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Abstract. The FASTSIM algorithm is widely used in multi-body sim-
ulation (MBS) software packages for the evaluation of the tangential
wheel-rail contact forces in a steady state. As the algorithm is restricted
to Hertzian contact patches, a strip-based local approach is proposed
to extend FASTSIM to non-elliptical contact cases. The paper presents
this tangential contact approach in detail, which was briefly introduced
by Ayasse & Chollet along with the semi-Hertzian method. The con-
tact stresses and their directions are compared with the reference results
from the program CONTACT. Different settings for the traction bound
are explored to determine their influence on the contact stresses, creep
forces, and the limits of the saturation zone in the case of wheel-rail con-
tact. A design of experiments is constructed for a non-Hertzian contact
case, with different combinations of the longitudinal, lateral, and spin
creepages. The absolute error in the normalised creep forces is used as
the quantity of interest and found to be consistent with results in the
literature for Hertzian contact cases using FASTSIM.

Keywords: FASTSIM, tangential contact, non-elliptic contact, Hertz,
contact stresses

1 Introduction

In multi-body simulation (MBS) codes, the quasi-identity assumption enables
the separation of the normal and the tangential wheel-contact problems. The
rolling contact problem can then be solved sequentially: the normal contact fol-
lowed by the tangent one [1]. Several approximate tangential contact approaches
have been developed in recent years with the aim of being implemented in MBS
software packages. The tangential contact forces are commonly computed with
the FASTSIM algorithm [2], assuming a steady state. The simplified theory
behind FASTSIM is based on the computation of the coefficients cij with the
help of Kalker’s exact linear theory, which are derived from the initial slope
of the tangent forces applied on an elliptical contact patch for small creep-
age values. Other fast methods such as the Vermeulen–Johnson model [3], the
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Shen–Hedrick–Elkins model [4], the Book of Tables by Kalker (USETAB) [5],
Polach’s model [6], and the method FaStrip [7] may also be used. The main
drawback for all of the above cited methods is that they remain restricted to
elliptical contact patches, although FaStrip has been extended to non-Hertzian
patches [8].

Broadly, two approaches may be used to extend FASTSIM type algorithms
to non-elliptical contact cases [9]: either by regularising the non-Hertzian contact
patch to a single equivalent ellipse, or by extrapolating the original algorithm
to a non-elliptic patch [9,10]. An approach based on local strip properties was
briefly introduced along with the semi-Hertzian normal contact method in [10],
and is further detailed in this paper.

We begin by reviewing the original FASTSIM algorithm based on Kalker’s
simplified theory [2]. The extension of this algorithm to treat steady state non-
Hertzian contact cases is detailed. The tangential stresses, their directions, and
the stick-slip division results are presented by considering the contact problem
between worn profiles of the wheel-rail pair S1002-UIC60. The obtained results
are compared to the reference results from the program CONTACT [11]. The
longitudinal, lateral and resultant creep forces are also plotted for a range of
values considering the pure spin, pure creepage cases and a combination of all
three creepages within a range of realistic values, and similarly compared to
CONTACT, before the final conclusions.

2 From FASTSIM over an ellipse to FASTSIM over strips

2.1 The simplified theory

The FASTSIM algorithm based on Kalker’s simplified theory [1,2] is perhaps the
most widely used method in railway industry codes for evaluating the tangential
contact parameters. The idea of the simplified theory is to replace the elastic
body by a set of independent springs. Similar to a Winkler foundation, the tan-
gential surface tractions p and the tangential surface displacements u at a given
point are assumed to be linearly proportional through a flexibility parameter L.
Thus,

u = Lp . (1)

