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Abstract

We present two algorithms designed to learn a pattern of correspondence between two
data sets in situations where it is desirable to match elements that exhibit an affine rela-
tionship. In the motivating case study, the challenge is to better understand micro-RNA
(miRNA) regulation in the striatum of Huntington’s disease (HD) model mice. The two
data sets contain miRNA and messenger-RNA (mRNA) data, respectively, each data point
consisting in a multi-dimensional profile. The biological hypothesis is that if a miRNA in-
duces the degradation of a target mRNA or blocks its translation into proteins, or both,
then the profile of the former should be similar to minus the profile of the latter (a particular
form of affine relationship).

The algorithms unfold in two stages. During the first stage, an optimal transport plan P
and an optimal affine transformation are learned, using the Sinkhorn-Knopp algorithm and a
mini-batch gradient descent. During the second stage, P is exploited to derive either several
co-clusters or several sets of matched elements.

A simulation study illustrates how the algorithms work and perform. A brief summary
of the real data application in the motivating case-study further illustrates the applicability
and interest of the algorithms.

Keywords. Co-clustering; omics data; Huntington’s disease; matching; optimal trans-
port; Sinkhorn algorithm; Sinkhorn loss.

1 Introduction

The analysis of numerous omics data is a challenging task in biological research [4] and disease

research [11, 14]. In disease research, omics data are increasingly available for the analysis of

molecular pathology. This is notably illustrated by research on Huntington’s Disease (HD):
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micro-RNA (miRNA), messenger-RNA (mRNA), protein data collectively quantifying several

layers of molecular regulation in the brain of HD model knock-in mice [11, 12] now compose one

of the largest data set available to date to understand how neurodegenerative processes may

work on a systems level.

Encouraged by the promising findings of [15], our ultimate goal is to shed light on the

interaction between mRNAs and miRNAs based on data collected in the striatum (a brain region)

of HD model knock-in mice [11, 12]. Each data point takes the form of multi-dimensional profile.

The biological hypothesis is that if a miRNA induces the degradation of a target mRNA or blocks

its translation into proteins, or both, then the profile of the former should be similar to minus

the profile of the latter (a particular form of affine relationship). In order to identify groups

of mRNAs and miRNAs that interact, we develop a co-clustering algorithm and a matching

algorithm based on optimal transport [16], spectral and block co-clustering, and a matching

procedure tailored to our needs.

The present article focuses on the methodological developments. A separate article (in

preparation) will show and interpret the complete results of the data analysis using the tools

developed here.

Spectral co-clustering [6] and block clustering [5, 9] are two ways among many others to

carry out co-clustering, an unsupervised learning task to cluster simultaneously the rows and

columns of a matrix in order to obtain homogeneous blocks. There are many efficient approaches

to solving the problem, often characterized as model-based or metric-based methods [18]. We

derive the dissimilarity matrix to co-cluster from the data by optimal transport.

Section 2 describes the data we use. Section 3 presents a modicum of optimal transport

theory. Section 4 introduces our algorithms. Section 5 evaluates the performances of the algo-

rithms in various simulation settings. Section 6 illustrates the real data application. Section 7

closes the study on a discussion.
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2 Data

The data analyzed herein cover RNA-seq data obtained in the striatum of the allelic series of

HD knock-in mice (Q20, Q80, Q92, Q111, Q140, Q175) at 2-month, 6-month and 10-month of

age. After preprocessing [15, Methods section], the final data set consists of M = 13, 616 mRNA

profiles, X := {x1, . . . , xM} ⊂ Rd, and in N = 1, 143 miRNA profiles, Y := {y1, . . . , yN} ⊂ Rd

with d = 15.

Formally, we look for mutually disjoint I1, . . . , IR subsets of JMK := {1, . . . ,M} and mutually

disjoint J1, . . . , JR subsets of JNK such that, for all r ∈ JRK, each xm with m ∈ Ir interacts with

every yn with n ∈ Jr. Next, we describe what we mean by interacting.

It is known that the miRNAs and their target mRNAs exhibit a many-to-many mirroring

relationship. We conduct our analysis under the biological hypothesis that if a miRNA induces

the degradation of a target mRNA or blocks its translation into proteins, or both, then the profile

yn of the former should be similar to minus the profile xm of the latter. However, we acknowledge

that the actual mirroring relationships can be more or less acute (e.g., due to threshold effects,

or to multiple miRNAs targeting the same mRNA, or to a single miRNA targeting several

mRNAs). Therefore, our algorithms will learn from the data a relevant transformation close to

minus identity but not necessarily equal to it.

Figure 1 exhibits two profiles xm and yn that showcase a mirrored similarity. The correspond-

ing miRNA and mRNA, Mir20b (which may inhibit cerebral ischemia-induced inflammation in

rats [20]) and the Aryl-Hydrocarbon Receptor Repressor (Ahrr), are believed to interact in the

striatum of HD model knock-in mice [15].
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Figure 1: Left: profile yn of a miRNA (Mir20b). Right: profile xm of a mRNA (Ahrr). It is
believed that Mir20b targets Ahrr.

3 Elements of optimal transport

Let Ω := {ω ∈ (R+)M |
∑

m∈JMK ωm = 1} be the (M −1)-dimensional simplex and ω̄ := M−11M ,

where 1M ∈ RM is the vector with all its entries equal to 1. For any ω ∈ Ω, define

Π(ω) := {P ∈ (R+)M×N |P1N = ω, P>1M = N−11N}

and let µωX :=
∑

m∈JMK ωmδxm , νY := N−1
∑

n∈JNK δyn be the ω-weighted empirical measure

attached to X and the empirical measure attached to Y . An element P of Π(ω) represents a

joint law on X × Y with marginals µωX and νY .

The celebrated Monge-Kantorovich problem [16, Chapter 2] consists in finding a joint law

over X × Y with marginals µω̄X and νY that minimizes the expected cost of transport with

respect to some cost function c : X × Y → R+. We focus on c given by c(x, y) := ‖x − y‖22

(the squared Euclidean norm in Rd). Specifically, denoting CX,Y ∈ RM×N the cost matrix

given by (CX,Y )mn := c(xm, yn) for each (m,n) ∈ JMK × JNK, the problem consists in solv-

ing minP∈Π(ω̄)〈CX,Y , P 〉F where 〈CX,Y , P 〉F :=
∑

(m,n)∈JMK×JNK(CX,Y )mnPmn is the P -specific

expected cost of transport from X to Y .

It is well known that it is very rewarding from a computational viewpoint to consider a
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regularized version of the above problem [16, Chapter 4]. The penalty term is proportional to

the discretized entropy of P , that is, to E(P ) := −
∑

(m,n)∈JMK×JNK] Pmn(logPmn − 1). The

regularized problem (presented here for any ω ∈ Ω beyond the case ω = ω̄) consists, for some

user-supplied γ > 0, in finding Pγ that solves

Wγ (µωX , νY ) := min
P∈Π(ω)

{〈CX,Y , P 〉F − γE(P )} . (1)

One of the advantages of entropic regularization is that one can solve (1) efficiently using the

Sinkhorn-Knopp matrix scaling algorithm.

Finally, following [8], we useWγ to define the so called Sinkhorn loss between µωX (any ω ∈ Ω)

and νY as

W̄γ (µωX , νY ) := 2Wγ (µωX , νY )−Wγ (µωX , µ
ω
X)−Wγ (νY , νY ) .

This loss interpolates between W0 (µωX , νY ) and the maximum mean discrepancy of µωX relative

to νY [8, Theorem 1]. Paraphrasing the abstract of [8], the interpolation allows to find “a sweet

spot” leveraging the geometry of optimal transport and the favorable high-dimensional sample

complexity of maximum mean discrepancy, which comes with unbiased gradient estimates.

4 Optimal transport-based machine learning

4.1 Description of the algorithm

We introduce a parametric model Θ consisting of affine mappings θ : Rd → Rd of the form

x 7→ θ(x) = θ1x + θ2, where θ1 ∈ Rd×d and θ2 ∈ Rd. The formal definition of Θ is given in

Appendix A. Each θ ∈ Θ is a candidate to formalize the aforementioned mirroring relationship.

The set Θ imposes constraints on the matrices θ1, in particular that their diagonals are made of

negative values. Of course, minus identity belongs to Θ. The parametrization is identifiable, in

the sense that θ = θ′ implies (θ1, θ2) = (θ′1, θ
′
2). It is noteworthy that any identifiable, regular

model Θ could be used. We focus on Θ as defined in Appendix A because of the application
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that we consider in Section 6 (and in Section 5).

By analogy with Section 3 we introduce, for any θ ∈ Θ, ω ∈ Ω and γ > 0, θ(X) :=

{θ(x1), . . . , θ(xM )} the image of X by θ; the ω-weighted empirical measure attached to θ(X),

µωθ(X) :=
∑

m∈JMK ωmδθ(xm); the cost matrix Cθ(X),Y given by (Cθ(X),Y )mn := c(θ(xm), yn) for

each (m,n) ∈ JMK× JNK; and

Wγ

(
µωθ(X), νY

)
= min

P∈Π(ω)

{
〈Cθ(X),Y , P 〉F − γE(P )

}
(2)

where 〈Cθ(X),Y , P 〉F :=
∑

(m,n)∈JMK×JNK(Cθ(X),Y )mnPmn is the P -specific expected cost of trans-

port from θ(X) to Y .

Fix arbitrarily ω ∈ Ω. The first program that we introduce is the ω-specific program

min
θ∈Θ
W̄γ

(
µωθ(X), νY

)
, (3)

where we are interested in the minimizer θ̂ that solves (3) and in the optimal joint matrix

P̂ ∈ Π(ω) that solves

min
P∈Π(ω)

{
〈Cθ̂(X),Y , P 〉F − γE(P )

}
.

In words, we look for an ω-specific optimal mirroring function θ̂ and its ω-specific optimal

transport plan P̂ .

