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Unlocked decision making based on causal connections strength

M. Amine Atoui1,3, Achraf Cohen2 and Vincent Cocquempot3

Abstract— Fault detection and diagnosis are crucial
to reducing risks and costs in any process. The identi-
fication of the propagation path and the variables re-
sponsible for faulty operating conditions is also vital.
This paper presents a causal network-based approach
to detect, diagnose, and identify root causes in mul-
tivariate processes. We discuss aspects such as com-
plexity and rules related to modeling such network
approaches. The proposed strategy is established on
statistical justifications. The introduced decision rules
deal with unknown faults and offer new perspectives
to data-driven methods for fault diagnosis. The pro-
posed approach is evaluated and demonstrated using
the well-known Tennessee Eastman Process (TEP)
benchmark.

I. Introduction
Data-driven methods for process control are crucial

to monitoring complex systems because the model-
based and knowledge-based approaches may fail to pro-
duce an acceptable monitoring model for such systems.
Process monitoring includes fault detection and isola-
tion/identification procedures that aim at determining
whether or not a fault has occurred and which vari-
ables are responsible, respectively. The statistical process
monitoring notion relies on the statistical theory that
data variations (e.g. mean and variance) are similar
unless a fault happens in the process. A fault is any
deviation from the normal operating condition of the
process. Faults are often modeled as deviations from the
in-control process mean or variance, or both.

The large amount of data collected from processes
are often multivariate of nature, say m-variate, where m
variables are monitored to decide on the process’s state.
Therefore, multivariate statistical methods have been
extensively utilized to reduce the dimension or extract
relevant information and latent knowledge [1], [2], [3].

Some of the techniques that have been widely stud-
ied for process monitoring include principal component
analysis (PCA) [1], [4], [5], partial least squares (PLS)
[6], Bayesian networks (BN) [7], [8], subspace methods
[9], wavelets analysis [10]. Fault detection and diagnosis
is a classification problem. Therefore several machine
learning methods [11] have been applied to solve it, such
as support vector machines [12], neural networks [13], de-
cision trees [14]. These methods are powerful but require
a considerable amount of reliable data. Probabilistic
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graphical models are an important tool for modeling
decision support systems in uncertain environments [15],
[16]. In the last decades, probabilistic graphical models
have received great attention in the statistical process
monitoring field [17], [18], [19], [20], [21], [22], [23], [24],
[25], [23].

Fault detection and diagnosis are important tasks to
help the operator to decide about the actual operating
conditions. A challenging task is the root cause identifi-
cation, where the goal is to identify which variables are
responsible for the observed fault. Various approaches
are used to deal with these tasks. For instance, prin-
cipal component analysis (PCA) and kernel principal
component analysis (KPCA) techniques were used to
detect faults and Bayesian Networks to identify root
causes in [26]. The authors used transfer entropy and
Granger causality to identify the structure of the net-
work. Another fault diagnosis method was proposed by
combining dynamic Bayesian anomaly index-based con-
trol chart and dynamic Bayesian models [27]. In [28], the
authors proposed nonparametric probabilistic indices to
detect and identify the root cause variables. [29] proposed
another index, the G-index, estimated by adopting a non-
parametric estimator.

One particular method of interest uses the statistical
tests based on quadratic statistics to detect faults in a
multivariate process. When a fault is detected, the next
step is to look for the variables explaining faulty data. A
couple of methods have been proposed for identification
including the Mason, Young, and Tracy (MYT) approach
[30], multivariate contribution plots [31], reconstruction
analysis [32], [33], [34], and non-negative garrote [35].
Causality analysis techniques were also proposed to iden-
tify the variables such as Granger causality test [36],
transfer entropy [37], and causal networks [38], [39]. The
MYT decomposition holds solid statistical properties.
However, it requires a large number of decompositions,
which makes it less attractive in practice.

