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ABSTRACT
A new semi-analytical boundary element method is proposed for
determining the wheel–rail contact zone and the normal stress dis-
tribution within it. The potential contact area is discretised using
strip elements, employing an iterative algorithm to satisfy the con-
tact constraints. At each iteration, the length of the contact strips
is updated using an analytical expression based on Hertz’s theory.
This simplified formulationprovidesgoodapproximationof thepres-
sure distribution, and consequently the contact area, in non-elliptic
cases. The reduction in the number of system unknowns by using a
semi-analytical methodology also enables fast computation speeds,
an indispensable requirement in railway dynamics.
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1. Introduction

Safety, track fatigue analyses, and maintenance of railway vehicles are only some of the
applications that highlight the importance of wheel–rail contact models. The complex-
ity of different operations necessitates very different levels of modelling: a simplified and
coarsemodelmay often be sufficient. For hardware-in-the-loop simulations, where the cal-
culations must be carried out in real time over railway tracks which are several kilometres
long, very approximate wheel–rail contact models are generally used. Conversely, other
applications require more sophisticated models, as in the estimation of wear in urban rail
networks, or the assessment of rolling contact fatigue. The shape of the contact area and
the stress distribution within it categorise the different normal contact models available in
the literature [1–4].

The case of normal contact between two continuous and non-conforming bodies was
first treated by Hertz [5], by assuming frictionless contact and each solid body as an elastic
half-space. The Hertzian solution is characterised by an elliptical contact patch, with a
semi-ellipsoidal normal pressure distribution actingwithin the contact area. This approach
is limited to profiles with constant curvature, and thereforemay lead to approximate results
in railway applications where the curvature of the profiles changes along the width of the
rail section.

CONTACT Aquib Qazi aquib.qazi@univ-eiffel.fr

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.iavsd.org/
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00423114.2020.1854319&domain=pdf&date_stamp=2022-03-29
http://orcid.org/0000-0002-4636-0103
mailto:aquib.qazi@univ-eiffel.fr
http://creativecommons.org/licenses/by-nc-nd/4.0/


VEHICLE SYSTEM DYNAMICS 1323

The use of discrete methods offers a more realistic approximation of the contact condi-
tions in real-life applications. The finite element method (FEM) has already been used in
various studies for elasto-plastic stress analyses and creep force characteristics, employing
both implicit and explicit approaches [6,7]. Certain recent works have also used Nitsche’s
method for frictional contact problems, as opposed to the classical penalty methods or
mixedmethods, which offers good convergence and robustness [8]. Variationalmethods as
the one described by Kalker’s complete theory [9] and implemented in the program CON-
TACT [10], the boundary elementmethod (BEM) like the one presented by Knothe and Le
The [11], or the matrix inversion method (MIM) by Johnson [12] also enable a good esti-
mation of the contact properties. The full normal problemhas also receivedmuch attention
for the contact of rough surfaces [13,14]. Despite the advances in computational prowess
in recent years, discretemethods continue to struggle in terms of their capability to be used
online in vehicle dynamics simulations. A very fine discretisation is usually required with
FEM approaches to satisfactorily represent the contact patch boundaries, while classical
boundary element methods require iterative techniques over large potential contact grids
to verify the stress constraints.