How to choose ω? We decide to optimize with respect to ω as well. This additional opti-

mization is relevant because we do not expect to associate a yn to every xm eventually at the

co-clustering stage. So, our main program is

min
ω∈Ω

min
θ∈Θ
W̄γ

(
µωθ(X), νY

)
, (4)

where we are interested in the minimizer (ω̂, θ̂) and in the optimal matrix P̂ ∈ Π(ω̂) that solves

min
P∈Π(ω̂)

{
〈Cθ̂(X),Y , P 〉F − γE(P )

}
.
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We propose to solve (4) iteratively by updating ω and then θ. At round t, given ωt, we make

one step of mini-batch gradient descent to derive θt+1 from θt (here, we notably rely on the

Sinkhorn-Knopp algorithm). Given θt+1, ωt+1 is chosen proportional to the vector in (R+)M

whose mth component equals h−1
∑

n∈JNK ϕ((yn−θt+1(xm))/h) where ϕ is the standard normal

density and h is the arithmetic mean of the c(yn, yn′) for all n 6= n′ ∈ JNK. Eventually, once the

final round T is completed, we compute P̃ ∈ Π(ωT ) that solves

min
P∈Π(ωT )

{
〈CθT (X),Y , P 〉F − γE(P )

}
.

(again, we rely on the Sinkhorn-Knopp algorithm).

The algorithm is summarized in Procedure 1. In light of [2, Section 1.3, page 25], we

inject problem-specific knowledge onto two of the three main components of the transportation

problem: the representation spaces (via the mapping θ) and the marginal constraints (via the

weight ω), leaving aside the cost function. Furthermore, we resort to mini-batch gradient descent

because the algorithmic complexity prevents the direct computation using the whole data set.

A theoretical analysis of this practice is proposed in [7].

We can now exploit P̃ so as to derive relevant associations between mRNAs and miRNAs.

We propose two approaches. On the one hand, the first approach outputs bona fide co-clusters.

We expect that the co-clusters can associate many mRNAs with many miRNAs, thus making

it difficult to interpret and analyze the results. On the other hand, the second approach rather

matches each mRNA with at most k miRNAs and each miRNA with at most k′ mRNAs (k and

k′ are user-supplied integers). Details follow.

4.1.1 Co-clustering.

To carry out the co-clustering task once P̃ has been derived, we propose to rely either on spectral

co-clustering (we will use the acronym SCC) [6], applying it once or twice, or co-clustering

based on latent block models [9]. Of course, any other co-clustering algorithm could be used as

well. Specifically, we develop the following algorithms (the acronym WTOT stands for weighted
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transformation optimal transport).

WTOT-SCC1. Algorithm WTOT-SCC1 applies SCC once to build bona fide co-clusters based

on P̃ . It is required to provide a number of clusters. We rely on a criterion involving graph

modularity to learn from the data a relevant number of clusters [1, Sections 2 and 4].

In our simulation study, we also consider algorithm WTOT-SCC1∗, an oracular version of

WTOT-SCC1 that benefits from relying on the true number of clusters. This allows to

assess how relevant is the learned number of clusters in WTOT-SCC1.

WTOT-SCC2. Algorithm WTOT-SCC2 applies SCC twice to build bona fide co-clusters based

on P̃ . It proceeds in three successive steps.

• In step 1, WTOT-SCC2 applies SCC a first time to derive an initial co-clustering. A

relevant number of co-clusters is learnt as in WTOT-SCC1.

• In step 2, WTOT-SCC2 selects and removes some rows and columns corresponding

to mRNAs and miRNAs that are deemed irrelevant. The selection is based on a

numerical criterion computed from P̃ . In our simulation study (Section 5), all rows

and columns that correspond to diagonal blocks with a variance larger than two

times the overall variance of P̃ are selected and removed. In the real data application

(Section 6), we implement and use a different procedure.

• In step 3, WTOT-SCC2 applies SCC a second time, the relevant number of co-clusters

being learnt as in WTOT-SCC1.

In our simulation study, we also consider algorithm WTOT-SCC2∗, an oracular version of

WTOT-SCC2 that is provided the true number of clusters for its third step. This allows to

assess how relevant is the sub-procedure to learn the numbers of clusters in WTOT-SCC2.

WTOT-BC. Algorithm WTOT-BC applies the so called block clustering algorithm to build

bona fide co-clusters based on P̃ . It is required to provide the row- and column-specific
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numbers of clusters. We rely on an integrated completed likelihood criterion [5] to learn

relevant values from the data.

The co-clusters obtained via WTOT-SCC1, WTOT-SCC2 or WTOT-BC should reveal the

interplay between the (remaining, as far as WTOT-SCC2 is concerned) mRNAs and miRNAs

in HD.

4.1.2 Matching.

The larger P̃mn is, the more we are encouraged to believe that the profiles xm and yn reveal a

strong relationship between the mth mRNA and the nth miRNA. This simple rule prompts the

following matching procedure applied once P̃ has been derived.

WTOT-matching. Fix two integers k, k′ ≥ 1 and let τ̃ be the quantile of order q of all the

entries of P̃ . For every m ∈ JMK and n ∈ JNK, we introduce

N 0
m :=

{
n ∈ JNK : P̃mn ∈ {P̃m(1), . . . , P̃m(k)} and P̃mn ≥ τ̃

}
,

M0
n :=

{
m ∈ JMK : P̃mn ∈ {P̃(1)n, . . . , P̃(k′)n} and P̃mn ≥ τ̃

}

where P̃m(1), . . . , P̃m(k) are the k largest values among P̃m1, . . . , P̃mN and P̃(1)n, . . . , P̃(k′)m

are the k′ largest values among P̃1n, . . . , P̃Mn. For instance, N 0
m identifies the miRNAs

that are the k more likely to have a strong relationship with the mth mRNA. However,

this does not qualify them as relevant matches yet. In order to keep only matches that are

really relevant, we also introduce, for each m ∈ JMK and n ∈ JNK,

Nm := N 0
m ∩ {n ∈ JNK : m ∈M0

n},

Mn :=M0
n ∩ {m ∈ JMK : n ∈ N 0

m}.

Algorithm WTOT-matching outputs the collections {Nm : m ∈ JMK} and {Mn : n ∈

JNK}.
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Now if, for instance, n ∈ Nm then yn is among the k miRNA profiles upon which P̃ puts more

mass when it “transports” xm onto Y and xm is among the k′ mRNA profiles upon which P̃

puts more mass when it “transports” yn onto X.

Note that we expect that some Nm and Mn will be empty, depending on k and k′. The

mRNAs and miRNAs worthy of interest are those for which Nm and Mn are not empty. The

integers k and k′ should be chosen relatively small, to make their interpretation and analysis

feasible, but not too small because otherwise few matchings will be made.

In the simulation study, we use k = k′ between 2 and 200, depending on the simulation

scheme. Moreover, we choose q = 50% so that τ̃ is the median of the entries of P̃ .

4.2 Implementation of the method

Our code is written in python and will be made available soon. We adapt the Sinkhorn algorithm

implemented by Aude Genevay and available here. The stochastic gradient descents relies on

the machine learning framework pytorch. We use the implementation of SCC available in the

sklearn python module. To learn a relevant number of clusters, we rely on the coclust python

module. Finally, we rely on the blockcluster R package to carry out block clustering.

Our algorithm bears a similarity to the one developed in [10]. The main differences are (i)

our use of the parametric model Θ and weights ω, (ii) the fact that we apply SCC or block

clustering to the approximation of the optimal transport matrix P̃ . Our algorithm also bears a

similarity to [19], a fast and certifiable point cloud registration algorithm. We plan to study the

similarities and differences closely.

5 Simulation study

To assess the performances of the algorithm described in Section 4.1, we conduct a simulation

study in three parts. As we go on, the task gets more difficult. In all cases, the laws of the

synthetic observations are mixtures of Gaussian laws. In Section 5.4, the weights of the mixtures

and parameters of the Gaussian laws are chosen by us. Moreover, the two mixtures (to simulate
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X and Y ) share the same weights and induce a perfect mirroring relationship (details below),

thus making the co-clustering task less difficult. In Section 5.5, the weights of the mixtures and

parameters of the Gaussian laws are randomly generated. Moreover, the two mixtures do not

share the same weights and do not induce a perfect mirroring relationship anymore, so that

the co-clustering task is much more difficult. Finally, in Section 5.6, we use plus or minus real,

randomly chosen miRNA profiles and 0d as means of the Gaussian laws to simulate X and Y ,

in such a way that there is no perfect mirroring relationship. We think that the corresponding

co-clustering task is the most difficult of the three.

Section 5.1 briefly introduces two competing algorithms to identify matchings [10]. Sec-

tion 5.2 lists all the algorithms that compete in the simulation study and Section 5.3 presents

the measure of discrepancy between two co-clusterings and the matching criteria that we rely

on to assess how well the algorithms perform. Sections 5.4, 5.5 and 5.6 present in turn the

data-generating mechanisms and report the results in terms of co-clustering and matching per-

formances.

5.1 Two “Gromov-Wasserstein co-clustering” algorithms

We compare our algorithms with two co-clustering algorithms adapted from [10]. For self-

containedness, we summarize here how these algorithms work.

The first step of both algorithms consists in computing the similarity matrices KX ∈

(R+)M×M and KY ∈ (R+)N×N given by

(KX)mm′ := exp

{
−‖xm − xm

′‖22
2`2X

}
(m,m′ ∈ JMK),

(KY )nn′ := exp

{
−‖yn − yn

′‖22
2`2Y

}
(n, n′ ∈ JNK)

where `X (respectively, `Y ) is the mean of all pairwise Euclidean distances between elements of

X (respectively, of Y ). The similarity matrices KX and KY now represent X and Y through

the lense of the so called radial basis function kernel.
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For any integers a, b ≥ 1 and pair of matrices A ∈ Ra×a and B ∈ Rb×b, define

Πa,b :=
{
P ∈ (R+)a×b|P1b = a−11a, P

>1a = b11b

}
,

〈[A,B], [P, P ]〉F :=
∑

i,k∈JaK,j,`∈JbK

(Aik −Bj`)2PijPk` (P ∈ Πa,b),

GWγ(A,B) := min
P∈Πa,b

{〈[A,B], [P, P ]〉F − γE(P ) (5)

where E(P ) := −
∑

(i,j)∈JaK×JbK Pij(logPij − 1). The quantity GWγ(A,B) is known in the litera-

ture as an entropic Gromov-Wasserstein discrepancy between A and B. It can be used to define

an entropic Gromov-Wasserstein barycenter of A and B and its barycenter transport matrices.

