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ABSTRACT
A new semi-analytical boundary element method is proposed for determining the
wheel-rail contact zone and the normal stress distribution within it. The potential
contact area is discretised using strip elements, employing an iterative algorithm
to satisfy the contact constraints. At each iteration, the length of the contact
strips is updated using an analytical expression based on Hertz’s theory. This
simplified formulation provides good approximation of the pressure distribution and
consequently the contact area in non-elliptic cases. The reduction in the number
of system unknowns by using a semi-analytical methodology also enables fast
computation speeds, an indispensable requirement in railway dynamics.

KEYWORDS
wheel-rail contact; Hertz; non-elliptic contact; vehicle dynamics; contact
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1. Introduction

Safety, track fatigue analyses, and maintenance of railway vehicles are only some
of the applications that highlight the importance of wheel-rail contact models. The
complexity of different operations necessitates very different levels of modelling:
a simplified and coarse model may often be sufficient. For hardware-in-the-loop
simulations, where the calculations must be carried out in real time over railway
tracks which are several kilometres long, very approximate wheel-rail contact models
are generally used. Conversely, other applications require more sophisticated models,
such as in the estimation of wear in urban rail networks, or the assessment of rolling
contact fatigue. The shape of the contact area and the stress distribution within it
categorise the different normal contact models available in the literature [1–4].

The case of normal contact between two continuous and non-conforming bodies was
first treated by Hertz in 1882 [5], assuming frictionless contact and each solid body
as an elastic half-space. The Hertzian solution is characterised by an elliptical contact
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patch, with a semi-ellipsoidal normal pressure distribution acting within the contact
area. This approach is limited to profiles with constant curvature, and therefore may
lead to approximate results in railway applications where the curvature of the profiles
changes along the width of the rail section.

The use of discrete methods offers a more realistic approximation of the contact
conditions in real-life applications. The finite element method (FEM) has already been
used in various studies for elasto-plastic stress analyses and creep force characteristics,
employing both implicit and explicit approaches [6,7]. Certain recent works have also
used Nitsche’s method for frictional contact problems as opposed to the classical
penalty methods or mixed methods, which offers good convergence and robustness
[8]. Variational methods as the one described by Kalker’s complete theory [9] and
implemented in the program CONTACT [10], the boundary element method (BEM)
like the one presented by Knothe and Le The [11], or the matrix inversion method
(MIM) by Johnson [12] also enable a good estimation of the contact properties. Despite
the advances in computational prowess in recent years, discrete methods continue to
struggle in terms of their capability to be used online in vehicle dynamics simulations.
A very fine discretisation is usually required with FEM approaches to satisfactorily
represent the contact patch boundaries, while classical boundary element methods
require iterative techniques over large potential contact grids to verify the stress
constraints.

In most software applications, a compromise is reached between the level of accuracy
that is deemed acceptable and the time it takes to solve the contact problem. This
has given rise to an intermediate level of approximate methods based on the theory
of virtual penetration of the contacting surfaces such as the Linder model [13],
the Kik-Piotrowski model [14], the semi-Hertzian model (STRIPES) [15], and the
extended Kik-Piotrowski (EKP) model [16] amongst others. The contact area in these
approaches is approximated using the area in which the surfaces would overlap if
there is no deformation. This overlapping area is bigger than the actual contact
patch, and a scaling factor is used to prescribe the virtual penetration such that
the interpenetration zone approaches the real contact area. The technique used for
determining the scaling parameter is what broadly differentiates these approaches
[17]. There exists in parallel another family of models wherein the non-elliptical part
of the contact area is approximated using a series of individual ellipses. This so-called
multi-Hertzian method, proposed by Pascal and Sauvage [18], is further simplified by
Ayasse et al. [19] to an analytical approach. Some of the questions raised regarding
these models when compared against virtual penetration methods in [2] have been
addressed recently by Pascal [20].

A proposed improvement to these models is through the introduction of an
analytical approximation for the surface deformation in the method ANALYN [21].
Although the results are promising in comparison to other simplified methods, this
method remains sensitive to the negative-curvature correction, a characteristic of
all point-based contact models based on Hertz’ theory. This makes it challenging to
implement the method as a true black-box solution in dynamic vehicle simulation. It
is generally noted that this approach gives a good approximation of the contact area
when the pressure distribution estimated is also accurate. A better approximation
of the pressure distribution using a more thorough approach in the above family of
methods should lead to better estimation of the contact patch, which forms the basis
of the new semi-analytical approach proposed in this article.