Inmostmulti-body simulation (MBS) codes, a compromise is reached between the level
of accuracy that is deemed acceptable and the time it takes to solve the contact problem.
Several approximate tangential contact approaches have been developed with the goal of
being implemented in MBS software packages, most notably FASTSIM [15]. Other meth-
ods such as the Vermeulen–Johnsonmodel [16], the Shen–Hedrick–Elkinsmodel [17], the
Book of Tables by Kalker (USETAB) [18], the Polach model [19] and FaStrip [20] are also
used, but they remain restricted to elliptical contact patches. Piotrowsky et al. [21] have
extended USETAB to be used in non-Hertzian cases, approximating the contact patch by
a single double-elliptical contact. Ayasse and Chollet [22] have adapted FASTSIM to be
used in the case of strips instead of ellipses, and a similar approach has also been used
with FaStrip in [23]. For the normal contact problem, the desire for real time dynamic
simulations has given rise to an intermediate level of approximate methods based on the
theory of virtual penetration (VP) of the contacting surfaces. These methods include the
Linder model [24], the Kik–Piotrowski model [25], the semi-Hertzian model (STRIPES)
[22], and the extendedKik–Piotrowski (EKP)model [26] amongst others. The contact area
in these approaches is approximated using the area in which the surfaces would interpen-
etrate geometrically (overlap) if there is no deformation. This overlapping area is bigger
than the actual contact patch, and a scaling factor is used to prescribe the virtual penetra-
tion such that the interpenetration zone approaches the real contact area. The technique
used for determining the scaling parameter is what broadly differentiates these approaches
[27]. There exists in parallel another family of models wherein the non-elliptical part of
the contact area is approximated using a series of individual ellipses. This so-called multi-
Hertzian method, proposed by Pascal and Sauvage [28], is further simplified by Ayasse
et al. [29] to an analytical approach. Some of the questions raised regarding these models,
when compared against VP methods in [2], have been addressed recently by Pascal [30].

A proposed improvement to these normal contact models is through the introduction
of an analytical approximation for the surface deformation in the ANALYN method [31].
Although the results are promising in comparison to other simplifiedmethods, thismethod
remains sensitive to the negative-curvature correction, a characteristic of all point-based
contactmodels based onHertz’ theory. Thismakes it challenging to implement themethod
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as a true black-box solution in dynamic vehicle simulation. It is generally noted that this
approach gives a good approximation of the contact area when the pressure distribution
estimated is also accurate. Using amore thorough approach in the above family ofmethods,
a better approximation of the pressure distribution should lead to better estimation of the
contact patch, which forms the basis of the new semi-analytical approach proposed in this
article.

A reduced formulation of the contact between two elastic half-spaces is used in
the first part together with a Hertzian model to solve the normal contact, following a
semi-analytical methodology. The novel method is then validated using the results from
STRIPES [22], ANALYN [31], and CONTACT [10] with theoretical as well as wheel–rail
profiles. A comparison of the required computational resources is also carried out using
different approaches, before the final conclusions.

2. Methodology

2.1. Theoretical background

The problem describing the stress field in a semi-infinite half-space, subjected to a concen-
trated normal surface force, was studied in detail by Boussinesq [32]. For the half-space
consideration to be valid locally, the contact area dimensions must be significantly smaller
as compared to the principal radii of the contacting surfaces. This is generally true when
considering several common contact scenarios such as the tread contact between wheels
and rails. The following assumptions are also made:

• the bodies are elastic, homogeneous and isotropic;
• the contacting surfaces have a continuous profile;
• the normal and tangential problems can be solved sequentially.

One possible solution is using the potential theory of Boussinesq [32], described exhaus-
tively in the book by Johnson [12]. The normal elastic displacement ū(x, y) is related to the
normal pressure distribution p(x, y) by the integral equation [33]

∀(x, y) ∈ �, ū(x, y) =
∫∫

�c

p(ξ , η)T(x, y; ξ , η) dξ dη, (1)

where � is the half-space domain under consideration, �C is the zone of the contact, and
T is Boussinesq’s influence function defined as

∀(x, y; ξ , η) ∈ �2, T(x, y; ξ , η) = 1
πE�

1√
(x − ξ)2 + (y − η)2

. (2)

E� is the effective Young’s modulus of elasticity for the two contacting bodies �1 and �2
such that

1
E�

=
(
1 − ν21
E1

+ 1 − ν22
E2

)
, (3)

where E1 and E2 are the modulus of elasticity for the two solids, while ν1 and ν2 are the
respective Poisson’s ratios. With a defined rigid approach δ, the only geometrical input
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Figure 1. Two elastic bodies in contact.