Specifically, setting s = b1
2(a+b)c (one choice among many), (Γ̂, P̂A, P̂B) ∈ (R+)s×s×Πs,a×Πs,b

that solves

min
Γ,PA,PB

1

2

{(
〈[Γ, A], [PA, PA]〉F − γE(PA)

)
+
(
〈[Γ, B], [PB, PB]〉F − γE(PB)

)}
(6)

(where (Γ, PA, PB) ranges over (R+)s×s×Πs,a×Πs,b) can be interpreted as a barycenter between

A and B (Γ̂) and the optimal transport matrices between Γ̂ and A (P̂A) and between Γ̂ and B

(P̂B).

The second step of the algorithms consists either in solving numerically (5) with (A,B) =

(KX ,KY ), yielding Q̃, or in solving numerically (6) with (A,B) = (KX ,KY ), yielding in particu-

lar the transport matrices Q̃X and Q̃Y . We call CCOT-GWD and CCOT-GWB the correspond-

ing algorithms. In both cases, the Sinkhorn-Knopp algorithm is used and provides solutions that

decompose as

Q̃ = diag(ρ)ξ diag(ρ′),

Q̃X = diag(ρX)ξX diag(ρ′X),

Q̃Y = diag(ρY )ξY diag(ρ′Y ),
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for some ρ, ρX ∈ RM , ρ′, ρ′Y ∈ RN , ρX , ρY ∈ Rs and ξ ∈ RM×N , ξX ∈ Rs×M , ξY ∈ Rs×N [17].

The third and last step builds upon either (ρ, ρ′) or (ρ′X , ρ
′
Y ) to derive partitions of X and

Y , by detecting “jumps” along the vectors. The two partitions finally yield a co-clustering.

5.2 Listing all competing algorithms

We run and compare algorithms WTOT-SCC1, WTOT-SCC2 (and their oracular counterparts

WTOT-SCC1∗, WTOT-SCC2∗), WTOT-BC on the one hand (see Sections 4.1.1) and CCOT-

GWD and CCOT-GWB on the other hand (see Section 5.1). In addition, we also run algorithm

WTOT-matching (see Section 4.1.2).

In view of Algorithm 1, M̃ and Ñ equal approximately M/2 and N/2 respectively, (η, γ0) =

(1, 0) (no decay), T = 500, and the initial mapping θ0 is drawn randomly.

5.3 Assessing performances

A measure of discrepancy between two co-clusterings. In order to assess the quality

of the co-clusterings that we derive, and to compare performances, we propose to rely on a

commonly used measure of discrepancy between two co-clusterings. Its definition extends that

of a measure of discrepancy between partitions that we first present.

Let z and z′ be two partitions of the set JMK into K components, taking the form of matrices

z = (zmk)m∈JMK,k∈JKK and z′ = (z′mk)m∈JMK,k∈JKK with convention zmk = 1 (respectively, z′mk =

1) if m belongs to component k of z (respectively, z′) and 0 otherwise. The corresponding

confusion matrix C(z, z′) = (ck`)k,`∈JKK is given by ck` :=
∑

m∈JMK zmkz
′
m` (every k, ` ∈ JKK).

Suppose that the labels of the partitions z and z′ are such that

Tr(C(z, z′)) = max
σ∈ΣK

Tr(C(z, (z′mσ(k))m∈JMK,k∈JKK)),

13



where ΣK is the set of permutations of the elements of JKK. Then the proportion

δ(z, z′) := 1− 1

M

∑
m∈JMK,k∈JKK

zmkz
′
mk (7)

is a natural measure of discrepancy between z and z′. As suggested earlier, the measure can be

extended to compare pairs of partitions.

Consider now (z, w) and (z′, w′) two pairs of partitions, z and z′ partitioning JMK into K

components, w and w′ partitioning JNK into L components. We represent (z, w) and (z′, w′)

with

u = (umnk`)m∈JMK,n∈JNK,k∈JKK,`∈JLK

and

u′ = (u′mnk`)m∈JMK,n∈JNK,k∈JKK,`∈JLK

where umnk` := zmk × wn` and u′mnk` := z′mk × w′n` (for every m ∈ JMK, n ∈ JNK, k ∈ JKK, ` ∈

JLK), supposing again that the labels of the partitions z, z′ on the one hand and w, w′ on

the other hand maximize the traces of the confusion matrices C(z, z′) and C(w,w′) as above

(then two pairs of partitions define without ambiguity a co-clustering). By analogy with (7),

the proportion

∆((z, w), (z′, w′)) := 1− 1

KL

∑
m∈JMK,n∈JNK,k∈JKK,`∈JLK

umnk`u
′
mnk` (8)

is a measure of discrepancy between (z, w) and (z′, w′). It can be shown that

∆((z, w), (z′, w′)) = δ(z, z′) + δ(w,w′)− δ(z, z′)× δ(w,w′). (9)

In the rest of this section we report means and standard deviations, computed across 30

independent replications of each analysis, of the above measure of discrepancy between the

derived partition/co-clustering and the true one.
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Matching criteria. Set arbitrarily m ∈ JMK and suppose that we have derived the subset

Nm ⊂ JNK that matches xm to {yn : n ∈ Nm}. Suppose moreover that in reality xm is matched

to {yn : n ∈ N ?
m} for some N ?

m ⊂ JNK. We propose to use three real-valued criteria to compare

Nm with N ?
m.

Let TPm := card(Nm ∩ N ?
m), FPm := card(Nm ∩ (N ?

m)c), TNm := card((Nm)c ∩ (N ?
m)c),

FNm := card((Nm)c ∩N ?
m) be the numbers of true positives, false positives, true negatives and

false negatives, respectively. The so called m-specific

• precision: TPm/(TPm + FPm),

• sensitivity: TPm/(TPm + FNm),

• specificity: TNm/(TNm + FPm)

quantify how similar are Nm and N ?
m, larger values indicating better concordance.

In the rest of this section we report means and standard deviations, computed across 30

independent replications of each analysis, of the average of the m-specific precision, sensitivity

and specificity. We also report means and standard deviations, computed across the same 30

independent replications of each analysis, of

k̃r :=

∑
m∈JMK card(Nm)

card({m ∈ JMK : Nm 6= ∅})
,

k̃c :=

∑
n∈JNK card(Mn)

card({n ∈ JNK :Mn 6= ∅})

the row- and column-specific averages of the cardinalities of the sets Nm and Mn that are not

empty.

5.4 First simulation study

Simulation scheme. For four different choices of the hyperparametersM ≥ 200, N ≥ 200,K ≥

2, d ≥ 2, µ1, . . . , µK ∈ Rd, σ ∈ R∗+, α ∈ (R+)K such that
∑

k∈JKK αk = 1, we sample indepen-
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dently x1, . . . , xM from the mixture of Gaussian laws

∑
k∈JKK

αkN(µk, σ
2Idd) (10)

and y1, . . . , yN from ∑
k∈JKK

αkN(−µk, σ2Idd). (11)

One way to sample x from the mixture (10) consists in sampling a latent label u in JKK

from the multinomial law with parameter (1;α1, . . . , αK) then in sampling x from the Gaussian

law N(µu, σ
2Idd). Similarly, sampling y from the mixture (11) can be carried out by sampling a

latent label v in JKK from the multinomial law with parameter (1;α1, . . . , αK) then by sampling

y from the Gaussian law N(−µv, σ2Idd). We think of x and y as having a mirrored relationship

if u = v. In this light, the challenge that we tackle consists in finding such relationships without

having access to the latent labels.

Table 1 describes the four configurations that we investigate. Note that configuration A2

is more difficult to deal with than A1 because (i) the weights in α are balanced in the latter

and unbalanced in the former, and (ii) because the variance σ2 is smaller in A1 than in A2.

Moreover, configurations A3 and A4 are more challenging than A2 because there is K = 4

components in the Gaussian mixture under A3 and A4 and K = 3 components under A2.

configuration (M,N) K µ1, . . . , µK σ2 α

A1 (200, 200) 3

4.0
0.5
1.5

 ,

1.8
4.5
1.1

 ,

1.5
1.5
5.5

 0.10 (1/3, 1/3, 1/3)

A2 (300, 300) 3

4.0
0.5
1.5

 ,

1.8
4.5
5.1

 ,

3.5
1.5
5.5

 0.15 (0.2, 0.3, 0.5)

A3 (400, 300) 4

(
4.0
0.5

)
,

(
0.5
3.5

)
,

(
7.5
7.8

)
,

(
0.5
0.5

)
0.20 (0.4, 0.2, 0.2, 0.2)

A4 (300, 300) 4

(
4.0
0.5

)
,

(
0.5
3.5

)
,

(
7.5
7.8

)
,

(
0.5
0.5

)
0.10 (0.5, 0.2, 0.1, 0.2)

Table 1: Four different configurations for the first simulation scheme. Configuration A1 is less
challenging than A2 which is itself less challenging than A3 and A4.
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Results. Thirty times, independently, we simulated synthetic data sets X and Y under the

simulation scheme described above, then we applied the various algorithms as presented in

Section 5.2. We summarize the results in Tables 4, 5, and 6. Table 4 summarizes the results

of the seven algorithms listed in Section 5.2 that rely on bona fide co-clustering algorithms

(see Section 4.1.1), that is, of our algorithms WTOT-SCC1∗, WTOT-SCC1, WTOT-SCC2∗,

WTOT-SCC2, WTOT-BC∗ and of algorithms CCOT-GWD and CCOT-GWB. As for Tables 5

and 6, they summarize the results of our algorithm that relies on matching (see Section 4.1.2).

Table 4. Except in configuration A1, where they perform equally well, our algorithms WTOT-

SCC1, WTOT-SCC2 outperform their competitors CCOT-GWD and CCOT-GWB.

Recall that WTOT-SCC1 and WTOT-SCC2 learn the number of co-clusters. When they

underestimate it, they pay a high price, partly explaining why the standard deviations

are rather large. In order to assess how well they work relative to their counterparts

which benefit from knowing in advance the true number of co-clusters, we can compare

their measures of performance to those of algorithms WTOT-SCC1∗ and WTOT-SCC2∗.

In configurations A1 and A2, algorithms WTOT-SCC1, WTOT-SCC2 perform almost as

well as WTOT-SCC1∗ and WTOT-SCC2∗, respectively. In configuration A3, they are

clearly outperformed. In configuration A4, algorithm WTOT-SCC1 performs better in

average but not in standard deviation.