In this work, a new causal monitoring system is pro-
posed. It integrates fault detection and diagnosis as well
as an identification stage where the potential variables
responsible for the faults and their propagation path are
determined. The rest of the paper is organized as follows.
Section 2 provides a theoretical basis and definitions.
Section 3 presents the decision rules and introduces the
proposed method. In Section 4, the performance of the
proposed causal network is evaluated on the Tennessee
Eastman Process (TEP). Finally, the conclusions are
summarized in Section 5.
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II. Probabilistic graphical models
A probabilistic graphical model [16] is a Directed

Acyclic Graph (DAG) G with a set of random variables
X1, . . . ,Xm assigned to its nodes. The nodes are con-
nected by directed arcs. The arcs describe the dependen-
cies between variables. These dependencies are governed
by the Markov conditions. Thus, DAG conditional inde-
pendence relationships allow, applying the chain rule, the
decomposition of the joint distribution of X as a set of
independent conditional probabilities such that:

p(X1,X2, . . . ,Xm) =
m∏
i=1

p(Xi|ρ(Xi)) (1)

where p(Xi|ρ(Xi)) is the conditional probability of the
Xi given its parents ρ(Xi) in G. A parent A in a directed
graph to B can be informally interpreted as indicating
that A “causes” B. Basically, these dependencies between
variables represent a causal model. The structure of the
model can be built by experts or learned from data. We
are interested in the DAG’s adjacency matrix encoding
the causal relationships between variables.

One particular form of the probabilistic graphical
model is the Conditional Continuous Network (CCN).
The nodes of the CCN can represent discrete or con-
tinuous (univariate or multivariate) random variables.
Continuous nodes Xi given their continuous parents
follow regression models with parameters depending on
the values k of their discrete parents, D. Each model is
characterized by the response variable mean and vari-
ance, µk and Σk, respectively.

A. Statistical monitoring in Causal Networks
We consider K + 1 classes, Ck, which represent the

system K faults plus the normal operation conditions
(NoC). In practice, it is almost impossible to enumerate,
simulate, or gather data about all the system possible
operating conditions. Indeed, a current challenge with
fault diagnosis is how to deal with unknown or new
considered operating conditions [19], [40].

Often the statistical decision about whether or not
an observation belongs to a class of faults is made by
choosing the class with maximum posterior probability.
Although this rule is efficient, it does not handle false
alarms and unknown operating conditions. It also does
not allow explicitly isolate the variables at fault. Based
on the posterior probabilities of each state of Ck, of
D, in respect to the new observations X1, X2, . . . , Xm,
p(Ck|X1, X2, . . . , Xm), new rules are proposed to address
these shortcomings about decision making under causal
network. Based on the properties of the causal network
G, from equation (1), p(Ck|X1, X2, . . . , Xm) can be writ-
ten as a product of Gaussians like follows

p(Ck|X1, X2, . . . , Xm) ∝ p(X1, X2, . . . , Xm|Ck)p(Ck)

∝
m∏
i=1

p(Xi|ρ(Xi), Ck)p(Ck) (2)

with p(Xi|ρ(Xi), Ck) ≡ N (µki + W ρi
ki

Xρi , σ
k
Xi·Xρi

),
where σkXi·Xρi is the variance of variable Xi conditional
on its parents. µki is a constant associated with Xi.
Let’s denote a connection strength from a variable Xi to
other variables, its direct parents, Xρi , in the DAG by
W ρi
ki

, then the model can be represented by Xi = µki +
W ρi
ki

Xρi + ei, where ei ∼ N (0, σkXi·Xρi ). By developing
(2) we obtain

p(Ck|X1, X2, . . . , Xm)
p(Ck) ∝ (2π)−m2 e−

1
2

∑m

i=1
∆k
Xi·Xρi∏m

i=1 σ
k
Xi·Xρi

(3)

∆k
Xi·Xρi

is noted the Hotelling distance associated to
Xi in respect to Xρi and the value k of D.

B. Bayesian causal-based decomposition

Consider ∆k the Hotelling quadratic statistic associ-
ated to a multivariate variable X,X = [X1, . . . ,Xm]T .
∆k admits m! possible decompositions [41], [42], as a
sum of m independent orthogonal quadratic statistics,
and two types of decomposition can be distinguished.
For a given decomposition of the ∆k, if it exists a term
∆i·1,...,i−1 such that the set of variables X1, ...,Xi−1
includes at least one descendant of Xi, then this decom-
position is a Type A. The remaining ones are of Type B.
These latter retained as the more accurate as they con-
verge to the same decomposition of ∆k. It is then enough
to focus only on the Type B decomposition (alternative
to MYT), which involves the regression of the variable on
its causes [41]. This can be deduced from the relations of
dependencies between the networks’ variables and given
by the decomposition ∆k =

∑m
i=1 ∆k

Xi·Xρi
, which can

be deduced from equation (3). Therefore, without loss of
generality, we can write it as follows:

p(Ck|X1, X2, . . . , Xm) ∝ (2π)−m2 p(Ck) e− 1
2 ∆k∏m

i=1 σ
k
Xi·Xρi

(4)

where ∆k is a function of µk and Σk, the mean and co-
variance of the joint variable X in respect to the values
of D.