required to solve the contact problem is the separation between the two undeformed
surfaces h(x, y). The normal surface deformation ū(x, y) = ū1(x, y) + ū2(x, y) must be
evaluated at each point within the contact zone. This contact problem can be summarised
in Figure 1. Considering �C as the area of contact, the conditions of Signorini give the
cases of separation and of contact as:

∀(x, y) /∈ �C, δ − ū(x, y) − h(x, y) < 0 and p(x, y) = 0, (4)

∀(x, y) ∈ �C, δ − ū(x, y) − h(x, y) = 0 and p(x, y) > 0. (5)

The boundary conditions defined in Equations (4) and (5) ensure that the normal pres-
sure can only act within the contact zone, vanishing at the boundary of the contact area.
The two bodies are also prevented from interpenetrating. The discretised form of the
variational inequality eventually gives rise to a linear complementarity problem (LCP).
If the rigid approach δ is given, the problem to be solved can be completely described by
Equations (1) and (5). If the total resultant force N is known in advance, the following
equilibrium condition is added:

∀(x, y) ∈ �C, N =
∫∫

�c

p(ξ , η) dξ dη. (6)

2.2. Towards a reduced approach

The classical direct method to solve the contact problem is the matrix inversion method
(MIM) found in [12]. The potential contact area in the boundary element problem is over-
estimated in both the lateral as well as the rolling directions, and divided into a rectangular
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grid, wherein the contact constraints of Equations (4) and (5) are evaluated. The elements
in which the pressure distribution has negative values are discarded, and the procedure
is repeated until all the remaining elements satisfy the boundary conditions. The elastic
deformation is thus calculated at each iteration for each element within the potential con-
tact area, resulting in a sizeable expenditure of computational resources. The drawback of
using such an approach is clear, as the directmethod does not scale to large-sized problems.
Certain studies also use iterative techniques such as Gauss-Seidel, which however remains
restricted to relatively small contact grids. Most recent works use either a conjugate gra-
dient (CG) algorithm or a multi-grid (MG) strategy, combined with fast algorithms such
as multi-level summation technique (MLMS) or fast Fourier transform (FFT) for equation
solving [13,14]. The spirit of these approaches remains the same: using different numer-
ical techniques for a faster solution of the complete LCP. In the proposed new approach,
the pressure distribution is additionally assumed to be symmetric and elliptic about the
x = 0 plane and the potential area of contact is discretised only in the lateral y direction. A
similar strategy for discretisation is also used by Reusner for the treatment of roller bear-
ings in [34], and by Knothe and Le The for more arbitrary elastic bodies in [11]. Along
with the normal stress distribution acting on each strip, Reusner considers the lengths of
the contact patch strips as supplementary unknowns, while Knothe and Le The attempt to
further reduce the computational complexity by showing that the strip lengths in neigh-
bouring elements should vary almost proportionally with the variations in the load or the
deflection. The novel approach in the present paper is to instead consider the contact patch
boundaries as a quasi-known quantity dependent on the form of the normal stress distri-
bution. The potential contact area is first divided into thin strips with the larger dimension
in the rolling direction, as shown in Figure 2, from where the nameMIM-1D is chosen for
the new method. The unknown in this case reduces to the maximum pressure values p0i
at the centre of each strip i. At each iteration, the half-length of the contact strip ai in the
rolling direction is then computed as a function of the maximum pressure distribution p0i ,
using an approximate analytical formulation based on Hertz’ theory.

2.3. Discrete problem

The half-length and the half-width of each strip element are given as ai and bi, respectively.
The pressure distribution over each strip is assumed to be semi-elliptical in the x direction,
and constant in the y direction. Thus, the expression for the pressure distribution over each
strip may be written as

p(x, yi) = p0i

√
1 −

(
x
ai

)2
, (7)

where p0i is the maximum pressure at the centre (xi, yi) of the strip i. The deformation and
the separation at the centre are denoted as ui and hi, respectively. Equations (1) and (5) in
discrete form are:

∀i ∈ [1, n], ui =
n∑
j=1

Cijp0j , (8)

∀i ∈ [1, n] � (xi, yi) ∈ �C, δ − ui − hi = 0 and p0i > 0, (9)