Finally, we note that algorithm WTOT-BC∗ outperforms all our other algorithms. Un-

fortunately, its counterpart that learns the number of co-clusters performs poorly (results

not shown).

Tables 5 and 6. Table 5 illustrates the influence of k = k′ on the performances of algorithm

WTOT-matching. In configuration A1, specificity is not impacted much by the value

of k = k′, whereas precision decreases and sensitivity increases as k = k′ grows. More

specifically, precision does not change much when one goes from k = k′ = 10 to k = k′ = 75

but it drops for larger values of k = k′. As for sensitivity, it increases dramatically when one
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goes from k = k′ = 10 to k = k′ = 75 and slightly for higher values of k = k′. Furthermore

we note that, in configuration A1, when k = k′ equal either 65 or 75 and are thus closest

to Nα` = Mα` ≈ 67, k̃r is close to 67 and precision, sensitivity and specificity are quite

satisfying. In configuration A4 (as in configuration A1), specificity is not impacted much

by the value of k = k′; on the contrary, precision decreases and sensitivity increases steadily

as k = k′ grows. The best performances are achieved for k = k′ = 95 and k = k′ = 150,

that is, when k = k′ get closer to M maxi≤4{αi} = N maxi≤4{αi}. As emphasized earlier,

deriving relevant matchings is more difficult in configuration A4 than in configuration A1

because the weights given in parameter α are unbalanced in the former and balanced in

the latter.

Table 6 summarizes the results of WTOT-matching in all configurations for a specific

choice of k = k′ in terms of the row- and column-specific averages k̃r and k̃c, precision,

sensitivity and specificity. In each configuration, we chose the value of k = k′ among

many retrospectively, so that the overall performance (in terms of precision, sensitivity

and specificity) is good. The left-hand-side (m-specific) and right-hand-side (n-specific)

tables in Table 6 are very similar. This does not come as a surprise because the first

simulation scheme imposes symmetry.

5.5 Second simulation study

Simulation scheme. The second simulation scheme also relies on mixtures of Gaussian laws,

but the means and weights are generated randomly from a Gaussian determinantal point process

(DPP) for the former and from a Dirichlet law for the latter. More specifically, given the

hyperparameters M ≥ 200, N ≥ 200,K ≥ L ≥ 3, σ ∈ R∗+,

1. we sample µ1, . . . , µK from a Gaussian DPP on [0, 1]2 with a kernel proportional to x 7→

exp(−‖x/0.05‖22) conditionally on obtaining exactly K points [13, 3];

2. independently, we sample α ∈ (R+)K and β ∈ (R+)L from the Dirichlet laws with param-

18



eters 71K and 71L;

3. we sample independently x1, . . . , xM from the mixture of Gaussian laws

∑
k∈JKK

αkN(µk, σ
2Id2)

and y1, . . . , yN from ∑
k∈JLK

βkN(−µk, σ2Id2).

We use a DPP to generate µ1, . . . , µK to avoid the arbitrary choice of the mean parameters in

such a way that the randomly picked µ1, . . . , µK are dispersed in [0, 1]2 (because the DPP is a

repulsive point process).

Table 2 describes the four configurations that we investigate. The larger L is the more

challenging the configuration is. In configurations B2, B3, B4, it holds that K = L + 1, hence

the data points from the Kth cluster should not be matched. Moreover, for given (K,L) and

(M,N), a configuration gets more challenging as its σ2 parameter increases. It is noteworthy

that the values of σ2 as reported in Table 2 cannot be compared straightforwardly to those

reported in Table 1, because µ1, . . . , µK live in [0, 1]2 in the present simulation study whereas

they do not in the simulation study of Section 5.4.

configuration (M,N) (K,L) σ2

B1 (200, 200) (3, 3) 5× 10−4

B2 (300, 300) (7, 6) 10−4

B3 (300, 300) (16, 15) 10−5

B4 (300, 300) (16, 15) 10−4

Table 2: Four different configurations for the second simulation scheme. The larger ` ∈ [4] is
the more challenging configuration B` is.

Results. Thirty times, independently, we simulated synthetic data sets X and Y under the

simulation scheme described above, then we applied the various algorithms as presented in

Section 5.2. Table 7 summarizes the results of the seven algorithms listed in Section 5.2 that
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rely on bona fide co-clustering algorithms (see Section 4.1.1). Tables 8 and 9 summarize the

results of our algorithm that relies on matching (see Section 4.1.2).

Table 7. We first note that WTOT-SCC1, WTOT-SCC2 and CCOT-GWD perform similarly

in configurations B1 and B2, much better than CCOT-GWB, but less well than the orac-

ular algorithms WTOT-SCC1∗, WTOT-SCC2∗ and WTOT-BC∗. More generally, across

configurations B1, B2, B3, B4, the oracular algorithms WTOT-SCC1∗ and WTOT-SCC2∗

perform much better than the other algorithms (and WTOT-BC∗ fails to find a partition

with the given number of co-clusters in B3 and B4). Moreover, WTOT-SCC1 and WTOT-

SCC2 perform poorly in configurations B2, B3 and B4 though not as poorly as CCOT-

GWD and CCOT-GWB in configurations B3 and B4. It seems that WTOT-SCC1 and

WTOT-SCC2 fail to learn a “practical” number of co-clusters from P̃ , in part because

of those among x1, . . . , xM that are drawn from the Gaussian law N(µK , σ
2Id2) when

K = L+ 1 (these data points should not be matched at all). The fact that WTOT-SCC1

and WTOT-SCC2 perform similarly in configurations B3 and B4 although σ2 is 10 times

larger in B4 than in B3 gives credit to the previous interpretation.

Tables 8 and 9. Table 8 illustrates the influence of k = k′ on the performances of algorithm

WTOT-matching in configurations B1 and B4. In each configuration, the values of k = k′

are chosen in the vicinity of M/K (67 in configuration B1, 11 in configuration B4). We

observe the same patterns in configurations B1 and B4: precision decreases (gradually)

and specificity decreases (slightly) as k = k′ grows, while sensitivity increases (strongly in

B1 and dramatically in B4).

Table 9 summarizes the results of WTOT-matching in configurations B1, B2, B3, B4

for a specific choice of k = k′ in terms of the row- and column-specific averages k̃r and

k̃c, precision, sensitivity and specificity. In each configuration, we chose the value of

k = k′ among many retrospectively so that the overall performance (in terms of precision,

sensitivity and specificity) is good. The left-hand-side (m-specific) and right-hand-side
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(n-specific) tables in Table 9 are very similar although K > L in configuration B3 and B4.

Interestingly, the fact that σ2 is 10 times larger in configuration B4 than in B3 does not

affect much the performance of the matching algorithm.

5.6 Third simulation study

Simulation scheme. The third simulation scheme aspires to generate synthetic data sets

X and Y that are more similar to the real data sets than those generated in the two first

simulation studies. Once again, we rely on mixtures of Gaussian laws. This time, however, the

various means are neither chosen arbitrarily (unlike in the first simulation study) nor drawn

randomly (unlike in the second simulation study) but are sampled in the real collection of

miRNAs. Moreover, the weights of the mixtures are random.

Specifically, given the hyperparameters K ≥ 3, λx, λ
′
x ≥ 0, λy, λ

′
y ≥ 0 and σ, σ′ ∈ R∗+ (with

σ′ much larger than σ),

1. we sample µ1, . . . , µK uniformly without replacement from the collection of observed

miRNA profiles conditionally on mink 6=k′ ‖µk − µk′‖2 ≥ 2;

2. independently, we sample independently (m1−1), . . . , (mK−1) from the Poisson law with

parameter λx, (n1− 1), . . . , (nK − 1) from the Poisson law with parameter λy, (mK+1− 1)

and (nK+1 − 1) from the Poisson laws with parameter λ′x and λ′y;

3. for each 1 ≤ k ≤ K, we sample independently xk,1, . . . , xk,mk
from the Gaussian law

N(µk, σ
2Id18) and yk,1, . . . , yk,nk

from the Gaussian law N(−µk, σ2Id18). Moreover, we also

sample independently xK+1,1, . . . , xK+1,mK+1
and yK+1,1, . . . , yK+1,nK+1

from the Gaussian

law N(018, (σ
′)2Id18).

Here, we think of x and y as having a mirrored relationship if there exists k ∈ JKK such that

x and y are drawn from the laws N(µk, σ
2Id18) and N(−µk, σ2Id18). Furthermore, we view x

and y drawn from the law N(018, (σ
′)2Id18) as noise.
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Table 3 describes the four configurations that we investigate. The larger K is the more

challenging the configuration is.

configuration (λx, λy) (λ′x, λ
′
y) K (σ, σ′)

C1 (50, 50) (50, 10) 3 (0.1, 5)
C2 (15, 15) (0, 0) 15 (0.01, 5)
C3 (15, 15) (30, 30) 15 (0.01, 5)
C4 (15, 15) (30, 30) 15 (0.1, 5)

Table 3: Four different configurations for the third simulation scheme. The larger ` ∈ [4] is the
more challenging configuration C` is.

Results. Thirty times, independently, we simulated synthetic data sets X and Y under the

simulation scheme described above, then we applied the various algorithms as presented in

Section 5.2. Table 10 summarizes the results of the seven algorithms listed in Section 5.2 that

rely on bona fide co-clustering algorithms (see Section 4.1.1). Tables 11 and 12 summarize the

results of our algorithm that relies on matching (see Section 4.1.2).

Table 10. We first focus on configuration C1. We note that WTOT-SCC1 and WTOT-SCC2

perform similarly, much better than CCOT-GWD and CCOT-GWB, better than the orac-

ular algorithm WTOT-BC∗, but not as well as the oracular algorithms WTOT-SCC1∗ and

WTOT-SCC2∗.

We now turn to configurations C2, C3 and C4. Configuration C3 is more challenging than

configuration C2 because it shares the same hyperparameters as C2 except for (λ′x, λ
′
y)

(which drives the number of noisy data points), set to (0, 0) in C2 and to (30, 30) in C3.

Similarly, configuration C4 is more challenging than configuration C3 because it shares

the same hyperparameters as C3 except for σ (the standard deviation of the Gaussian

variations around the mean profiles), set to 0.01 in C3 and to 0.1 in C4. The comparisons

will not concern algorithms WTOT-BC∗ (which never converges in these simulations),

CCOT-GWD and CCOT-GWB (which perform very poorly).