In a steady state, the relative slip s is defined as,

s = w − ∂u

∂x
, (2)

with x being the rolling direction in the local reference system. The creepages
w at a given point of coordinates [x,y] are defined as,

w = [νx − yϕ νy + xϕ] , (3)

where νx, νy, and ϕ are the longitudinal, lateral, and spin creepages respectively.
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The slip s is first assumed to be zero in Eq. (2) and the adhesion region is
supposed to cover the entire contact area. From Eqs. (2) and (3), the longitudinal
and lateral displacements ux and uy are then given as,

ux = (νx − ϕy)(x− ai) , (4)

uy = νy(x− ai) +
ϕ

2
(x2 − a2i ) , (5)

where ai denotes the half-length of the contact patch at the ith y-coordinate.
The contact patch considered in the FASTSIM theory is Hertzian. Integrating
the expressions for the displacements over this elliptical contact area C with
semi-axes a and b gives,∫∫

C
ux dS = −8

3
a2bνx , (6)∫∫

C
uy dS = −8

3
a2bνy −

π

4
a3bϕ . (7)

Kalker’s linear theory establishes the following expressions for the creep forces
in terms of the three creepages,

Fx =

∫∫
C
px dS = −Gabc11νx , (8)

Fy =

∫∫
C
py dS = −Gabc22νy −G(ab)

3
2 c23ϕ , (9)

where G is the modulus of rigidity, and c11, c22, and c23 are Kalker’s coefficients,
which are functions of the Poisson’s ratio ν and the ellipse ratio b/a. The linear
theory is exact for tiny values of creepages. By multiplying the Eqs. (8) and (9)
for the creep forces by the flexibility parameter L, and by comparing them with
the Eqs. (1), (6), and (7), we obtain, not one, but instead three expressions for
L,

Lx =
8a

3Gc11
, Ly =

8a

3Gc22
, Lϕ =

πa
√
a/b

4Gc23
. (10)

The expressions of the non-saturated shears pns are given as,

px,ns = −

(
3

8
Gc11νx −

4

π
Gc23

√
b

a
yϕ

)(
ai − x
a

)
, (11)

py,ns = −
(

3

8
Gc22νy

(
ai − x
a

)
+

2

π
Gc23

√
abϕ

(
a2i − x2

a2

))
. (12)

These expressions correspond to the formulation with three flexibilities given
in Eq. (10), although an alternate formulation is also possible using only one
flexibility parameter [2]. For the total forces, the use of three flexibilities has
been shown to offer better accuracy over using a single flexibility for a range of
parameter values (creepages & aspect ratio) that occur for realistic vehicles [12].
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In the FASTSIM algorithm, the ellipse is discretised into strips with coor-
dinate yi, of width δy and length 2ai. The ith strip itself is discretised into
elements of length δxi as shown in Fig. 1. For each ith strip, the tangential
tractions p are deduced iteratively, starting from the leading edge (j = 0) where
the tractions vanish to zero. The expression for the tractions pa, with adhesion
being first assumed at element j, is given by,

pij,a = pij−1 − δxi
∂pij,ns
∂x

. (13)

The magnitude of the traction vector pij at element [i, j] is limited by the trac-
tion bound, which is Coulomb’s law applied locally,

pij = pij,a if ||pij,a|| ≤ µpn , (14)

pij =
pij,a
||pij,a||

µpn if ||pij,a|| > µpn , (15)

where µ is the friction coefficient, and pn is the normal pressure.

Fig. 1. FASTSIM discretisation

2.2 Extension of FASTSIM for non-Hertzian contact patches

To extend FASTSIM to non-elliptical patches, certain modifications must be
introduced in the expressions presented in the previous section. First, the spin
term ϕ associated with the longitudinal creepage νx in Eq. (3) vanishes, and the
creepages at a given lateral coordinate yi become,

wi = [νxi νyi + xϕi] , (16)
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where the subscript i indicates local values for each strip. The neglected term
from Eq. (3) accounts for the rolling radius variation, which will be considered
in the local expression for the longitudinal creepage νxi. If the contact angle γi
does not vary much over the patch, and if the spin creepage is supposed to be
purely geometric, the contribution of the spin in the longitudinal component of
wi can be approximated as,

yiϕ ≈ −
yi sin γi
R0

=
δri
R0

, (17)

whereR0 is the rolling radius and δri is the rolling radius variation. Subsequently,
the local expression for νxi, as shown in Fig. 2, is given as,

νxi = νx −
δri
R0

. (18)

The assumption made in Eqs. (16-17) still introduces a slight approximation of
the linear theory in the Eqs. (11-12) for non-saturated shears [10].