VEHICLE SYSTEM DYNAMICS 1327

Figure 2. Contact area�C divided into strips, and the normal pressure distribution [11].

where n denotes the total number of elements in the potential contact area. The terms Cij
from Equation (8) are called the coefficients of influence, and are defined as

Cij = 2
πE�

∫ yj+bj

yj−bj

∫ aj

0

√
1 − (

ξ
aj )

2√
(xi − ξ)2 + (yi − η)2

dξ dη. (10)

The expression for Cij describes the influence of normal stress distribution in the jth ele-
ment to induce elastic displacement in the ith element. In the previous work by Reusner
[34], the influence factors are expressed in the form of complete elliptic integrals. Knothe
and Le The [11] determine these factors using numerical integration, however no further
details have been provided. In MIM-1D, the Cij terms are also evaluated numerically. The
xi terms are ignored as they always remain zero. Equation (10) is written as:

Cij = 2
πE�

⎡
⎣∫ yj+bj

yj−bj

∫ aj

0

√
1 − (

ξ
aj )

2 − 1√
ξ 2 + (yi − η)2

dξ dη +
∫ yj+bj

yj−bj

∫ aj

0

dξ dη√
ξ 2 + (yi − η)2

⎤
⎦ .

(11)
The first integral is regular and can be evaluated numerically using Gaussian quadrature.
A higher number of integration points may be chosen closer to the diagonal terms. The
second integral is singular when the denominator approaches zero. This expression repre-
sents the case of uniform normal pressure acting on a rectangular area of 2ai × 2bi, and an
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analytical solution of this problem has been presented in detail by Love [12,35]. We have

2
∫ yj+bj

yj−bj

∫ aj

0

dξ dη√
ξ 2 + (yi − η)2

= (y + bj) log

⎡
⎣ aj +

√
(y + bj)2 + a2j

−aj +
√

(y + bj)2 + a2j

⎤
⎦

+ (y − bj) log

⎡
⎣−aj +

√
(y − bj)2 + a2j

aj +
√

(y − bj)2 + a2j

⎤
⎦

+ 2aj log

⎡
⎣ (y + bj) +

√
(y + bj)2 + a2j

(y − bj) +
√

(y − bj)2 + a2j

⎤
⎦ , (12)

where

y = yi − yj.

An additional advantage of treating the original integral expression in such amanner is the
introduction of an analytical solution into the numerical results. This may consequently
reduce the integration error linked to the quadrature method. It also permits the use of
lesser number of integration points, and consequently faster calculation times. Equation (8)
in matrix form is written as

u = Cp, (13)

where the vectors p and u are given as {p01 , . . . , p0n}T and {δ − h1, . . . , δ − hn}T, respec-
tively. The matrix of influence coefficients C is

C =

⎡
⎢⎣
C11 . . . C1n
...

. . .
...

Cn1 . . . Cnn

⎤
⎥⎦ . (14)

This is themethod of resolution generally followed in the case where the rigid approach δ is
known in advance. Unlike in the classical method,C needs to be evaluated at the beginning
of each iteration as the size of the elements in the x direction does not remain the same.

In the case where the normal force is prescribed instead of rigid body approach δ, the
normal contact problem is solved with an additional iteration for δ. The resultant force at
the end of each iteration is calculated using Equation (6):

N = π

n∑
i=1

(aibi)p0i . (15)

The initial value of δ can be taken as the Hertzian rigid body approach. The subsequent
values of δ may be evaluated using a dichotomy or an iterative scheme based on Hertz’
relations [11]:

δ(m+1) = δ(m)

[
N

Ñ(m)

]2/3
, (16)

where Ñ(m) represents the resultant normal force at the end ofmth iteration.
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For numerical simulations, it is also possible to modify Equation (13) using the normal
force over each strip Ni (see Appendix 1).