III. Decision rules

Statistical rules for fault detection and diagnosis, as
well as the identification of the variables responsible
for faulty operating conditions are developed. We pro-
pose a complete data-driven monitoring approach taking
advantage of a unified framework offered by Bayesian
models and dealing with known and unknown faults. To
our knowledge, this is the first attempt to meet such a
challenge.

In the following, the different rules to cope with causal
network’ decisions for fault detection, diagnosis, and root
cause identification are presented.



A. Fault detection
Early detection is necessary to avoid an undesirable

situation. Accurate detection is crucial also. Indeed, as
mentioned previously, the majority of BN-based fault
detection methods makes decisions without respecting
the false alarm rate. Here, we propose a detection rule in
the context of causal networks that respect a false alarm
rate.

Consider the quadratic term ∆NoC , which can be
deduced from the distribution of

∏m
i=1 p(Xi|ρ(Xi), Ck).

Its associated distribution is given by

CL∆NoC = (N + 1)(N − 1)
N(N −m− 1) Fα(1, N −m− 1) (5)

which is considered as its control limit for a given
significance level α. A system is considered in normal
operating conditions if ∆NoC is less than or equal to
its CL∆NoC . By developing the inequality, in respect of
X1, . . . , Xm, as below

∆NoC ≤ CL∆NoC (6)
m∑
i=1

∆NoC
Xi·Xρi

≤ CL∆NoC

1
(2π)m2 |ΣNoC |

e−
1
2

∑m

i=1
∆NoC
Xi·Xρi ≥ e− 1

2CL∆NoC

(2π)m2 |ΣNoC |

From (3) we can write

p(X1, . . . , Xm|NoC) ≥ p(X∗|NoC) (7)

The probabilistic rule to decide about the presence of
faulty operating conditions is then deduced and given by,
X1, . . . , Xm ∈ NoC

if p(NoC|X1, . . . , Xm) ≥ PL∆NoC
X1,...,Xm (8)

Where the probabilistic limit PL∆NoC
X1,...,Xm

, in respect
to (7), can be deduced as follows

PL∆NoC
X1,...,Xm

= τ · 1
1 +

∑K−1
j=1 e− 1

2 (ϕj−βj)
(9)

with

ϕj = ∆Cj/{NoC} −∆NOC , τ = 1
e− 1

2 (∆NOC−CL∆NOC ) ,

βj = 2 ln(ωj

∏m
i=1 σ

NoC
Xi·Xρi∏m

i=1 σ
Cj/{NoC}
Xi·Xρi

), ωj = p(Cj/{NoC})
p(NOC)

B. Fault diagnosis
Data-driven diagnosis is a classification problem. Each

operating condition is represented as a class (learned
from data or determined by an expert). In practice, it is
not evident to describe efficiently the process operating
conditions. Also, it is not always possible to identify the
exact number of faults that could influence or change the
process from its no-fault operating conditions. Then, one
can envision an unlocked supervised classification, where
a new class representing Unknown operation Conditions

(UoC) is added. This class covers unknown faults or
unknown normal conditions. This class would hold new
observations that are not classified into any of the known
classes. We introduce the following rule to take account
of UoC after fault detection:

If the Fault k with the highest posterior probability is
smaller than its corresponding probabilistic limit (which
can be obtained similarly to equation 9) therefore the
observation belongs to UoC class, otherwise it belongs
to Fault k.

It is possible to deal with multiple simultaneous faults
when information about the robustness or sensitivity of
X1, . . . , Xm for each fault is available. Such information
is not naturally or directly available in the data-driven
context. However, in the model-based context, faults are
isolated through their signature regarding the behaviors
of the generated residuals. These residuals are defined in
a way they are decoupled, which means that two faults
can not have the same signature [43]. We can extend the
detection rule to deal with multiple simultaneous faults
when such information is available.

C. Root cause identification
A suitable alternative to the MYT approach and their

updates is proposed next. The proposed rule is a root-
cause variable identification made entirely under a causal
network and without any pre-treatment. To identify the
root cause variable responsible for a deviation from NoC,
the posterior probability of the latest is compared to
different probabilistic limits made for each node of G.
So, for any variable Xi, if p(NoC|X1, X2, . . . , Xm) ≥
PL∆NoC

Xi·Xρi
then Xi /∈ NoC, where PL∆NoC

Xi·Xρi
is the

probabilistic limit associated to NoC to monitor Xi ·Xρi

and can be obtained following the development given
below.