In configuration C2, in the absence of noisy data points, algorithm WTOT-SCC1 performs
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slightly better than WTOT-SCC2, as well as the oracular algorithm WTOT-SCC2∗, and

almost as well as the oracular algorithm WTOT-SCC1∗ (in average). In configurations

C3 and C4, the introduction of noisy data points then the increase in variability strongly

degrade the performances of WTOT-SCC1, WTOT-SCC1∗ and, to a lesser extent, those of

WTOT-SCC2 and WTOT-SCC2∗. Algorithm WTOT-SCC2 outperforms WTOT-SCC1

and the oracular algorithm WTOT-SCC1∗ too.

Tables 11 and 12. Table 11 illustrates the influence of k = k′ on the performances of algorithm

WTOT-matching in configurations C1 and C4. In each configuration, the values k = k′

are chosen in the vicinity of λx or λy (50 in configuration C1, 15 in configuration C4).

For specificity and sensitivity, we observe the same patterns in configurations C1 and C4:

specificity is not impacted much as k = k′ grows whereas sensitivity increases dramatically.

Precision remains high in configuration C1 for all choices of k = k′. In configuration C4,

precision remains high for k = k′ ranging between 5 and 20, then it decreases when k = k′

grows from 25 to 30.

Table 12 summarizes the results of WTOT-matching in configurations C1, C2, C3, C4

for a specific choice of k = k′ in terms of the row- and column-specific averages k̃r and

k̃c, precision, sensitivity and specificity. In each configuration, we chose the value of

k = k′ among many retrospectively, so that the overall performance (in terms of precision,

sensitivity and specificity) is good. The left-hand-side (m-specific) and right-hand-side

(n-specific) tables in Table 12 are very similar. In configurations C1 and C2, all precision,

sensitivity and specificity are quite satisfying. In configurations C3, C4, sensitivity and

specificity are quite satisfying as well while precision falls bellow 0.86.

6 Illustration on real data

Next, we apply algorithms WTOT-SCC2 and WTOT-matching to discover patterns hidden

in RNA-seq data obtained in the striatum of HD model mice. As explained in Section 1,
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multidimentional miRNA and mRNA sequencing data were obtained in the striatum of these

mice [11, 12] and an earlier analysis of these data using shape analysis concepts [15] has demon-

strated their value. We briefly illustrate the results we obtain. A separate article (in preparation)

will show the complete results and their careful biological interpretation.

6.1 Tuning

Specifically, in view of Algorithm 1, we choose M̃ = 1, 024, Ñ = 512, T = 500. The entries of

the 3× 5 matrices θ̃a1 , θ̃
b
1, θ̃

c
1 are constrained to take their values in ]− 10, 0[ (for WTOT-SCC2)

or ] − 2, 0[ (for WTOT-matching), ] − 0.2, 0.2[ and ] − 0.2, 0.2[ respectively. We also choose

(η, γ0) = (0.95, 3). Finally, the initial mapping θ0 is drawn randomly.

Furthermore, regarding step 2 of algorithm WTOT-SCC2, we remove rows and columns

based on the following loop: 100 times successively, (i) we compute the Kullback-Leibler di-

vergence between each row (renormalized) and the uniform distribution then remove the 100

rows with the smallest divergences, then (ii) we compute the Kullback-Leibler divergence be-

tween each column (renormalized) and the uniform distribution then remove the 5 columns with

the smallest divergences. By doing so, we successively get rid of the rows and columns which,

viewed as distributions, are too uniform and therefore deemed irrelevant. Finally, we remove all

rows for which the (columnwise) sum of the remaining entries of P̃ is smaller than one tenth of

the maximal (columnwise) sum, and all columns for which the (rowwise) sum of the remaining

entries of P̃ is smaller than one tenth of the maximal (rowwise) sum.

6.2 Results

Co-clustering. The selection procedure (step 2 of WTOT-SCC2) keeps 3,409 mRNA profiles

(among the 13,616 available in the data set) and 602 miRNA (among the 1,143 available in the

data set). Eventually, algorithm WTOT-SCC2 outputs 8 co-clusters. The co-clusters’s sizes

(numbers of mRNA and miRNA gathered in each co-cluster) are (321, 86), (333, 30), (261, 6),

(498, 125), (127, 5), (708, 203), (703, 119), (458, 28). Figure 2 represents the averages, computed
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across all blocks, of the entries of the matrix derived from the optimal transport matrix P̃ during

step 2 of algorithm WTOT-SCC2 and after its rearrangement. Squares located on the diagonal

tend to be slightly darker than the other squares. This reveals that, in average, a pair (xm, yn)

of mRNA and miRNA gathered in a diagonal co-cluster tends to exhibit a mirrored relationship

that is slightly stronger than those of the form (xm, yn′) or (xm′ , yn) which do not fall in the same

co-cluster. However, few of the off-diagonal averages are small in comparison to the on-diagonal

averages, a disappointing observation that comes on top of the fact that the co-clusters’ sizes

are so large that it is difficult to interpret the results. This makes it even more relevant to focus

on algorithm WTOT-matching.

Figure 2: Logarithms of the averages, computed across all blocks, of the entries of the matrix
derived from the optimal transport matrix P̃ during step 2 of algorithm WTOT-SCC2 and after
its rearrangement.

Matching. We run the WTOT-matching algorithm with k = k′ = 10 and q = 90%. For

the anecdote, we observe (k̃r, k̃c) ≈ (1.82, 6.04) (recall that k̃r, k̃c are the row- and column-

specific averages of the cardinalities of the sets Nm and Mn that are not empty). We report

the parameters that characterize the mapping θ̂ in Appendix A.

As an illustration, the mirrored profile (the opposite value of yn) of the Mir20b miRNA is

displayed in Figure 3 along with its three matched mRNAs (Ahrr, Cnih3 and Relb) obtained

by running algorithm WTOT-matching algorithm with k = k′ = 10. Recall that the original

profile of Mir20b can be found in Figure 1.

To illustrate the matchings that we obtain, we propose to proceed as follows. We first
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Figure 3: Minus the profile −yn of the Mir20b miRNA (top left), and profiles xm of its matched
mRNAs, Ahrr (top right), Relb (bottom left) and Cnih3 (bottom right).

identify miRNAs that are particularly susceptible to play a distinct role in HD in mice. To do

so, we evaluate two simple criteria on the mRNAs associated to each miRNA (the miRNAs with

no matched mRNAs are obviously less interesting in our study). The criteria assess to what

extent a mRNA profile is “monotonous” and, on the contrary, to what extent it is “peaked”,

accounting for the amplitude of log-fold change. Formally, rewriting each profile x ∈ R15 as

a matrix (x̃tq)t∈J3K,q∈J5K, the first criterion is the minimum (relative to time t) of the absolute

values of the slopes of the regression lines of the sets {(q, x̃tq) : q ∈ J5K} and the second criterion

is maxq∈J5K(x̃1q − x̃2q) × (x̃2q − x̃3q). We retain only the miRNAs for which at least one of

its associated mRNAs is such that either its first criterion is larger than 95% of the similar

criteria or its second criterion is smaller than 99% of the similar criteria. Second, we perform an

enrichment analysis of the mRNAs associated to the miRNAs that are retained at the previous

stage.
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The first criterion yields 212 mRNAs and 122 matched miRNAs. The second criterion yields

43 mRNAs and 68 matched miRNAs. We retrieve the Ensembl gene stable identifiers of the

mRNAs then request an overrepresentation analysis from reactome (converting the identifiers to

their human equivalents; only 97 of the 255 identifiers have a human equivalent in the reactome

data base). Four pathways obtain a False Discovery Rate (FDR) smaller than 5%. The pathways

are labelled “neuronal system” (FDR 2.56%), “cardiac conduction” (FDR 2.67%), “presynaptic

depolarization and calcium channel opening” (FDR 2.67%) and “muscle contraction” (FDR

3.34%). A comprehensive biological content analysis of the resulting miRNA-mRNA networks

will be reported in a separate article (in preparation).

7 Discussion

We have developped two co-clustering algorithms (WTOT-SCC1 and WTOT-SCC2) and a

matching algorithm (WTOT-matching) for the purpose of identifying groups of mRNAs and

miRNAs that interact. The algorithms apply in any situation where it is of interest to cluster

or match the elements of two data sets based on a parametric model Θ expressing what it

means to interact for any two pair of elements from the two data sets. The algorithms rely on

optimal transport, spectral co-clustering and a matching procedure. In light of [2, Section 1.3,

page 25], problem-specific knowledge is injected onto two of the three main components of the

transportation problem: the representation spaces (via Θ) and the marginal constraints, leaving

aside the cost function.

During the first stage, an optimal optimal transport plan P and mapping in Θ are learned

from the data using the Sinkhorn-Knopp algorithm and a mini-batch gradient descent. During

the second stage, P is exploited to derive either co-clusters or several sets of matched elements.

As in [15], the motivation of our study is to shed light on the interaction between mRNAs and

miRNAs based on data collected in the striatum of HD model knock-in mice [11, 12]. Each data

point takes the form of multi-dimensional profile. The biological hypothesis is that if a miRNA

induces the degradation of a target mRNA or blocks its translation into proteins, or both, then
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the profile of the former should be similar to minus the profile of the latter — this particular

form of affine relationship drives the definition of model Θ. The fact that the algorithm learns

from the data a best element in Θ provides more flexibility than in [15].

The simulation study reveals on the one hand that WTOT-SCC2 works overall better than

WTOT-SCC1, but that the co-clustering task can be very challenging in the presence of many

irrelevant data points (data points that do not interact). On the other hand, it shows that the

performances of WTOT-matching are satisfying. A brief illustration on real data is given. The

complete data analysis will be presented in a separate article (in preparation).
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A Supplementary material

Parametric model Θ. Introduced in Section 4.1, the parametric model Θ consists of affine

mappings θ : Rd → Rd of the form x 7→ θ1x + θ2, where θ1 takes its values in a subset T1 of

Rd×d and θ2 takes its values in Rd (without any constraint). It is easier to describe the set of

linear mappings {x 7→ θ1x : θ1 ∈ T1} after a reparametrization.