2.4. Estimation of the contact patch half-length

The half-length of the contact patch ai is approximated using the equations that apply in
Hertzian cases. ai is updated at each iteration to define the new potential contact zone,
which is then used to construct the matrix C. The equation for the Hertzian contact
ellipse is (

x
a0

)2
+

(
y
b0

)2
= 1, (17)

where a0 and b0 are the semi-axes of the ellipse [36], given by:

a0 = m
[
3
2
N

1
2E�

1
(A + B)

]1/3
, (18)

b0 = n
[
3
2
N

1
2E�

1
(A + B)

]1/3
. (19)

Here, A and B are the relative curvatures in the longitudinal and lateral directions, respec-
tively, while m and n are the non-dimensional Hertzian coefficients assessed using the
curvatures (see Appendix in [22], or [36]). The normal pressure distribution p(x, y) over
the contact area is semi-ellipsoidal, and given by

p(x, y) = p0H

√
1 −

(
x
a0

)2
−

(
y
b0

)2
, (20)

with the maximum normal pressure at the centre of ellipse,

p0H = 3
2

N
πa0b0

. (21)

Equation (17) over each strip can be written as(
ai
a0

)2
+

(
y
b0

)2
= 1. (22)

Combining Equations (20) and (22), the normal pressure distribution in the longitudinal
x direction for the ith strip is

p(x, yi) = p0H
ai
a0

√
1 −

(
x
ai

)2
. (23)

Comparing Equations (7) and (23), it is possible to deduce

p0i = p0H
ai
a0

= 3
2

N
πa0b0

ai
a0

. (24)
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Using the expressions for the semi-axes a0 and b0 defined previously, the contact patch
half-length can be found using

ai = π

2E∗
m2n
A + B

p0i . (25)

This Hertzian expression for the contact patch boundary depends on the geometric
properties of the profiles in contact, and the normal pressure at the centre of the strip
under consideration. In non-elliptic cases, the curvatures and the Hertzian coefficients are
replaced by their local values. Thus,

ãi = π

2E∗
m2

i ni
Ai + Bi

p0i . (26)

The same expression for the half-length can also be obtained using the theory of ANALYN
(see Appendix 2). Hertz’ solution remains valid only for positive values of Bi. If the lateral
curvature is negative at a given point, a correction must be carried out. Moreover, if the
curvature is discontinuous, a smoothing is also applied. This correction and smoothing is
done using the procedure described in [22].

2.5. Iterative resolution

Equation (26) is incorporated into the iterative algorithm presented in Figure 3 to solve
the contact problem described by Equation (13). In the presented test cases, the potential
contact area is taken as the interpenetration zone using the Hertzian rigid body approach,
as this is sufficiently large to enclose the actual contact area. The choice of this potential
contact zone is not found to have a significant impact on the convergence of the proposed
algorithm. When the problem is specified with only a given penetration, the interpene-
tration area is the optimal choice. In order to speed up the computation, the matrix of
influence coefficients C is constructed only using the elements i where the separation hi is
less than a predefinedmaximum value hmax. When the resultant normal forceN is known,
the same algorithm is repeated for each value of δ(m), evaluated using Equation (16).
The total normal force at the mth iteration Ñ(m) is computed using Equation (15). The
algorithm in this case converges when a user defined tolerance value ε = |Ñ(m) − N| is
attained.

3. Results and discussion

The proposed new approach MIM-1D is implemented as a Matlab function. The approx-
imate surface deformation method ANALYN [31], and the VP method STRIPES [22] are
also programmed using Matlab. The results from the commercial version of the program
CONTACT (v20.1) [10] are used as the reference. It should be noted that the ANALYN
results are sensitive to the method used for the negative-curvature correction. In the orig-
inal publication, the negative lateral curvature values are replaced using a fifth-degree
polynomial. However, this correction strategy has not been explained in further detail, and
here this is done heuristically to obtain results as close as possible to the ones presented
in [31].
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Figure 3. MIM-1D algorithm with a given rigid body approach δ.

3.1. Theoretical profiles

3.1.1. Hertzian
To validate the new approach, a Hertzian case is considered with the contact between a
sphere (R = 40mm) and a flat surface. The separation curve between the two surfaces is
shown in Figure 4(a). Both bodies are made of steel, with ν = 0.3 and E = 208GPa. The
rigid approach between the two bodies is taken as 1mm.