Consider Γ the set of all combinations (Xi ·Xρi). Let’s
note γ one of these combinations, γ ∈ Γ, and Γ/{γ}
the remaining ones, φ ∈ Γ/{γ}. From the equivalence
between 3 and 4 we can write

∆NoC =
m∑
i=1

∆NoC
Xi·Xρi

= ∆NoC
γ

Γ/{γ}∑
∆NoC
φ (10)

Based on (10) we expand and develop the rule (6)
associated to the statistic ∆NoC

γ , as below

∆γ ≤ CL∆NoC
γ

e− 1
2 ∆NoC

γ e−
1
2

∑Γ/{γ}∆NoC
φ ≥ e−

1
2CL∆NoCγ e−

1
2

∑Γ/{γ}∆NoC
φ

e− 1
2 ∆NoC

≥ e−
1
2CL∆NoCγ e−

1
2

∑Γ/{γ}∆NoC
φ

p(X|NOC) ≥ p(X∗γ |NoC)p(XΓ/{γ}|NoC)
(11)

From (11), PL∆NoC
Xi·Xρi

is deduced and given by

PL∆NoC
Xi·Xρi

= e
1
2 (∆NOC−CL∆NoCγ

−
∑Γ/{γ}∆φ)

(1 +
∑K−1
j=1 e− 1

2 (ϕj−βj))
(12)



D. Summary
We propose several probabilistic limits that guarantee

statistical boundaries in respect to a significance level α.
The step-by-step procedure of the proposed method is
summarized below:
• (1) Collect process historical data as a training set

that includes all different operating conditions;
• (2) Learn the causal relationships between variables

(experts or data, or both);
• (3) Estimate the parameters and prior probability

of each operating condition;
• (4) For each monitored observation of X1, . . . , Xm,

at a given instant, compute its posterior probability
belonging to every operating condition class;

• (6) Further, deduce the probabilistic limit
PL∆Ck

X1,...,Xm
, for each k and i;

• (7) If the probabilistic index value
p(NOC|X1, . . . , Xm) is less than PL∆NoC

X1,...,Xm
,

the corresponding observation is labelled normal
operating condition. Otherwise, the sample is
potentially faulty and go to next step for further
fault diagnosis;

• (8) Discriminate between the faulty known operat-
ing conditions and decide to which operating con-
ditions the new observation belongs to (Faulty or
UoC);

• (9) similarly to (7), compare p(NOC|X1, . . . , Xm)
to the probabilistic limit PLNOC∆Xi·Xρi

associated to
each node Xi.

• (10) The variables whose probabilistic index value
is significantly high are considered responsible for
process abnormality.

• (11) investigate and update training data-sets for
further use.

IV. Application
TEP is a complex process and consists of 52 continuous

variables. The full process flow sheet is given in Figure
1. It consists of five main units: a reactor, a condenser,
a compressor, a separator, and a stripper. The entire
process consists of four gaseous reactants A, C, D, E,
and a small amount of inert B are sent into the reactor
to form liquid products F, G, and H. The process includes
12 manipulated variables and 41 measured variables,
among which the measured variables include 22 con-
tinuous process variables and 19 composition variables.
TEP’s data are issued from normal and faulty operating
conditions.

Tennessee Eastman Process (TEP) is a well-known
chemical process simulation [44]. It has been widely used
to verify the effectiveness of fault monitoring methods.

Four TEP’s faulty data-sets are considered in this
study: Faults 1, 4, 10, and 14. This set of faults includes
step changes, random variations, and sticking. Also, they
represent both stationary and non-stationary faulty pro-
cesses. Fault 1 is an uncontrollable fault when it occurs

Fig. 1. Tennessee Eastman Process

activates a non-stationary process. It consists of a step-
change in the A/C feed ratio in Stream 4. This causes
an increase in the C feed and a decrease in the A feed.
This fault affects XMEAS (4) and XMEAS (44) and gets
propagated to other variables. Faults 4 and 14 influence
the reactor. These operating conditions are hard to
identify since they overlap. They have in common the
root variables XMEAS(9) and XMV(51), which measure
the reactor temperature. However, they are different in
terms of type and nature. Step-changes for Fault 4 and
Fault 14 imply that the valve of reactor cooling water is
sticking, which affects the process dynamics, fluctuations
in the reactor temperature, and the reactor cooling water
flow. Fault 10 corresponds to a random variation in the
C feed temperature. It affects the stripper temperature
and therefore relates to XMEAS (18).