Fig. 2. Description of the longitudinal creepage νxi for a strip located in yi.[10]

The spin creepage is supposed to be purely geometric,

ϕi = − sin γi
R0

, (19)

and the lateral creepage in each strip is similarly given as,

νyi =
νy

cos γi
. (20)

The Eqs. (11-12) for non-saturated shears pns are modified by defining each
parameter as a function of local curvatures,

px,ns = −3

8
Gc11iνxi

ai
a

(
ai − x
ai

)
, (21)

py,ns = −3

8
Gc22iνyi

ai
a

(
ai − x
ai

)
− 2

π
Gc23i

√
ni
mi

ϕiai
ai
a

(
a2i − x2

a2i

)
, (22)

where m and n denote the Hertzian coefficients for the longitudinal and lateral
semi-axes respectively. For non-elliptical patches, the ratio of the longitudinal



6 Aquib Qazi et al.

semi-axes ai/a is replaced by a coefficient ki, between zero and one, whose value
is ai/a in the case of an elliptical patch.

For convenience, the original FASTSIM algorithm is developed using nor-
malised creepages as input, which are defined as the ratio of the non-saturated
forces by the Coulomb’s limit, both expressed over the ellipse [2]. A similar pro-
cedure is used when extending FASTSIM to non-elliptical patches, the difference
being that the normalised creepages are expressed for each individual strip. In
order to derive the expressions of these entries of FASTSIM, the non-saturated
forces F i,ns are deduced from the summation of expressions (21-22) over each
strip. Thus,

Fxi,ns = −3

4
Gc11iaikiδyiνxi , (23)

Fyi,ns = −3

4
Gc22iaikiδyiνyi −

8

3π
Gc23ia

2
i ki

√
ni
mi

δyiϕi . (24)

The normalised forces f i,ns, and the associated normalised creepages Axi, Ayi,
and Aϕi are finally defined as,

fxi,ns =
Fxi,ns
µiNi

= −Axi , (25)

fyi,ns =
Fyi,ns
µiNi

= −Ayi −Aϕi , (26)

where Ni denotes the normal force acting over each strip.
The final adjustment to the original FASTSIM algorithm concerns the choice

of the traction bound. Here, several possibilities may be explored: taking the
traction bound either as parabolic or semi-ellipsoidal in the longitudinal x di-
rection. According to Hertz theory, pn is semi-ellipsoidal. However, a parabolic
traction bound has been shown to present better results in terms of the division
of the stick-slip zones [2,12]. Through some mathematical manipulation, the ex-
pression of the normal pressure distribution pn,p corresponding to the choice of
a parabolic traction bound in terms of normal force per strip is given as,

pn,p =
32

9π
ki

3

4

Ni
aiδyi

(
a2i − x2

a2i

)
. (27)

Similarly, the expression for the semi-ellipsoidal normal pressure distribution
pn,e is given as,

pn,e =
2

π

Ni
aiδyi

√
a2i − x2
a2i

. (28)

Using a parabolic expression can sometimes lead to cases where the shears exceed
the elliptic traction limit, which in turn implies that Coulomb’s law is violated.
The normalised output from the presented approach are thus weighted using the
Hertzian expression to be coherent with Coulomb’s theory. The weighing process
consists in multiplying the shear stresses obtained using the FASTSIM with a
parabolic traction bound by the ratio pn,e/pn,p.
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3 Results