In the first part, a reduced formulation of the contact between two elastic half-spaces
is used together with a Hertzian model to solve the normal contact, following a semi-
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analytical methodology. The novel method is then validated using the results from
STRIPES [15], ANALYN [21], and CONTACT [10] with theoretical as well as wheel-
rail profiles. A comparison of the required computational resources is also carried out
using different numerical approaches, before the final conclusions.

2. Methodology

2.1. Theoretical background

The problem describing the stress field in a semi-infinite half-space subjected to a
concentrated normal surface force was studied in detail by Boussinesq [22]. For the
half-space consideration to be valid locally, the contact area dimensions must be
significantly smaller as compared to the principal radii of the contacting surfaces.
This is generally true when considering several common contact scenarios such as the
tread contact between wheels and rails. The following assumptions are also made:

• The bodies are elastic, homogeneous and isotropic.
• The contacting surfaces have a continuous profile.
• The normal and tangential problems can be solved sequentially.

One possible solution is using the potential theory of Boussinesq [22], described
exhaustively in the book by Johnson [12]. The normal elastic displacement ū(x, y)
is related to the normal pressure distribution p(x, y) by the integral equation [23]

∀(x, y) ∈ Σ, ū(x, y) =

∫∫
Σc

p(ξ, η)T (x, y; ξ, η)dξdη, (1)

where Σ is the half-space domain under consideration, ΣC is the zone of the contact,
and T is Boussinesq’s influence function defined as

∀(x, y; ξ, η) ∈ Σ2, T (x, y; ξ, η) =
1

πE?
1√

(x− ξ)2 + (y − η)2
. (2)

E? is the effective Young’s modulus of elasticity for the two contacting bodies Ω1 and
Ω2 such that

1

E?
=

(
1− ν2

1

E1
+

1− ν2
2

E2

)
, (3)

where E1 and E2 are the modulus of elasticity, while ν1 and ν2 are the Poisson’s ratios
for the two solids. With a defined rigid approach δ, the only geometrical input required
to solve the contact problem is the separation between the two undeformed surfaces
h(x, y). The normal surface deformation ū(x, y) = ū1(x, y)+ū2(x, y) must be evaluated
at each point within the contact zone. This contact problem can be summarised in
Figure 1. Considering ΣC as the area of contact, the conditions of Signorini give the
cases of separation and of contact:

∀(x, y) /∈ ΣC , δ − ū(x, y)− h(x, y) < 0 and p(x, y) = 0, (4)

∀(x, y) ∈ ΣC , δ − ū(x, y)− h(x, y) = 0 and p(x, y) > 0. (5)
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Figure 1. Two elastic bodies in contact

The boundary conditions defined in Equations (4) and (5) ensure that the normal
pressure can only act within the contact zone, vanishing at the boundary of the contact
area. The two bodies are also prevented from interpenetrating. If the rigid approach
δ is given, the problem to be solved can be completely described by Equations (1)
and (5). If the total resultant force N is known in advance, the following equilibrium
condition is added:

∀(x, y) ∈ ΣC , N =

∫∫
Σc

p(ξ, η)dξdη. (6)

2.2. Towards a reduced approach

The classical direct method to solve the contact problem is the matrix inversion
method (MIM) found in [12]. The potential contact area in the boundary element
problem is overestimated in both the lateral and the rolling directions and divided
into a rectangular grid, wherein the contact constraints of Equations (4) and (5) are
then evaluated. The elements in which the pressure distribution has negative values
are discarded, and the procedure is repeated until all the remaining elements satisfy
the boundary conditions. The elastic deformation is thus calculated at each iteration
for each element within the potential contact area, resulting in a large expenditure
of computational resources. In the proposed new approach, the pressure distribution
is assumed to be symmetric and elliptic about the x = 0 plane and the potential
area of contact is discretised only in the lateral y direction. A similar strategy for
discretisation is also used by Reusner for the treatment of roller bearings in [24], and by
Knothe and Le–The for more arbitrary elastic bodies in [11]. The novel approach in the
present paper is to consider the contact patch boundaries as a quasi-known quantity
dependent on the form of the normal stress distribution. The potential contact area
is first divided into thin strips with the larger dimension in the rolling direction, as
shown in Figure 2, from where the name MIM-1D is chosen for the new method. The
unknown in this case reduces to the maximum pressure values p0i

at the centre of each
strip i. At each iteration, the half-length of the contact strip ai in the rolling direction
is then computed as a function of the maximum pressure distribution p0i