In the rest of this section only, we rewrite the mRNA and miRNA profiles x, y ∈ Rd under

the form of d1 × d2 matrices x̃ = (x̃tq)t∈Jd1K,q∈Jd2K and ỹ = (ỹtq)t∈Jd1K,q∈Jd2K. For each t ∈ Jd1K

and q ∈ Jd2K, x̃t• and x̃•q are the tth row and qth column of x̃. Here, indices t and q correspond

to the age and CAG lengths of the mice whose RNA sequencing yielded x̃tq and ỹtq.

The definition of T1 should formalize what we consider to be a (plausible) mirroring rela-

tionship. The simplest mirroring relationship is y = −x or, equivalently, ỹ = −x̃. The equality

is of course too stringent/rigid, and the definition of T1 is driven by our wish to relax it.

Biological arguments encourage us to consider that y and x exhibit a (plausible) mirroring

relationship if, for each (t, q) (t ∈ Jd1K, q ∈ Jd2K), ỹtq is strongly negatively correlated with x̃tq,

mainly, and (positively or negatively) correlated with x̃(t−1)q (if t > 1) and/or with x̃t(q−1) (if

q > 1), secondarily. We thus formalize {x 7→ θ1x : θ1 ∈ T1} as the set of all linear mappings of

the form

x 7→ θ̃a1 � x̃+ θ̃b1 �

 0>d2
x̃1•
...

x̃(d1−1)•

+ θ̃c1 �
(
0d1 x̃•1 · · · x̃•(d2−1)

)

where θ̃a1 and θ̃b1, θ̃
c
1 are d1 × d2 matrices (here, � is the componentwise multiplication). In the

simulation study presented in Section 5, the entries of θ̃a1 are constrained to take their values in

the interval ]− 5, 0[ while those of θ̃b1, θ̃
c
1 are constrained to take their values in ]− 1/2, 1/2[.

In the illustration of the WTOT-matching algorithm presented in Section 6.2, the mapping
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θ̂ is parametrized by

θ̃a1 =

(−0.88 −1.47 −0.73
−0.59 −0.90 −0.89
−0.62 −0.70 −1.17
−0.97 −1.30 −0.95
−0.56 −1.16 −1.24

)
, θ̃b1 =

(
0.00 0.00 0.00
0.13 −0.19 0.13
0.17 0.09 0.13
0.19 0.09 −0.00
0.18 0.15 0.08

)
,

θ̃c1 =

(
0.00 0.18 −0.18
0.00 0.19 0.17
0.00 0.04 0.15
0.00 0.05 0.11
0.00 0.18 0.14

)
, θ2 =

(−0.01 0.01 −0.00
0.00 0.01 0.01
0.00 0.01 0.00
0.01 0.01 0.01
−0.01 0.01 0.01

)

(the numbers are rounded to two decimal places).
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Procedure 1 Main optimal transport algorithm.

Input: X,Y , minibatch sizes M̃, Ñ , decay rate η ∈]0, 1], initial regularization parameter γ0,
initial mapping θ0 ∈ Θ, maximal number of iterations T

Output: Transport coupling P̃T ∈ (R+)M×N , mapping θT ∈ Θ, weight ωT
Compute:

• γ = mean{‖x− x′‖2 : x, x′ ∈ X} {for entropy regularization}

• h = mean{‖y − y′‖2 : y, y′ ∈ Y } {for window calibration}

Set t← 0
Set stop ← FALSE
while ¬ stop or t < T do
γt ← max(γ0 × ηt, γ)

Sample uniformly a minibatch of M̃ observations x̃
1:M̃

:= (x̃1, . . . , x̃M̃ ) from X

Sample uniformly a minibatch of Ñ observations ỹ
1:Ñ

:= (ỹ1, . . . , ỹÑ ) from Y
Define and compute θt(x̃1:M̃

) :=
(
θt(x̃1), . . . , θt(x̃M̃ )

)
Define and compute ωt ∈ (R+)M̃ such that

∑
m∈JM̃K(ωt)m = 1 by setting

(ωt)m ∝
∑
n∈JÑK

ϕ

(
ỹn − θt(x̃m)

h

)
(all m ∈ JM̃K)

where ϕ is the standard normal density
Define µωt

θt(x̃1:M̃
), the ωt-weighted empirical measure attached to θt(x̃1:M̃

), and νỹ
1:Ñ

, the

empirical measure attached to ỹ
1:Ñ

Compute Losst = W̄γt

(
µωt

θt(x̃1:M̃
), νỹ1:Ñ

)
and ∇Losst, the gradient of Losst relative to the

parameter defining θt {relies on the Sinkhorn-Knopp algorithm}
Update the parameter defining θt by performing one step of stochastic gradient descent,
yielding θt+1

Check stopping criterion and update stop variable accordingly
t← t+ 1

end while
Set θT ← θt−1

Set γT ← γt−1

Define and compute ωT ∈ (R+)M such that
∑

m∈JMK(ωT )m = 1 by setting

(ωT )m ∝
∑
n∈JNK

ϕ

(
yn − θT (xm)

h

)
(all m ∈ JMK)

Compute P̃T ∈ Π(ωT ) solving minP∈Π(ωT )WγT

(
µωT

θT (X), νY

)

33



th
e

W
T

O
T

(.
..

)
a
lg

o
ri

th
m

s
th

e
C

C
O

T
(.

..
)

a
lg

o
ri

th
m

s
W

T
O

T
-S

C
C

1
∗

W
T

O
T

-S
C

C
1

W
T

O
T

-S
C

C
2
∗

W
T

O
T

-S
C

C
2

W
T

O
T

-B
C

∗
C

C
O

T
-G

W
D

C
C

O
T

-G
W

B
A

1
0

0
.0

68
±

0.
12

6
0

0.
0
6
8
±

0
.1

2
6

0
0.

05
4
±

0.
1
4

0.
0
9
2
±

0.
1
5

A
2

0
±

0.
00

1
0
.0

14
±

0.
02

9
0
±

0.
0
0
1

0.
0
1
6
±

0
.0

3
5

0.
0
3
3
±

0.
1
2
5

0.
10

5
±

0.
1
3

0.
1
2
1
±

0.
1
4
6

A
3

0
.0

05
±

0.
00

5
0
.1

89
±

0.
17

5
0
.0

1
8
2
±

0.
0
3
3

0.
2
3
3
±

0
.1

7
9

0.
0
2
9
±

0.
0
8
7

0.
61

2
±

0.
0
3

0.
5
3
2
±

0.
0
6
8

A
4

0
.3

26
±

0.
06

4
0
.2

82
±

0.
23

2
0.

2
5
7
±

0
.2

5
6

0.
3
9
3
±

0
.1

6
4

0
.0

5
±

0
.0

9
3

0.
5
0
7
±

0.
1
2
3

0.
5
2
2
±

0.
1
1
6

T
a
b

le
4
:

M
ea

n
(±

st
an

d
a
rd

d
ev

ia
ti

o
n

)
co

m
p

u
te

d
ac

ro
ss

th
e

30
in

d
ep

en
d

en
t

re
p

li
ca

ti
on

s
of

th
e

co
-c

lu
st

er
in

g
d

is
cr

ep
a
n

cy
ob

ta
in

ed
fo

r
co

n
fi

gu
ra

ti
o
n

s
A

1,
A

2
,

A
3,

A
4
.

k
=

k
′

k̃
r

p
re

c
is

io
n

se
n
si

ti
v
it

y
sp

e
c
ifi

c
it

y
A

1
1
0

7
.8

2
5
±

0
.0

9
1

1
.0
±

0
.0

0
.1

1
8
±

0
.0

0
1

1
.0
±

0
.0

A
1

3
5

2
9
.3

7
3
±

0
.2

6
1

1
.0
±

0
.0

0
.4

4
2
±

0
.0

0
3

1
.0
±

0
.0

A
1

6
5

6
0
.6

4
9
±

0
.9

9
8

0
.9

9
9
±

0
.0

0
2

0
.9

1
3
±

0
.0

1
4

1
.0
±

0
.0

A
1

7
5

6
7
.4

1
8
±

0
.9

0
.9

8
1
±

0
.0

0
6

0
.9

9
1
±

0
.0

1
3

0
.9

9
4
±

0
.0

0
2

A
1

9
5

7
6
.3

3
5
±

1
.2

8
2

0
.8

8
8
±

0
.0

1
4

1
.0
±

0
.0

0
.9

5
7
±

0
.0

0
5

A
1

1
5
0

9
7
.0

4
9
±

1
.1

8
2

0
.7

2
7
±

0
.0

1
2

1
.0
±

0
.0

0
.8

7
9
±

0
.0

0
5

k
=

k
′

k̃
r

p
re

c
is

io
n

se
n
si

ti
v
it

y
sp

e
c
ifi

c
it

y
A

4
1
0

6
.9

6
4
±

0
.1

6
1

0
.9

9
8
±

0
.0

0
3

0
.0

8
9
±

0
.0

0
3

1
.0
±

0
.0

A
4

3
5

2
8
.6

3
2
±

0
.6

6
8

0
.9

9
5
±

0
.0

0
9

0
.3

7
4
±

0
.0

1
1
.0
±

0
.0

A
4

6
5

5
4
.6

5
3
±

0
.9

2
7

0
.9

8
6
±

0
.0

1
1

0
.6

6
8
±

0
.0

1
8

0
.9

9
8
±

0
.0

0
2

A
4

7
5

6
1
.1

9
3
±

0
.7

2
4

0
.9

6
3
±

0
.0

1
6

0
.7

0
9
±

0
.0

2
2

0
.9

9
3
±

0
.0

0
3

A
4

9
5

7
5
.8

5
6
±

0
.7

4
9

0
.8

9
3
±

0
.0

1
7

0
.7

6
8
±

0
.0

2
2

0
.9

7
5
±

0
.0

0
3

A
4

1
5
0

1
2
1
.2

7
3
±

3
.6

3
0
.7

8
3
±

0
.0

2
5

0
.9

7
6
±

0
.0

2
3

0
.9

3
6
±

0
.0

1
1

T
a
b

le
5
:

M
ea

n
(±

st
an

d
a
rd

d
ev

ia
ti

o
n

)
co

m
p

u
te

d
ac

ro
ss

th
e

30
in

d
ep

en
d

en
t

re
p

li
ca

ti
on

s
of
k̃
r
,

p
re

ci
si

o
n

,
se

n
si

ti
v
it

y
a
n

d
sp

ec
ifi

ci
ty

of
th

e
m

-s
p

ec
ifi

c
m

a
tc

h
in

g
s

av
er

a
ge

d
ac

ro
ss

al
l

m
R

N
A

s
fo

r
co

n
fi

gu
ra

ti
on

A
1

(l
ef

t)
an

d
A

4
(r

ig
h
t)

.

k
=

k
′

k̃
r

p
re

c
is

io
n

se
n
si

ti
v
it

y
sp

e
c
ifi

c
it

y
A

1
7
5

6
7
.4

1
8
±

0
.9

0
.9

8
1
±

0
.0

0
6

0
.9

9
1
±

0
.0

1
3

0
.9

9
4
±

0
.0

0
2

A
2

1
3
0

1
0
0
.2

1
7
±

2
.1

2
7

0
.9

7
6
±

0
.0

1
7

0
.8

9
4
±

0
.0

2
7

0
.9

9
5
±

0
.0

0
4

A
3

1
2
0

8
2
.7

6
4
±

1
.1

0
5

0
.8

8
1
±

0
.0

1
5

0
.9

0
2
±

0
.0

2
5

0
.9

6
8
±

0
.0

0
4

A
4

1
2
0

9
7
.5

6
1
±

1
.8

3
6

0
.8

2
1
±

0
.0

1
5

0
.8

5
3
±

0
.0

2
5

0
.9

5
±

0
.0

0
5

k
=

k
′

k̃
c

p
re

c
is

io
n

se
n
si

ti
v
it

y
sp

e
c
ifi

c
it

y
A

1
7
5

6
7
.4

1
8
±

0
.9

0
.9

8
2
±

0
.0

0
6

0
.9

9
1
±

0
.0

1
5

0
.9

9
4
±

0
.0

0
2

A
2

1
3
0

1
0
0
.2

1
7
±

2
.1

2
7

0
.9

8
4
±

0
.0

1
2

0
.8

9
4
±

0
.0

2
8

0
.9

9
5
±

0
.0

0
4

A
3

1
2
0

1
1
0
.3

5
2
±

1
.4

7
3

0
.8

7
8
±

0
.0

1
7

0
.9
±

0
.0

2
4

0
.9

6
7
±

0
.0

0
4

A
4

1
2
0

9
7
.5

6
1
±

1
.8

3
6

0
.8

4
±

0
.0

1
8

0
.8

5
3
±

0
.0

2
6

0
.9

5
1
±

0
.0

0
4

T
a
b

le
6:

M
ea

n
(±

st
an

d
a
rd

d
ev

ia
ti

on
)

co
m

p
u

te
d

ac
ro

ss
th

e
30

in
d

ep
en

d
en

t
re

p
li

ca
ti

on
s

of
k̃
r

o
r
k̃
c
,

p
re

ci
si

o
n
,

se
n

si
ti

v
it

y
a
n

d
sp

ec
ifi

ci
ty

of
th

e
m

-s
p

ec
ifi

c
m

a
tc

h
in

g
s

(l
ef

t)
an

d
n

-s
p

ec
ifi

c
m

at
ch

in
gs

(r
ig

h
t)

av
er

ag
ed

ac
ro

ss
al

l
m

R
N

A
s

(l
ef

t)
a
n

d
a
ll

m
iR

N
A

s
(r

ig
h
t)

.

34



th
e

W
T

O
T

(.
..

)
a
lg

o
ri

th
m

s
th

e
C

C
O

T
(.

..
)

a
lg

o
ri

th
m

s
W

T
O

T
-S

C
C

1
∗

W
T

O
T

-S
C

C
1

W
T

O
T

-S
C

C
2
∗

W
T

O
T

-S
C

C
2

W
T

O
T

-B
C

∗
C

C
O

T
-G

W
D

C
C

O
T

-G
W

B
B

1
0
.0

62
±

0.
15

1
0.

20
4
±

0
.2

21
0.

08
2
±

0
.1

6
1

0.
2
0
4
±

0.
2
2
1

0.
0
4
9
±

0.
1
2
5

0.
2
7
6
±

0.
2
0
4

0
.5

3
±

0
.1

6
8

B
2

0
.1

14
±

0.
10

8
0.

41
8
±

0
.2

65
0.

17
8
±

0
.2

0
7

0.
4
5
5
±

0.
2
5
8

0.
3
8
2
±

0.
1
2
1

0
.4

7
7
±

0.
1
4

0.
5
2
3
±

0.
1
1
5

B
3

0
.1

75
±

0.
08

6
0.

72
4
±

0
.2

36
0.

16
3
±

0
.0

8
2

0.
7
7
5
±

0.
1
7
6

−
0.

8
5
8
±

0.
0
4
2

0.
8
6
7
±

0.
0
4
4

B
4

0
.1

74
±

0.
09

2
0.

74
7
±

0
.1

96
0.

17
1
±

0
.1

1
2

0.
7
8
2
±

0.
1
5
9

−
0.

8
8
2
±

0.
0
4
1

0
.8

8
3
±

0.
0
4

T
a
b

le
7
:

M
ea

n
(±

st
an

d
a
rd

d
ev

ia
ti

o
n

)
co

m
p

u
te

d
ac

ro
ss

th
e

30
in

d
ep

en
d

en
t

re
p

li
ca

ti
on

s
of

th
e

co
-c

lu
st

er
in

g
d

is
cr

ep
a
n

cy
ob

ta
in

ed
fo

r
co

n
fi

gu
ra

ti
o
n

s
B

1
,

B
2
,

B
3
,

B
4
.

k
=

k
′

k̃
r

p
re

c
is

io
n

se
n
si

ti
v
it

y
sp

e
c
ifi

c
it

y
B

1
6
0

4
8
.5

7
8
±

5
.2

0
1

0
.8

8
5
±

0
.2

0
9

0
.6

5
8
±

0
.1

9
1

0
.9

8
5
±

0
.0

2
5

B
1

8
0

6
3
.9

6
±

6
.1

2
6

0
.8

5
1
±

0
.1

9
9

0
.8

1
6
±

0
.2

2
2

0
.9

6
8
±

0
.0

3
B

1
8
5

6
7
.5

3
7
±

6
.1

9
3

0
.8

3
7
±

0
.1

9
3

0
.8

4
2
±

0
.2

2
2

0
.9

6
1
±

0
.0

3
1

B
1

9
0

7
1
.2

1
4
±

6
.2

0
8

0
.8

2
3
±

0
.1

8
6

0
.8

6
4
±

0
.2

1
9

0
.9

5
3
±

0
.0

3
1

B
1

1
1
0

8
5
.8

3
3
±

6
.3

5
8

0
.7

5
3
±

0
.1

5
6

0
.9

1
8
±

0
.2

0
2

0
.9

1
3
±

0
.0

2
9

k
=

k
′

k̃
r

p
re

c
is

io
n

se
n
si

ti
v
it

y
sp

e
c
ifi

c
it

y
B

4
1
0

6
.7

8
±

0
.2

5
9

0
.9

2
6
±

0
.1

0
2

0
.3

2
1
±

0
.0

4
6

0
.9

9
9
±

0
.0

0
1

B
4

2
0

1
5
.1

6
3
±

0
.6

1
9

0
.8

7
3
±

0
.0

9
1

0
.7

2
±

0
.0

8
7

0
.9

9
6
±

0
.0

0
3

B
4

2
5

1
9
.0

3
3
±

0
.7

8
4

0
.8

1
7
±

0
.0

8
4

0
.8

3
7
±

0
.0

8
4

0
.9

9
1
±

0
.0

0
4

B
4

3
0

2
2
.8

8
9
±

0
.9

9
7

0
.7

5
4
±

0
.0

7
6

0
.9

0
7
±

0
.0

7
7

0
.9

8
4
±

0
.0

0
5

B
4

4
0

3
1
.1

1
8
±

1
.0

8
6

0
.6

1
8
±

0
.0

5
3

0
.9

6
9
±

0
.0

4
9

0
.9

6
3
±

0
.0

0
5

T
a
b

le
8
:

M
ea

n
(±

st
an

d
a
rd

d
ev

ia
ti

o
n

)
co

m
p

u
te

d
ac

ro
ss

th
e

30
in

d
ep

en
d

en
t

re
p

li
ca

ti
on

s
of
k̃
r
,

p
re

ci
si

o
n

,
se

n
si

ti
v
it

y
a
n

d
sp

ec
ifi

ci
ty

of
th

e
m

-s
p

ec
ifi

c
m

a
tc

h
in

g
s

av
er

a
ge

d
ac

ro
ss

al
l

m
R

N
A

s
fo

r
co

n
fi

gu
ra

ti
on

s
B

1
(l

ef
t)

an
d

B
4

(r
ig

h
t)

.

k
=

k
′

k̃
r

p
re

c
is

io
n

se
n
si

ti
v
it

y
sp

e
c
ifi

c
it

y
B

1
8
5

6
7
.5

3
7
±

6
.1

9
3

0
.8

3
7
±

0
.1

9
3

0
.8

4
2
±

0
.2

2
2

0
.9

6
1
±

0
.0

3
1

B
2

6
0

4
8
.2

8
2
±

3
.4

4
9

0
.7

5
1
±

0
.1

9
4

0
.8

3
8
±

0
.2

0
.9

7
9
±

0
.0

2
2

B
3

2
5

1
9
.5

4
6
±

1
.1

5
1

0
.8

3
3
±

0
.1

3
6

0
.8

3
7
±

0
.1

5
2

0
.9

9
2
±

0
.0

0
6

B
4

2
5

1
9
.0

3
3
±

0
.7

8
4

0
.8

1
7
±

0
.0

8
4

0
.8

3
7
±

0
.0

8
4

0
.9

9
1
±

0
.0

0
4

k
=

k
′

k̃
c

p
re

c
is

io
n

se
n
si

ti
v
it

y
sp

e
c
ifi

c
it

y
B

1
8
5

6
3
.7

3
2
±

8
.6

4
2

0
.8

4
4
±

0
.1

7
5

0
.8

3
6
±

0
.2

2
9

0
.9

6
±

0
.0

3
3

B
2

6
0

4
4
.3

4
9
±

2
.4

9
5

0
.7

9
2
±

0
.2

1
8

0
.8

1
9
±

0
.2

2
7

0
.9

7
1
±

0
.0

2
4

B
3

2
5

1
8
.7

6
6
±

0
.9

7
0
.8

4
7
±

0
.1

2
5

0
.8

3
3
±

0
.1

5
2

0
.9

9
1
±

0
.0

0
5

B
4

2
5

1
8
.8

3
3
±

0
.7

9
3

0
.8

3
4
±

0
.0

8
7

0
.8

2
7
±

0
.0

9
9

0
.9

9
±

0
.0

0
5

T
a
b

le
9:

M
ea

n
(±

st
an

d
a
rd

d
ev

ia
ti

on
)

co
m

p
u

te
d

ac
ro

ss
th

e
30

in
d

ep
en

d
en

t
re

p
li

ca
ti

on
s

of
k̃
r

o
r
k̃
c
,

p
re

ci
si

o
n
,

se
n

si
ti

v
it

y
a
n

d
sp

ec
ifi

ci
ty

of
th

e
m

-s
p

ec
ifi

c
m

a
tc

h
in

g
s

(l
ef

t)
an

d
n

-s
p

ec
ifi

c
m

at
ch

in
gs

(r
ig

h
t)

av
er

ag
ed

ac
ro

ss
al

l
m

R
N

A
s

(l
ef

t)
a
n

d
a
ll

m
iR

N
A

s
(r

ig
h
t)

.

