartesian mesh 210× 210, lattice problem, map of e, N = 6 (K = 144), time t = 3.2.

Appendix G. Proof that the diffusion scheme respect positivity and is545

unconditionally stable

Positivity. Setting h = g = 0, our diffusion scheme writes: en+1 = en−∆tM(en+1)en+1,
with

Φj,l = µ1|l|
(

λj
||xjr1||

+
ηj
||xjr2 ||

)
,

Φm,l = µ2|l|
(

λm
||xmr3||

+
ηm
||xmr4 ||

)
.

and 
[M(e)]jj = 1

Vj

 ∑
l∈j\∂Ω

Φj,l +
∑

l∈j∩∂Ω

|l| αj


[M(e)]jm = −Φm,l

Vj
if j 6= m
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Figure 33: Cartesian mesh 140× 140, lattice problem, map of e, N = 8 (K = 256), time t = 3.2.

Figure 34: Comparison of results on lattice problem. Left: FV method, Cartesian mesh 140×140.
Middle: DFE code, Cartesian mesh 140×140. Right: FV method unstructured mesh. K = 4, time
t = 3.2.

We denote by S the set of the index of the cells. Then, for all j ∈ S, we have

en+1
j = enj −∆t

∑
m∈M

[M(e)]jme
n+1
m
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Figure 35: Comparison of results on lattice problem. Left: FV method, Cartesian mesh 140×140.
Middle: DFE code, Cartesian mesh 140 × 140. Right: FV method unstructured mesh. K = 144,
time t = 3.2.

⇒ en+1
j = enj −∆t[M(e)]jje

n+1
j −∆t

∑
m∈S,m6=j

[M(e)]jme
n+1
m

⇒ en+1
j =

1

1 + ∆t[M(e)]jj
enj −

∑
m∈S,m6=j

∆t[M(e)]jm
1 + ∆t[M(e)]jj

en+1
m

Given definition of [M(e)]jj and [M(e)]jm, we are able to easily show that
1

1+∆t[M(e)]jj
and

∑
m∈S,m6=j

−∆t[M(e)]jm
1 + ∆t[M(e)]jj

are two positive quantities.

Thus, the diffusion scheme is positive. �

Stability. Concerning the stability of the scheme, we refer to [14].550

In this article, it is shown that for h ≥ 0, g ≥ 0 and en ≥ 0, it exists a solution en+1,
and the fixed point strategy converges to it.

�

Appendix H. Proof that the global scheme is conservative

Summing over all the cells Eq. (25), considering the absorption term σa = 0 and555

the source s = 0, one gets∑
j

Vje
n+1,p+1
j −

∑
j

v∆t
∑
l(j)

|l|
(
D

n

l [∇e]n+1,p+1
l

)
· njl

=
∑
j

Vje
n
j −

∑
j

v∆t
∑
r(j)

K∑
k=1

wkωk
(
αnk,r + βn+1,p

k,r

)
·Cjr,
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The term
∑
j

v∆t
∑
l(j)

|l|
(
D

n

l [∇e]n+1,p+1
l

)
· njl = 0 because of property 3.6.

∑
j

∑
r(j)

K∑
k=1

wkωk
(
αnk,r + βn+1,p

k,r

)
·Cjr =

∑
r

K∑
k=1

∑
j(r)

wkωk
(
αnk,r + βn+1,p

k,r

)
·Cjr

=
∑
r

K∑
k=1

wkωk
(
αnk,r + βn+1,p

k,r

)
·
∑
j(r)

Cjr

= 0,

because
∑
j(r)

Cjr = 0, refer for instance to [22].

Appendix I. Proof that
K∑

k=1

wkδu
n
k = 0, ∀n.

We prove it by induction. Initially,
∑K

k=1 δu
0
k,r = 0. Let us assume that

K∑
k=1

wkδu
n+1,p
k,r =560

0.
We consider the scheme:

1
v

δun+1,p+1
k,r −δunk,r

∆t
+ [ωk ·∇δuk]n+1,p+1/2

r + σnt,rδu
n+1,p+1
k,r

=
K∑
k′=1

wk′ [ωk′ ·∇δuk′ ]n+1,p+1/2
r − ωk · [∇e]n+1,p+1

r + δqnk,r,

Then, we multiply the equation by wk and we sum over k.

Using that
∑

k wk = 1 , we have
K∑
k=1

wk [ωk ·∇δuk]n+1,p+1/2
r =

K∑
k=1

wk

K∑
k′=1

wk′ [ωk′ ·∇δuk′ ]n+1,p+1/2
r .

Then, we have
K∑
k=1

wkδq
n
k,r =

K∑
k=1

wkq
n
k,r −

K∑
k=1

wks
n
r = snr − snr = 0, by definition565

of δq.

Then, we have that
K∑
k=1

wkωk · [∇e]n+1,p+1
r = [∇e]n+1,p+1

r ·
K∑
k=1

wkωk = 0 because
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K∑
k=1

wkωk = 0, by definition.
570

Finally, we get
(

1
v∆t

+ σnt,r
) K∑
k=1

wkδu
n+1,p+1
k,r =

1

v∆t

K∑
k=1

wkδu
n
k,r = 0

⇒
K∑
k=1

wkδu
n+1,p+1
k,r = 0,

because 1
v∆t

+ σnt,r 6= 0. Then by induction,
K∑
k=1

wkδu
m,q
k,r = 0 ∀m and ∀q.

�

Appendix J. Proof that the global scheme is Asymptotic Preserving

From the hypothesis σs → ∞, σa → 0 and q → 0, up to O( 1
σ2
s
), we define the

discrete Knudsen number ε = 1/(v∆tσnt,r). In addition, we assume that the initial575

condition is well-prepared, meaning that δunk,r = O(ε).

Then from definition (17), we infer that:

ank,r = ε+O(ε2), and bnk,r = O(1).

It yields that
(
IK + an

r⊗bnr
1−an

r ·bnr

)
= IK +O(ε) and from Eq. (18) that

Ank,r = O(ε2), Bn+1
k,r = O(ε2) and Cn+1

k,r = O(ε).

We can now infer from Eq. (19) and Eq. (20) that

δun+1
k,r = O(ε).

Moreover, the expression of the flux fn+1,p+1
r given by Eq. (22) reduces to

fn+1,p+1
r = −D

n

r [∇e]n+1,p+1
r +O(ε2),

and from the definition (23) of D
n

r , we deduce that

D
n

r =
K∑
k=1

wk
v∆t

v∆tσnt,r
ωk ⊗ ωk +O(ε2),

=
1

3σnt,r
IK +O(ε2),

54



because of the constraints on the angular quadrature (6). The reformulation (25)
does not change this analysis, which implies the result.

�
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