, using an
approximate analytical formulation based on Hertz’ theory.
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Figure 2. Contact area ΣC divided into strips, and the normal pressure distribution [11]

2.3. Discrete problem

The half-length and the half-width of each strip element are given as ai and bi
respectively. The pressure distribution over each strip is assumed to be semi-elliptical
in the x direction, and constant in the y direction. Thus, the expression for the pressure
distribution over each strip may be written as

p(x, yi) = p0i

√
1−

(
x

ai

)2

, (7)

where p0i
is the maximum pressure at the centre (xi, yi) of the strip i. The deformation

and the separation at the centre are denoted as ui and hi respectively. Equations (1)
and (5) in discrete form are:

∀i ∈ [1, n], ui =

n∑
j=1

Cijp0j
, (8)

∀i ∈ [1, n] 3 (xi, yi) ∈ ΣC , δ − ui − hi = 0 and p0i
> 0, (9)

where n denotes the total number of elements in the potential contact area. The terms
Cij from Equation (8) are called the coefficients of influence, and are defined as

Cij =
2

πE?

∫ yj+bj

yj−bj

∫ aj

0

√
1− ( ξaj

)2√
(xi − ξ)2 + (yi − η)2

dξdη. (10)

The expression for Cij describes the influence of normal stress distribution in the jth
element to induce elastic displacement in the ith element. The xi terms are ignored
as they always remain zero in the case of MIM-1D. Equation (10) is written as:

Cij =
2

πE?

∫ yj+bj

yj−bj

∫ aj

0

√
1− ( ξaj

)2 − 1√
ξ2 + (yi − η)2

dξdη +

∫ yj+bj

yj−bj

∫ aj

0

dξdη√
ξ2 + (yi − η)2

 .
(11)
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The first integral is regular and can be evaluated numerically using Gaussian
quadrature. A higher number of integration points may be chosen closer to the diagonal
terms. The second integral is singular when the denominator approaches zero. This
expression represents the case of uniform normal pressure acting on a rectangular area
of 2ai× 2bi, and an analytical solution of this problem has been presented in detail by
Love [12,25]. We have

2

∫ yj+bj

yj−bj

∫ aj

0

dξdη√
ξ2 + (yi − η)2

= (y + bj) log

 aj +
√

(y + bj)2 + a2
j

−aj +
√

(y + bj)2 + a2
j


+ (y − bj) log

−aj +
√

(y − bj)2 + a2
j

aj +
√

(y − bj)2 + a2
j


+ 2aj log

(y + bj) +
√

(y + bj)2 + a2
j

(y − bj) +
√

(y − bj)2 + a2
j

 ,
(12)

where

y = yi − yj .

An additional advantage of treating the original integral expression in such a manner
is the introduction of an analytical solution into the numerical results, which may
consequently reduce the integration error linked to the quadrature method. This
also permits the use of lesser number of integration points, and consequently faster
calculation times. Equation (8) in matrix form is written as

u = C p, (13)

where the vectors p and u are given as {p01
, ..., p0n

}T and {δ − h1, ..., δ − hn}T
respectively. The matrix of influence coefficients C is

C =

C11 . . . C1n
...

. . .
...

Cn1 . . . Cnn

 . (14)

This is the method of resolution generally followed in the case where the rigid approach
δ is known in advance. Unlike in the classical method, C needs to be evaluated at the
beginning of each iteration as the size of the elements in the x direction does not
remain the same.

In the case where the normal force is prescribed instead of rigid body approach δ,
the normal contact problem is solved with an additional iteration for δ. The resultant
force at the end of each iteration is calculated using Equation (6):

N = π

n∑
i=1

(aibi)p0i
. (15)
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The initial value of δ can be taken as the Hertzian rigid body approach. The subsequent
values of δ may be evaluated using a dichotomy or an iterative scheme based on Hertz’
relations [11]:

δ(m+1) = δ(m)

[
N

Ñ (m)

] 2

3

, (16)

where Ñ (m) represents the resultant normal force at the end of mth iteration.
For numerical simulations, it is also possible to modify Equation (13) using the

normal force over each strip Ni (see Appendix A).