Causes Var. Effects var. Causes Var. Effects var.
XMEAS (1) {44} XMEAS (27) {33, 41}
XMEAS (3) {43} XMEAS (29) {20, 17}
XMEAS (4) {38, 45} XMEAS (30) {18}
XMEAS (5) {32} XMEAS (31) {34}
XMEAS (7) {13} XMEAS (33) {20}
XMEAS (9) {2, 51}. XMEAS (34) {30, 33}
XMEAS (10) {47} XMEAS (35) {31}
XMEAS (11) {20, 22} XMEAS (36) {34, 35}
XMEAS (13) {46} XMEAS (37) {4, 40}
XMEAS (15) {49} XMEAS (38) {20}
XMEAS (16) {7, 46} XMEAS (40) {19}
XMEAS (18) {38, 50, 11} XMV (42) {2, 9, 21}
XMEAS (19) {29} XMV (43) {32, 35}
XMEAS (21) {2, 16} XMV (46) {5, 20}
XMEAS (22) {14} XMV (47) {35}
XMEAS (23) {20, 29} XMV (48) {12}
XMEAS (24) {37} XMV (50) {19}
XMEAS (25) {11} XMV (51) {21}
XMEAS (26) {36} XMV (52) {22, 17}

TABLE I
The adjacency matrix describing the strength

relationships between variables

First, the structure of the causal network is learned.
The PC algorithm is used. It consists of a series of



statistical significance tests of conditional independence
(e.g. the Fisher’s z-transform for the estimation of partial
correlations). More details about the learning algorithms
structures are in [16], [15]. Second, to complete the
structure of the classifier, a discrete node D is added
and linked to all the network’s variables. The resulting
structure can be easily deduced from the adjacency ma-
trix presented in Table I, where the connection strength
relationships between variables are provided. The result-
ing graphical network is given in 2.
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Fig. 2. TEP’s causal network

To demonstrate the efficiency and ability of the pro-
posed approach, we assume each faulty operating condi-
tion once as unknown operating conditions. That means
we did not include such operating conditions in the
learning stage of the classifier. We create four different
scenarios (Sce.) in Table II. For each evaluation scenario,
the causal network’ uses 480 training samples of each
class to train and estimate its parameters.

Sce. Fault 1 Fault 4 Fault 10 Fault 14
non-stationary Step Variation Sticking

I X X X ×
NoC

II X X × X
III X × X X
IV × X X X

TABLE II
The studied scenarios, where Xand × holds for known

(part of the training set) and unknown fault, respectively

For each scenario, 800 observations from each of NoC,
known and unknown operating conditions testing sets
are presented to the network. First, fault detection is
performed. The posterior probability corresponding to
NoC of each sample is compared with its corresponding
probabilistic limit, we set α = 1% to control the overall
false alarm rate. When a fault is detected the remaining
steps of our approach are applied. The results of the fault
detection and diagnosis procedures are presented in the
confusion matrix presented in Table III.

Overall, the misdetection rate and the misclassifica-
tion of known and unknown faults are presented. The
proposed approach yields an excellent detection rate of
different types of fault. The causal network successfully

detects known and unknown faults. Regarding fault diag-
nosis, the approach discriminates well the various faults,
an excellent average rate of 91.04% is obtained. This
rate is the overall mean results of the discrimination
between the different combinations of three known faults
picked from the set composed of faults 1, 4, 10, and 14.
To each one of this combination, the remaining fault
is considered as unknown/undefined. Unknown faults
are also well diagnosed by the proposed approach. An
average diagnosis rate of 80.9%, which is an interesting
result for a causal network that is not build to deal with
data it wasn’t trained with. The rate is however slightly
lower than the one obtained by the known operating
conditions. It would have been better if the considered
faults do not overlap. The overall rates demonstrate the
ability of the causal network to correctly discriminate
between known and unknown faults.

True classes
Predic. classes ↓ Normal cdt. Known cdt. Unknown cdt.

Normal cdt. 93.6 5.6 0.78
Known cdt. 4.7 91.04 4.2

Unknown cdt. 4.7 14.3 80.9

TABLE III
The average classification rates %

Figure 3 shows the results of the identification pro-
cedure applied to the detected samples. It gives com-
parisons of the 52 variables in each scenario, regarding a
class among faults 1, 4, 10 and 14. It shows all candidates
either in known or unknown operating conditions. These
candidates are obtained by the network. A significance
level of α/m is considered following the Bonferroni cor-
rection [45].