Worn profiles of wheel-rail pair S1002-UIC60 (1:40) [13], as shown in Fig. 3,
are chosen to investigate the tangential contact stresses and the stick-slip zone
division using the approach described in the previous section. The curvatures are
processed following procedure described in [10]. To differentiate the presented
method from the original FASTSIM algorithm, the extended method is subse-
quently referred to as FASTSIMSH , where the subscript denotes the idea of the
semi-Hertzian approach. The nominal rolling radius is taken as 460 mm. The
material properties are those of steel, with the modulus of rigidity G = 82670
MPa, and the Poisson’s ratio ν = 0.27. The coefficient of friction µ is taken
as 0.3. A multi-body simulation of the passenger vehicle from the Manchester
Benchmark [14] running on a curved track is used to obtain the steady state
input parameters for the FASTSIMSH algorithm. The normal contact force is
64.7 kN. The lateral position of the wheel over the rail ty = 5.8 mm, where a
positive value indicates an outward movement of the wheel. The creepage values
are taken as νx = 0.58 ‰, νy = 0.061 ‰, and ϕ = 0.274 m−1, with the origin
located at the point of geometrical contact.
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Fig. 3. Nominal and worn profiles described in the tangent plane (top) and the lateral
B curvature (bottom) for the wheel-rail pair S1002-UIC60 at position ty = 5.8 mm

The results are validated using the program CONTACT [11], which is based
on Kalker’s complete theory [1] for the contact between two elastic half-spaces.
The normal contact results for the considered wheel position and normal contact
force using CONTACT, the semi-Hertzian approach from [10], and the Hertzian
theory are presented in Fig. 4.

The tangential stresses, their directions and the stick-slip zone division using
the various available options are presented in Fig. 5. The advantage of using a
parabolic traction bound as opposed to a semi-ellipsoidal one is clear, which is
also consistent with the results obtained by Kalker [2] and Vollebregt [12]. Nev-
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Fig. 4. Contact area (left), and the maximum normal pressure distribution at xc = 0
mm (right) for the wheel position ty = 0 mm.

ertheless, as stated previously, the parabolic traction bound sometimes results
in cases where the tractions exceed Coulomb’s limit. The weighted parabolic

traction bound ensures that the condition max(p)
µpn

≤ 1 is verified for all cases.
The contact stresses and directions using the weighted parabolic setting can be
observed to be in a relatively good agreement with the reference results obtained
using CONTACT. The presented approach also provides an adequate estimation
of the stick and slip zones, which is denoted using the solid line.

Fig. 5. Tangential tractions, their directions, and the stick-slip zone division. From
top left, in clockwise direction: 1) CONTACT, 2) FASTSIMSH with semi-ellipsoidal
traction bound, 3) FASTSIMSH with weighted parabolic traction bound, and 4)
FASTSIMSH with parabolic traction bound.
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In MBS codes, the creep forces rather than the contact stresses are used
during online vehicle dynamics simulations. The original FASTSIM algorithm
provides a good fast estimation of the tangent forces, which is one of the rea-
sons for its popularity. To evaluate the performance of extended FASTSIMSH

algorithm, the creep forces are evaluated for a range of values of the creepages,
considering the case of pure spin, where νx = νy = 0, and pure creepage, where
νx = νy and ϕ = 0. As the normal contact results when using the S1002-UIC60
vary considerably for small variations of the wheel position ty (e.g. see the com-
parison of normal wheel-rail contact methods in [15]), we restrict ourselves to the
contact patches presented in Fig. 4 to focus on the behaviour of the tangential
contact algorithm. The results are presented in Fig. 6 and Fig. 7 respectively,
using the setting of a weighted parabolic traction bound for the FASTSIMSH

algorithm. The FASTSIM results are calculated using the Hertzian solution at
the geometrical contact point. The comparison is not entirely fair in the pure
spin case because in FASTSIM, the origin is at the centre of the contact ellipse,
which is the same as the pressure centre of gravity, leading to zero Fx. On the
contrary, in FASTSIMSH the origin is not at the pressure centre of gravity. It is
also possible to take into account this shift of origin with FASTSIM in Eq. (3)
[16], however as the general comparison in this study is made with respect to
the original algorithm [2], we do not opt for this choice.
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Fig. 6. Normalised creep forces: pure spin (νx = νy = 0)