2.4. Calculation of the contact patch half-length ai

The half-length of the contact patch ai is evaluated analytically, using the expressions
from Hertz’ theory locally. ai is updated at each iteration to define the new potential
contact zone, which is then used to construct the matrix C. The equation for the
Hertzian contact ellipse is (

x

a0

)2

+

(
y

b0

)2

= 1, (17)

where a0 and b0 are the semi-axes of the ellipse [26]:

a0 = m

[
3

2
N

1

2E?
1

(A+B)

] 1

3

, (18)

b0 = n

[
3

2
N

1

2E?
1

(A+B)

] 1

3

. (19)

Here, A and B are the relative curvatures in the longitudinal and lateral directions
respectively, while m and n are the non-dimensional Hertzian coefficients assessed
using the curvatures (see Appendix in [15], or [26]). The normal pressure distribution
p(x, y) over the contact area is semi-ellipsoidal, and given by

p(x, y) = p0H

√
1−

(
x

a0

)2

−
(
y

b0

)2

, (20)

with the maximum normal pressure at the centre of ellipse,

p0H
=

3

2

N

πa0b0
. (21)

Equation (17) over each strip can be written as(
ai
a0

)2

+

(
y

b0

)2

= 1. (22)
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Combining Equations (20) and (22), the normal pressure distribution in the
longitudinal x direction for the ith strip is

p(x, yi) = p0H

ai
a0

√
1−

(
x

ai

)2

. (23)

Comparing Equations (7) and (23), it is possible to deduce

p0i
= p0H

ai
a0

=
3

2

N

πa0b0

ai
a0
. (24)

Using the expressions for the semi-axes a0 and b0 defined previously, the contact patch
half-length can be found using

ai =
π

2E∗
m2n

A+B
p0i
. (25)

This Hertzian expression for the contact patch boundary depends on the geometric
properties of the profiles in contact, and the normal pressure at the centre of the strip
under consideration. In non-elliptic cases, the curvatures and the Hertzian coefficients
are replaced by their local values. Thus,

ai =
π

2E∗
m2
ini

Ai +Bi
p0i
. (26)

The same expression for ai can also be obtained using the theory of ANALYN (see
Appendix B). Hertz’ solution remains valid only for positive values of Bi. If the lateral
curvature is negative at a given point, a correction must be carried out. Moreover,
if the curvature is discontinuous, a smoothing is also applied. This correction and
smoothing is done using the procedure described in [15].

2.5. Iterative resolution

Equation (26) is incorporated into the iterative algorithm presented in Figure 3 to solve
the contact problem described by Equation (13). In order to speed up the computation,
the matrix of influence coefficients C is constructed only using the elements i where
the separation hi is less than a predefined maximum value hmax. When the resultant
normal force N is known, the same algorithm is repeated for each value of δ(m),
evaluated using Equation (16). The total normal force at the mth iteration Ñ (m) is
computed using Equation (15). The algorithm in this case converges when a user
defined tolerance value ε = |Ñ (m) −N | is attained.

3. Results and discussion

The proposed new approach MIM-1D is implemented as a Matlab function. The
approximate surface deformation method ANALYN [21], and the virtual penetration
method STRIPES [15] are also programmed using Matlab. The results from the
commercial version of the program CONTACT (v20.1) [10] are used as the reference.
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Figure 3. MIM-1D algorithm with a given rigid body approach δ

It should be noted that the ANALYN results are sensitive to the method used for
the negative-curvature correction. In the original publication, the negative lateral
curvature values are replaced using a fifth-degree polynomial. However, this correction
strategy has not been explained in further detail, and here this is done heuristically
to obtain results as close as possible to the ones presented in [21].

3.1. Theoretical profiles

3.1.1. Hertzian

To validate the new approach, a Hertzian case is considered with the contact between a
sphere (R = 40 mm) and a flat surface. The separation curve between the two surfaces

-10 -8 -6 -4 -2 0 2 4 6 8 10

Lateral y-coord (mm)

0

0.2

0.4

0.6

0.8

1

S
e
p
a
ra

ti
o
n
 (

m
m

)

(a) Hertzian

-10 -5 0 5 10 15 20 25

Lateral y-coord (mm)

0

0.2

0.4

0.6

0.8

1

S
e
p
a
ra

ti
o
n
 (

m
m

)

(b) Non-Hertzian

Figure 4. Separation profiles of the two contacting surfaces
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Figure 5. Results for a Hertzian profile using existing methods and MIM-1D

is shown in Figure 4a. Both bodies are made of steel, with ν = 0.3 and E = 208 GPa.
The rigid approach between the two bodies is taken as 1 mm.