35



th
e

W
T

O
T

(.
..

)
a
lg

o
ri

th
m

s
th

e
C

C
O

T
-(

..
.)

a
lg

o
ri

th
m

s
W

T
O

T
-S

C
C

1
∗

W
T

O
T

-S
C

C
1

W
T

O
T

-S
C

C
2
∗

W
T

O
T

-S
C

C
2

W
T

O
T

-B
C

∗
C

C
O

T
-G

W
D

C
C

O
T

-G
W

B
C

1
0.

10
6
±

0
.1

0
.2

03
±

0.
13

5
0
.1

01
±

0.
0
5
6

0
.1

9
4
±

0
.1

1
6

0.
2
6
5
±

0
.2

5
5

0.
4
9
6
±

0.
1
6

0.
9
0
2
±

0
.0

0
7

C
2

0.
20

9
±

0.
13

1
0
.2

52
±

0.
18

2
0
.2

62
±

0.
1
4
1

0
.3

4
5
±

0
.2

0
5

−
0.

9
3
8
±

0
.0

2
3

0.
9
7
1
±

0
.0

2
6

C
3

0.
60

9
±

0.
11

3
0
.6

93
±

0.
15

4
0
.3

85
±

0.
1
5
1

0
.5

2
1
±

0
.1

9
8

−
0.

9
2
6
±

0
.0

2
7

0.
9
8
7
±

0
.0

0
2

C
4

0
.6

3
±

0
.1

41
0
.7

51
±

0.
14

5
0
.4

35
±

0.
1
9
7

0.
6
±

0.
2
3
3

−
0.

9
3
9
±

0
.0

2
7

0.
9
8
7
±

0
.0

0
2

T
a
b

le
10

:
M

ea
n

(±
st

an
d

a
rd

d
ev

ia
ti

on
)

co
m

p
u

te
d

ac
ro

ss
th

e
30

in
d

ep
en

d
en

t
re

p
li

ca
ti

on
s

of
th

e
co

-c
lu

st
er

in
g

d
is

cr
ep

a
n

cy
ob

ta
in

ed
fo

r
co

n
fi

gu
ra

ti
o
n

s
C

1
,

C
2
,

C
3
,

C
4
.

k
=

k
′

k̃
r

p
re

c
is

io
n

se
n
si

ti
v
it

y
sp

e
c
ifi

c
it

y
C

1
1
0

7
.7

4
8
±

0
.4

4
6

0
.9

7
3
±

0
.0

3
0
.1

5
6
±

0
.0

1
1
.0
±

0
.0

C
1

3
0

2
5
.8

8
8
±

1
.4

1
8

0
.9

7
2
±

0
.0

2
9

0
.5

2
6
±

0
.0

3
2

1
.0
±

0
.0

C
1

5
0

4
5
.5

2
1
±

2
.4

4
1

0
.9

4
4
±

0
.0

2
5

0
.9

1
6
±

0
.0

4
1
.0
±

0
.0

0
1

C
1

5
5

4
9
.1

0
8
±

3
.0

1
8

0
.9

3
±

0
.0

2
1

0
.9

7
2
±

0
.0

2
5

0
.9

9
9
±

0
.0

0
2

C
1

6
0

5
1
.3

6
5
±

3
.3

3
5

0
.9

1
9
±

0
.0

2
4

0
.9

9
3
±

0
.0

1
1

0
.9

9
7
±

0
.0

0
4

C
1

7
0

5
5
.2

9
6
±

3
.3

1
2

0
.8

8
1
±

0
.0

3
4

1
.0
±

0
.0

0
.9

8
5
±

0
.0

1

k
=

k
′

k̃
r

p
re

c
is

io
n

se
n
si

ti
v
it

y
sp

e
c
ifi

c
it

y
C

4
5

3
.2

9
3
±

0
.0

9
6

0
.8

9
5
±

0
.0

2
3

0
.1

8
5
±

0
.0

1
2

1
.0
±

0
.0

C
4

1
0

7
.2

7
8
±

0
.3

0
3

0
.8

9
9
±

0
.0

2
2

0
.4

7
4
±

0
.0

2
9

1
.0
±

0
.0

C
4

1
5

1
1
.9

8
2
±

0
.5

7
8

0
.8

8
8
±

0
.0

2
0
.7

8
7
±

0
.0

4
1
.0
±

0
.0

C
4

2
0

1
5
.9

3
5
±

0
.8

6
4

0
.8

4
3
±

0
.0

2
2

0
.9

6
±

0
.0

2
3

0
.9

9
7
±

0
.0

0
1

C
4

2
5

1
9
.1

3
8
±

0
.8

9
0
.7

6
2
±

0
.0

3
2

0
.9

9
7
±

0
.0

0
5

0
.9

8
9
±

0
.0

0
3

C
4

3
0

2
2
.5

7
8
±

1
.1

1
0
.6

7
1
±

0
.0

4
1
.0
±

0
.0

0
.9

7
8
±

0
.0

0
4

T
a
b

le
11

:
M

ea
n

(±
st

an
d

a
rd

d
ev

ia
ti

on
)

co
m

p
u

te
d

ac
ro

ss
th

e
30

in
d

ep
en

d
en

t
re

p
li

ca
ti

on
s

of
k̃
r
,

p
re

ci
si

o
n

,
se

n
si

ti
v
it

y
a
n

d
sp

ec
ifi

ci
ty

o
f

th
e
m

-s
p

ec
ifi

c
m

a
tc

h
in

g
s

av
er

a
ge

d
ac

ro
ss

al
l

m
R

N
A

s
fo

r
co

n
fi

gu
ra

ti
on

s
C

1
(l

ef
t)

an
d

C
4

(r
ig

h
t)

.

k
=

k
′

k̃
r

p
re

c
is

io
n

se
n
si

ti
v
it

y
sp

e
c
ifi

c
it

y
C

1
5
5

4
9
.1

0
8
±

3
.0

1
8

0
.9

3
±

0
.0

2
1

0
.9

7
2
±

0
.0

2
5

0
.9

9
9
±

0
.0

0
2

C
2

2
0

1
6
.2

0
3
±

0
.9

5
6

0
.9

5
5
±

0
.0

1
6

0
.9

6
5
±

0
.0

2
1

0
.9

9
7
±

0
.0

0
1

C
3

2
0

1
5
.5

5
2
±

0
.8

7
7

0
.8

5
4
±

0
.0

2
4

0
.9

6
8
±

0
.0

1
9

0
.9

9
7
±

0
.0

0
1

C
4

2
0

1
5
.9

3
5
±

0
.8

6
4

0
.8

4
3
±

0
.0

2
2

0
.9

6
±

0
.0

2
3

0
.9

9
7
±

0
.0

0
1

k
=

k
′

k̃
c

p
re

c
is

io
n

se
n
si

ti
v
it

y
sp

e
c
ifi

c
it

y
C

1
5
5

4
9
.0

5
6
±

3
.4

6
1

0
.8

9
8
±

0
.0

6
0
.9

7
1
±

0
.0

2
6

0
.9

8
1
±

0
.0

0
9

C
2

2
0

1
6
.3

7
1
±

0
.8

1
2

0
.9

5
3
±

0
.0

1
8

0
.9

6
3
±

0
.0

2
3

0
.9

9
7
±

0
.0

0
1

C
3

2
0

1
5
.8

7
9
±

0
.6

9
1

0
.8

0
4
±

0
.0

2
5

0
.9

6
9
±

0
.0

1
8

0
.9

9
3
±

0
.0

0
1

C
4

2
0

1
5
.8

6
7
±

0
.6

3
5

0
.8

1
2
±

0
.0

3
2

0
.9

6
1
±

0
.0

2
1

0
.9

9
3
±

0
.0

0
2

T
ab

le
1
2:

M
ea

n
(±

st
a
n

d
ar

d
d

ev
ia

ti
o
n

)
co

m
p

u
te

d
ac

ro
ss

th
e

30
in

d
ep

en
d

en
t

re
p

li
ca

ti
on

s
of
k̃
r

o
r
k̃
c
,

p
re

ci
si

o
n

,
se

n
si

ti
v
it

y
a
n

d
sp

ec
ifi

ci
ty

o
f

th
e
m

-s
p

ec
ifi

c
m

at
ch

in
g
s

(l
ef

t)
an

d
n

-s
p

ec
ifi

c
m

at
ch

in
gs

(r
ig

h
t)

av
er

ag
ed

ac
ro

ss
al

l
m

R
N

A
s

(l
ef

t)
a
n

d
a
ll

m
iR

N
A

s
(r

ig
h
t)

.

36


	Introduction
	Data
	Elements of optimal transport
	Optimal transport-based machine learning
	Description of the algorithm
	Co-clustering.
	Matching.

	Implementation of the method

	Simulation study
	Two ``Gromov-Wasserstein co-clustering'' algorithms
	Listing all competing algorithms
	Assessing performances
	First simulation study
	Second simulation study
	Third simulation study

	Illustration on real data
	Tuning
	Results

	Discussion
	Supplementary material