In the pure spin case (Fig. 6), the normalised longitudinal creep forces
|Fx|/µN , denoted as fx, computed using FASTSIMSH can be observed to be
slightly overestimated for higher values of the spin creepage. This isn’t surprising
and may be attributed to the assumption made in Eqs. (16-17). The normalised
lateral creep forces can be seen to be in good agreement with the reference re-
sults, although the FASTSIM algorithm leads to an overestimation in this case.
The creep forces in the pure creepage setting (Fig. 7) are generally observed to
be in better agreement with the CONTACT results for both algorithms.
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Fig. 7. Normalised creep forces: pure creepage (νx = νy, ϕ = 0)

As the pure spin and pure creepage cases are largely theoretical, we can addi-
tionally consider a combination of all three creepages within a range of realistic
values. The longitudinal and lateral creepages are assumed to vary between 0
to 2 ‰, and the spin creepage from 0 to 2 m−1. In the statistical studies pre-
sented in [17] and [12] for Hertzian contact patches, the ellipse ratio is considered
as an additional varying parameter. Introducing a contact patch parameter in
a non-Hertzian case is not so simple, where the normal contact results differ
considerably depending on the method that is used [15], and is therefore not
considered in this study. A design of experiments is constructed with 8000 sim-
ulations, using the FASTSIMSH algorithm with both the semi-ellipsoidal and
weighted parabolic traction bounds, and the program CONTACT for different
combinations of the creepages acting on the contact patches presented in Fig. 5.
The normalised creep forces are presented in Fig. 8.

The absolute error in the normalised creep forces with respect to CONTACT
|fFASTSIMSH
x,y − fCONTACTx,y | is used as the quantity of interest to be assessed,

and is presented in Fig. 9 as a function of the percentage of the total tested
cases. The absolute error is found to be less than approximately 0.1 in all the
cases. For the normalised lateral contact forces fy, this reduces to below 0.04
for 80% of the tested cases. For the normalised longitudinal contact forces fx,
the absolute error is comparatively higher and reduces to below 0.06 for around
30% of the tested cases. The weighted parabolic traction bound can also be
observed to offer a better representation of the creep forces as compared to the
semi-ellipsoidal traction bound.

4 Conclusion

The FASTSIM algorithm has been adapted to be used in the case of steady state
non-Hertzian contact by using the local geometric properties of the interacting
bodies. The paper addresses the fine details of this extrapolation by using the
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so called FASTSIMSH algorithm, which was first presented by Ayasse & Chollet
in [10]. The results are presented by comparing the tangential tractions, their
directions, and the stick-slip zone division with the fully detailed method used in
the program CONTACT [11], for a non-elliptical wheel-rail contact case. The in-
fluence of the choice of traction bound is investigated, and the parabolic traction
bound is shown to provide a better representation of the stick-slip zone, which is
in accordance with the previous studies in [2,12]. However, as the parabolic trac-
tion bound may sometimes lead to cases where the Coulomb’s law is violated, a
weighted parabolic traction bound is used in the presented results.

The longitudinal and lateral forces are plotted for a range of creepage values,
considering the pure spin and pure creepage conditions. A design of experi-
ment has been constructed using 8000 simulations for different combinations of
the three creepages. The absolute error in the normalised creep forces, as com-
pared to the CONTACT results, is used as the quantity of interest. The error
in normalised creep forces is found to be less than approximately 0.1 for all the
simulations in the considered non-Hertzian contact case, which seems to agree
relatively well with the performance of FASTSIM algorithm for Hertzian contact
cases [12]. When considering the lateral creep forces, this error drops to below
0.04 for around 80% of the tested cases, while the same is true for around 20%
of the longitudinal creep force values.

From the point of view of implementation in MBS codes, the FASTSIMSH

method provides a relatively straightforward approach, with the global param-
eters used in the original FASTSIM approach replaced by their local values. As
the basic principle remains more or less the same, FASTSIMSH is as fast as the
original algorithm. FASTSIM is already widely used in the railway industry, and
using the presented method should offer a good procedure for its extension to
non-Hertzian contact patches.
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