The contact patches obtained using different approaches and the maximum pressure
distribution p0(y) are shown in Figure 5. All the methods can be observed to be in
good agreement with each other. The relative error in the contact area for MIM-1D is
found to be within 1% of Hertz’s analytical solution, which can be attributed to the
accuracy of numerical procedure used.

3.1.2. Non-Hertzian

The contact between a flat surface, and a body of revolution (rolling radius Rn = 400
mm) with a non-Hertzian theoretical profile developed using two different radii R1 =
40 mm and R2 = 500 mm on either side of the point of first contact is considered next.
The separation curve between the two surfaces is shown in Figure 4b. The material
properties are the same as in the Hertzian case, with the bodies pushed 1 mm towards
each other.

The results for the contact area and the maximum pressure distribution are
presented in Figure 6. From Figure 6a, it can be seen that MIM-1D and ANALYN
correspond reasonably well with the reference results from CONTACT. The relative
error in the contact area for MIM-1D is within 1% of the reference results. STRIPES
notably underestimates the width of the contact patch: this is expected, as neglecting
the surface deformation should lead to a smaller contact zone. Although the pressure
distribution curve for ANALYN in Figure 6b follows the same trend as that of the
reference, the peak of the pressure curve remains significantly higher. The results using
MIM-1D can be observed to be in a better agreement with the reference method.

3.2. Wheel-rail contact

The case of wheel-rail contact is presented using the standard wheel profile S1002 over
the rail profile UIC60, with an inclination of 1:40. The material for both the wheel and
the rail is steel. The resultant normal contact force is taken as 78500 N. The results
are presented for various positions of the wheel, displaced from its centre position over
the rail, denoted by ∆y. The sign convention is taken the same as in [21], where a
positive ∆y signifies the movement of the contact point towards the wheel flange. The
discretisation size is taken as approximately 0.2 mm for all the considered cases.

The test cases are chosen to remain in the tread region with low contact angles,
where the half-space assumption is not violated. From Figure 7, it can be seen the MIM-
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Figure 6. Results for a non-Hertzian profile using existing methods and MIM-1D

1D results match closely with the reference CONTACT results in all of the presented
cases. This is highlighted more prominently in the maximum pressure distribution
over the contact patch length. It can also be remarked that MIM-1D manages to
accurately capture the characteristic slight variations in the pressure distribution,
such as those presented in the tail end of the case ∆y = −1, a trait missing in the
other simplified methods. ANALYN remains more precise compared to the virtual
penetration methods, as neglecting the surface deformation in STRIPES again leads
to an underestimated contact zone. The negative curvature compensation procedure
used in STRIPES may have an effect as well [27]. This sensibility of STRIPES related
to the processing of the curvature is found to be true in the case of ANALYN as well,
with some fine tuning required to obtain the desired results. A correction strategy
dependent on the applied contact force and the separation may possibly improve the
results [21]. Figure 8 presents the relative comparison of the contact area for a range
of ∆y values to the CONTACT results, emphasising the improvement using the new
method as compared to existing fast approaches.

3.3. Computational cost

To make a representative comparison of the computational cost, MIM-1D is tested for
different mesh sizes using the Hertzian profile against the other complete numerical
methods i.e. Kalker’s CONTACT, and the classical matrix inversion method (MIM)
implemented as Matlab function. These comparisons are made using a 64 bits 2.70
GHz Intel processor. Only the computation time for the normal contact problem
is considered. The time for CONTACT is taken from the generated output file,
while the other two methods are measured using the elapsed CPU time averaged
over a finite number of runs. These results are tabulated in Table 1. The gain in
the computation speed using the new method with respect to the classical MIM is
clear, with up to a 1000-fold speed up in cases where a comparison is possible. The
conventional desktop employed is in fact unable to supply enough memory to carry
out the simulations when using the fine meshes with MIM. CONTACT uses a bound-
constrained conjugate gradient (BCCG) method with a fast Fourier transform (FFT)
pre-conditioner which permits quicker resolution, even with a very fine discretisation
[28]. The MIM-1D implementation here simply employs Matlab’s inbuilt direct solver
yet permits a significant gain in runtime, in no small part due to the reduced semi-
analytical formulation of the method.
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Figure 7. Contact patch (left), and the maximum pressure distribution p0(y) (right) for wheel-rail contact
cases (from top to bottom): (a) ∆y = −1 mm, (b) ∆y = 0 mm, (c) ∆y = 1 mm, (d) ∆y = 2 mm, and (e)

∆y = 5 mm.
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Figure 8. Comparison of the relative error in the contact area with reference results from CONTACT

Table 1. Comparison of CPU time with existing numerical approaches

n Time (s)

Mesh size (mm) Number of elementsa MIM CONTACT MIM-1D

0.2 51 1.002 0.1 0.010
0.1 101 40.28 0.2 0.037
0.02 501 � 5.2 0.342
0.01 1001 � 14.2 1.111

aThe total number of elements in the case of MIM and CONTACT is n × n.