Fault 1 shifts the system to uncontrollable operating
conditions due to the conflict generated between the
controller increasing the A feed flow in stream 1 in
reaction to the decrease in the same feed in the recycle
stream 5. This fault implies that XMEAS (4) and XMV
(44) are directly affected, which then spreads to other
parts. The fault identification results of our approach
are shown in Figure 3, where root cause candidates
stand out. Noticeably, five variables were appointed to
characterize fault 1, which are variables 4, 18, 19, 44
and 50. The strength connections given in Table I would
play as a second decision layer to reduce the number of
candidates. Variables 4 and 44, are directly validated. it
is not the case for variables 18, 19, and 50 as they share
causal relationships (see Figure 2). From the adjacency
matrix, it can be noticed a change in XMEAS (19) leads
to changes in the stripper temperature XMEAS (18)
and steam valve XMV (50). Therefore, the results of the
proposed approach are perfectly in line with the expected
results and the prior knowledge of the process.

The random variation in C feed, named Fault 10,
tends to increase the stripper steam flow, see 1. This
variation change has been well detected by the causal
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Fig. 3. Identification rates for Faults 1, 4, 10, and 14 in four
scenarios

network and their responsible candidates illustrated in
Figure 3. XMEAS (18) can be considered among the
main references to fault 10.

Regarding Fault 4 and Fault 14, they both influence
directly the reactor and they do share some candidates.
From figure 3 the root variables 9 and 51 are correctly
identified by the network. The variable XMEAS (51) is
diagnosed the most frequently, which is consistent with
the expectations that came with the descriptions of each
fault. The increase in the cooling water flow tends to de-
crease the effect of the reactor cooling water temperature
(towards normal operating conditions), which explains
the great impact of XMEAS (51) regarding XMEAS
(9). Both faults influence the reactor cooling water in-
let temperature and since no sensor is measuring the
inlet temperature, the value of the reactor temperature
XMEAS (9) and the reactor cooling water flow XMEAS
(51) can be used as references for fault 4.

Besides, other variables are also identified as candi-
dates to explain fault 14 (whether simultaneously or
not): XMEAS (21) and XMV (42). This actually can
be explained by the propagation path deduced from the
connection strength relationships between variables (see
Figure 2). The variable XMEAS (9) dilutes its effect by
spreading it to its descendant. Thus, under abnormal
conditions, the deviation of XMEAS (9) from its normal
behavior is spread through causality, thereby affecting
its child node XMEAS (42). Variable XMEAS (21) plays
a major role with regards to fault 14. Indeed, a striking
in the reactor cooling water valve may cause as well a
change in the reactor cooling water outlet temperature.
Furthermore, it leads to a shift in the reactor tempera-
ture and its cooling water flow. This can be seen clearly
from the causal network. One can deduce XMEAS (9)
and XMEAS (21) as a reference for fault 14.

Here, both stationary and non-stationary faulty pro-
cesses have been used to demonstrate the proposed
approach. Faults with different natures, step, variation,
and striking, have been introduced to show the feasibil-
ity of the proposed scheme. Therefore, this TEP case
study fairly demonstrates the potential and the ability
of this approach to monitor complex processes dealing
with multivariate variables. It also shows how root cause
variables tone down their effect on their descendants, but
not the other way around. This confirms the interest of
using a causal network to understand the propagation
of one variable on other variables and also to locate the
root-cause faulty variables rather than just identifying
the variables contributing to significant indices.

V. CONCLUSIONS

In this paper, we presented a complete monitoring sys-
tem that integrates fault detection and diagnosis as well
as root cause identification for multivariate processes.
The proposed monitoring approach (1) detects faults
with respect to a false alarm rate; (2) identifies which
variables are responsible for the faulty observations; and
(3) diagnoses known and unknown faults. Four scenarios
were evaluated to assess the performance of the proposed
method. The results of detection and diagnosis are en-
couraging, and the identification of root cause results in
variables that are consistent with the mechanism of the
TEP.

Multivariate systems are the product of the interaction
of their different elements and the behavior of each of
them. It is then paramount to use this information to
enhance decision making. The new approach follows this
direction. Thus, it merits further investigation. It may be
useful for the study of this and other related fields. Future
directions would aim to investigate means to capture
causality, extend the proposal to deal with multi-modal
data and enhance decision making by an ensemble of
causal models.
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