The contact patches obtained using different approaches and the maximum pressure
distribution p0(y) are shown in Figure 5. All the methods can be observed to be in good
agreement with each other. The relative error in the contact area for MIM-1D is found
to be within 1% of Hertz’s analytical solution, which can be attributed to the accuracy of
numerical procedure used.
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Figure 4. Separation profiles of the two contacting surfaces. (a) Hertzian, (b) non-Hertzian.

Figure 5. Results for a Hertzian profile using existing methods and MIM-1D. (a) Contact patch.
(b) Pressure distribution p0(y).

3.1.2. Non-Hertzian
The contact between a flat surface, and a body of revolution (rolling radius Rn = 400mm)
with a non-Hertzian theoretical profile developed using two different radii R1 = 40mm
and R2 = 500mm on either side of the point of first contact is considered next. The sepa-
ration curve between the two surfaces is shown in Figure 4(b). The material properties are
the same as in the Hertzian case, with the bodies pushed 1mm towards each other.

The results for the contact area and the maximum pressure distribution are presented
in Figure 6. From Figure 6(a), MIM-1D and ANALYN correspond reasonably well with
the reference results from CONTACT. The relative error in the contact area for MIM-
1D is within 1% of the reference results. STRIPES notably underestimates the width of
the contact patch: this is expected, as neglecting the surface deformation should lead to
a smaller contact zone. Although the pressure distribution curve for ANALYN in Figure
6(b) follows the same trend as that of the reference, the peak of the pressure curve remains
significantly higher. The results usingMIM-1D can be observed to be in a better agreement
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Figure 6. Results for a non-Hertzian profile using existing methods and MIM-1D. (a) Contact patch.
(b) Pressure distribution p0(y).

with the reference method. A characteristic bottleneck region in the contact shape may be
observed at around y = 0mm. This can be attributed to Equation (26), which is used to
estimate the contact patch length. Even though the stress distribution is relatively continu-
ous over the entire contact zone, the ãi expression is essentially Hertzian. The termsmi and
ni depend on the procedure used to compute the longitudinal and lateral curvatures A and
B, respectively, as well as the negative curvature correction strategy. In the cases where the
profile changes abruptly (e.g. R1 = 40mm to R2 = 500mm at y = 0mm in Figure 4(b)),
the discontinuity in curvatures might introduce a visible discontinuity in the contact area
as well. These discontinuities may ultimately be treated in the pre-processing by using a
more suitably adapted curvature smoothing process. However, these do not seem to be too
significant in the case of wheel–rail contact, where the change in profiles is more gradual
and not restricted to a sole point as in the considered theoretical cases.

Simulations are carried out using different potential contact zones to check the influence
of this input parameter on the convergence of the proposed algorithm. The resultant nor-
mal forces are taken as 963 and 2645 kN (corresponding to δ = 1mm) for the Hertzian
and the non-Hertzian profiles, respectively. These results are presented in Figure 7. The
outer loop iterations denote the number of iterations on the value of the applied rigid body
approach δ(m) using Equation (16) to obtain the required resultant normal force. On the
other hand, the inner loop iterations represent the average number of iterations required
for the convergence of the algorithmpresented in Figure 3 for each value of δ(m). The choice
of the potential contact zone visibly does not have a significant impact on the convergence.

3.2. Wheel–rail contact

The case of wheel–rail contact is presented using the standard wheel profile S1002 over
the rail profile UIC60, with an inclination of 1:40. The material for both the wheel and
the rail is steel. The resultant normal contact force is taken as 78,500N. The results are
presented for various positions of the wheel, displaced from its centre position over the
rail, denoted by �y. The sign convention is taken the same as in [31], where a positive �y
signifies the movement of the contact point towards the wheel flange. The discretisation
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Figure 7. Convergence of the proposed algorithm for different potential contact areas. (a) Hertzian,
(b) non-Hertzian.

size is taken as approximately 0.2 mm for all the tested cases, which can be considered as a
fine discretisation for wheel–rail contact applications.