4. Conclusion

A simplified boundary element formulation is presented in this paper and tested
against two existing approximate methods, and a complete numerical method used
as the reference. In essence, this approach further develops the discretisation strategy
presented in [11], by using a semi-analytical methodology to determine the contact
patch dimension in the rolling direction. The novel method, implemented in the
algorithm MIM-1D, provides a precise approach comparable to more rigorous complete
methods such as CONTACT, with lesser computing effort. The results from the
theoretical and wheel-rail test cases presented allow the following conclusions to be
drawn:

• The proposed approach MIM-1D enables an improved approximation of the
pressure distribution and the contact area as compared to the other existing
virtual penetration [15] and approximate surface deformation [21] methods.
• Comparison with a complete numerical method for wheel-rail contact shows

close agreement, with the relative error in the contact area as compared to the
reference results being less than 3% in all the tested cases using theoretical and
wheel-rail profiles.
• The reduction in the number of system unknowns as compared to CONTACT

due to a semi-analytical approach provides up to a 10-fold speed up with the
current Matlab implementation. This should ideally improve further by using a
programming language closer to machine language such as Fortran. Similarly,
optimisation with respect to the iterative solver used should make the algorithm
run faster.

It is important to keep in context that the latest versions of CONTACT incorporate
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advanced numerical techniques to enable faster solving of the normal contact problem
[28]. Incorporating similar numerical optimisation strategies may permit further
improvement in the performance of MIM-1D as well. Further developments must
also be implemented in order to accurately treat the flange contact, where the
contact angle varies significantly in a small zone, thus violating the half-space
assumption. These improvements are currently under study, within the scope of
the implementation of MIM-1D in the dynamic multi-body simulation code VOCO
(VOitures en COurbe). The eventual implementation should account for the coupling
with the tangential contact problem, while taking the effect of friction into account.
With proper optimisation, solving the classical normal contact problem using only
strip elements should enable MIM-1D to be used as a good reference for other coarse
models commonly employed in dynamic vehicle simulations.
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Appendix A. Solving the contact problem for the normal force Ni

The normal force acting on each strip Ni can be evaluated using Equation (15):

Ni = πaibip0i
. (A1)

The system of equations in matrix form is

u = C’ N, (A2)
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where N = {N1, ..., Nn}T , and the matrix of influence coefficients C′ is given by

C’ =

(πa1b1)C11 . . . (πanbn)C1n
...

. . .
...

(πa1b1)Cn1 . . . (πanbn)Cnn

 . (A3)

The half-length of the contact patch at the end of each iteration can be computed
using

ai =

(
1

2E?
nim

2
i

Ai +Bi

1

bi
Ni

) 1

2

. (A4)

Equations (A2) and (A4) can subsequently be employed in the algorithm presented in
Figure 3 to solve the contact problem.

Appendix B. Contact patch half-length ai using ANALYN

The expression for the contact patch boundaries in ANALYN [21] is

ai =

√
di

[1 + αi]Ai
, (B1)

where

di = δ − [1 + βi]hi. (B2)

Here, di is the penetration and the term βihi takes the surface deformation into
account analytically as opposed to methods based on the virtual penetration where
the deformation is neglected. The coefficients αi and βi are defined as:

αi =
ri
m2
i

(
1 +

Bi
Ai

)
− 1, (B3)

βi =
ri
n2
i

(
1 +

Ai
Bi

)
− 1, (B4)

where Ai and Bi are the relative longitudinal and lateral curvatures respectively, while
mi, ni, and ri are non-dimensional Hertzian coefficients calculated using the local
curvatures. The maximum pressure value p0i

is

p0i
=

2E∗

π

1

niri

di
ai
. (B5)

Squaring Equation (B1) and taking into account the expression for αi, we have

di =
ri
m2
i

[Ai +Bi]a
2
i . (B6)
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Combining Equations (B5) and (B6), the half-length of the contact patch ai can finally
be written as

ai =
π

2E∗
m2
ini

Ai +Bi
p0i
. (B7)
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