The test cases are chosen to remain in the tread region with low contact angles, where
the half-space assumption is not violated. FromFigure 8, theMIM-1D resultsmatch closely
with the reference CONTACT results in all the presented cases. This is highlighted more
prominently in the maximum pressure distribution over the contact patch length. It can
also be remarked that MIM-1D manages to accurately capture the characteristic slight
variations in the pressure distribution, such as those presented in the tail end of the case
�y = −1, a trait missing in the other simplified methods. ANALYN remains more precise
compared to the VP methods, as neglecting the surface deformation in STRIPES again
leads to an underestimated contact zone. The negative curvature compensation procedure
used in STRIPES may have an effect as well [37]. This sensibility of STRIPES related to
the processing of the curvature is also found to be true in the case of ANALYN, with
some fine tuning required to obtain the desired results. A correction strategy dependent
on the applied contact force and the separation may possibly improve the results [31].
Figure 9 presents the relative comparison of the contact area for a range of�y values to the
CONTACT results, emphasising the improvement using the new method as compared to
existing fast approaches.

3.3. Computational cost

To make a representative comparison of the computational cost, MIM-1D is tested for
different mesh sizes using a Hertzian profile. This comparison is done against the other
presentedmethods, i.e. STRIPES [22], ANALYN [31], and CONTACT [10]. The computa-
tions are carried out using a 64 bits 2.70GHz Intel processor. Only the time for the normal
contact problem is considered. The CPU time for CONTACT is taken directly from the
generated output file, while the other methods are measured using the elapsed CPU time
averaged over a finite number of runs. These results are tabulated in Table 1. STRIPES and
ANALYN report similar and the fastest CPU times, which is expected as both methods
are innately analytical. The latest version of CONTACT, implemented in Fortran, uses a
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Figure 8. Contact patch (left), and the maximum pressure distribution p0(y) (right) for wheel–rail con-
tact cases (from top to bottom): (a) �y = −1mm, (b) �y = 0mm, (c) �y = 1mm, (d) �y = 2mm,
and (e)�y = 5mm.
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Figure 9. Comparison of the relative error in the contact area with reference results from CONTACT.

Table 1. Comparison of CPU time with existing approaches.

Time (s)

Mesh size na STRIPES ANALYN CONTACT MIM-1D

0.2mm 100 1.5E−5 6.2E−5 < 0.1 2.0E−3
0.08mm 250 3.1E−5 9.4E−5 0.2 2.9E−2
0.04mm 500 9.3E−5 1.3E−4 1.3 9.2E−2
aThe total number of elements for CONTACT is n × n.

bound-constrained conjugate gradient (BCCG)methodwith a FFT pre-conditioner which
permits reasonably quick solutions even with a very fine discretisation [14]. The MIM-1D
implementation here simply employs Matlab’s inbuilt solver yet permits a gain in runtime
compared to CONTACT, in no small part due to the reduced semi-analytical formulation
of the method. Re-evaluating the matrix of influence coefficients at each iteration means
that about two-thirds of the CPU time can be spent on the Gaussian quadrature. This may
be an interesting guide for future developments, wherein accuracy can be traded for faster
computation speeds.

4. Conclusion

A simplified boundary element formulation is presented in this paper and tested against
two existing approximate methods, and a complete numerical method used as the refer-
ence. In essence, this approach further develops the strip discretisation strategy [11,34]
by using a semi-analytical methodology to determine the contact patch dimension in the
rolling direction. The novel method, implemented in the algorithm MIM-1D, provides a
precise approach comparable tomore rigorous completemethods such as CONTACT,with
lesser computing effort. The results from the theoretical andwheel–rail test cases presented
allow the following conclusions to be drawn:
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• The proposed approach MIM-1D enables an improved approximation of the pres-
sure distribution and the contact area as compared to the other existing VP [22] and
approximate surface deformation [31] methods.

• Comparison with a complete numerical method for wheel–rail contact shows close
agreement, with the relative error in the contact area as compared to the reference results
being less than 3% in all the tested cases using theoretical and wheel–rail profiles.

• From Figure 8, the normal stress distribution obtained using MIM-1D for the different
test cases can be observed to be in better agreement with the fully detailed method. The
peaks of the maximum pressure curve are also noted to conform well with the refer-
ence results. This may be seen as a significant advantage in the calculation of wear, that
requires the contact stresses instead of the total normal forces.

• The reduction in the number of system unknowns as compared to CONTACT due to
a semi-analytical approach provides on an average, a 10-fold speed up with the current
Matlab implementation. This should improve further by using a programming language
closer to machine language such as Fortran.

It is important to keep in context that the latest versions of CONTACT incorporate
advanced numerical techniques to enable faster solving of the normal contact problem
[14]. Using similar numerical optimisation strategies should permit further improvement
in the performance of MIM-1D, and these will be tested in future developments. Any sim-
plified method of course brings its own set of drawbacks. Limitations with respect to the
generality of contact problems, especially when using rough profiles, are the most obvi-
ous. Considering the pressure distribution to be symmetric about the x = 0 plane also
brings restrictions on taking into account the effect of the yaw angle. The bottleneck regions
observed in certain cases, related to the abruptly changing curvatures,may demand supple-
mental inspections. Further developmentsmust also be implemented in order to accurately
treat the flange contact, where the contact angle varies significantly in a small zone, thus
violating the half-space assumption. These improvements are currently under study, within
the context of the implementation of MIM-1D in the MBS code VOCO (VOitures en
COurbe). The eventual implementation should account for the coupling with the tangen-
tial contact problem, while taking the effect of friction into account. The new approach
does not replace any of the previous ones but adds a new method in the spectrum of fast
versus detailed methods. With proper optimisation, solving the classical normal contact
problem using only strip elements should enable MIM-1D to be used as a good reference
for other coarse models commonly employed in dynamic vehicle simulations.
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Appendices

Appendix 1. Solving the contact problem for the normal force

The normal force acting on each strip Ni can be evaluated using Equation (15):

Ni = π ãibip0i . (A1)

The system of equations in matrix form is

u = C′N, (A2)

where N = {N1, . . . ,Nn}T, and the matrix of influence coefficients C′ is given by

C′ =

⎡
⎢⎣

(π ã1b1)C11 . . . (π ãnbn)C1n
...

. . .
...

(π ã1b1)Cn1 . . . (π ãnbn)Cnn

⎤
⎥⎦ . (A3)

The half-length of the contact patch at the end of each iteration can be computed using

ãi =
(

1
2E�

nim2
i

Ai + Bi
1
bi
Ni

) 1
2

. (A4)

Equations (A2) and (A4) can subsequently be employed in the algorithm presented in Figure 3 to
solve the contact problem.
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Appendix 2. Contact patch half-length using ANALYN

The expression for the contact patch boundaries in ANALYN [31] is

ãi =
√

di
[1 + αi]Ai

, (A5)

where
di = δ − [1 + βi]hi. (A6)

Here, di is the penetration and the term βihi takes the surface deformation into account analytically,
as opposed to VPmethods where the deformation is neglected. The coefficients αi and βi are defined
as:

αi = ri
m2

i

(
1 + Bi

Ai

)
− 1, (A7)

βi = ri
n2i

(
1 + Ai

Bi

)
− 1, (A8)

where Ai and Bi are the relative longitudinal and lateral curvatures, respectively, while mi, ni, and
ri are non-dimensional Hertzian coefficients calculated using the local curvatures. The maximum
pressure value p0i is

p0i = 2E∗

π

1
niri

di
ãi
. (A9)

Squaring Equation (A5) and taking into account the expression for αi, we have

di = ri
m2

i
[Ai + Bi]ã2i . (A10)

Combining Equations (A9) and (A10), the half-length of the contact patch ãi can finally be written
as

ãi = π

2E∗
m2

i ni
Ai + Bi

p0i . (A11)
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