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Introduction

In multi-body simulation (MBS) codes, the quasi-identity assumption enables the separation of the normal and the tangential wheel-contact problems. The rolling contact problem can then be solved sequentially: the normal contact followed by the tangent one [START_REF] Kalker | Rolling contact phenomena: Linear elasticity[END_REF]. Several approximate tangential contact approaches have been developed in recent years with the aim of being implemented in MBS software packages. The tangential contact forces are commonly computed with the FASTSIM algorithm [START_REF] Kalker | A fast algorithm for the simplified theory of rolling contact[END_REF], assuming a steady state. The simplified theory behind FASTSIM is based on the computation of the coefficients c ij with the help of Kalker's exact linear theory, which are derived from the initial slope of the tangent forces applied on an elliptical contact patch for small creepage values. Other fast methods such as the Vermeulen-Johnson model [START_REF] Vermeulen | Contact of non-spherical elastic bodies transmitting tangential forces[END_REF], the Shen-Hedrick-Elkins model [START_REF] Shen | A comparison of alternative creep force models for rail vehicle dynamic analysis[END_REF], the Book of Tables by Kalker (USETAB) [START_REF] Kalker | Book of tables for the Hertzian creep-force law[END_REF], Polach's model [START_REF] Polach | A fast wheel-rail forces calculation computer code[END_REF], and the method FaStrip [START_REF] Sichani | An alternative to FASTSIM for tangential solution of the wheel-rail contact[END_REF] may also be used. The main drawback for all of the above cited methods is that they remain restricted to elliptical contact patches, although FaStrip has been extended to non-Hertzian patches [START_REF] Sichani | A fast wheel-rail contact model for application to damage analysis in vehicle dynamics simulation[END_REF].

Broadly, two approaches may be used to extend FASTSIM type algorithms to non-elliptical contact cases [START_REF] Piotrowski | A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations[END_REF]: either by regularising the non-Hertzian contact patch to a single equivalent ellipse, or by extrapolating the original algorithm to a non-elliptic patch [START_REF] Piotrowski | A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations[END_REF][START_REF] Ayasse | Determination of the wheel rail contact patch in semi-Hertzian conditions[END_REF]. An approach based on local strip properties was briefly introduced along with the semi-Hertzian normal contact method in [START_REF] Ayasse | Determination of the wheel rail contact patch in semi-Hertzian conditions[END_REF], and is further detailed in this paper.

We begin by reviewing the original FASTSIM algorithm based on Kalker's simplified theory [START_REF] Kalker | A fast algorithm for the simplified theory of rolling contact[END_REF]. The extension of this algorithm to treat steady state non-Hertzian contact cases is detailed. The tangential stresses, their directions, and the stick-slip division results are presented by considering the contact problem between worn profiles of the wheel-rail pair S1002-UIC60. The obtained results are compared to the reference results from the program CONTACT [START_REF] Vollebregt | User guide for CONTACT, rolling and sliding contact with friction[END_REF]. The longitudinal, lateral and resultant creep forces are also plotted for a range of values considering the pure spin, pure creepage cases and a combination of all three creepages within a range of realistic values, and similarly compared to CONTACT, before the final conclusions.

2 From FASTSIM over an ellipse to FASTSIM over strips

The simplified theory

The FASTSIM algorithm based on Kalker's simplified theory [START_REF] Kalker | Rolling contact phenomena: Linear elasticity[END_REF][START_REF] Kalker | A fast algorithm for the simplified theory of rolling contact[END_REF] is perhaps the most widely used method in railway industry codes for evaluating the tangential contact parameters. The idea of the simplified theory is to replace the elastic body by a set of independent springs. Similar to a Winkler foundation, the tangential surface tractions p and the tangential surface displacements u at a given point are assumed to be linearly proportional through a flexibility parameter L. Thus,

u = Lp . (1) 
In a steady state, the relative slip s is defined as,

s = w - ∂u ∂x , (2) 
with x being the rolling direction in the local reference system. The creepages w at a given point of coordinates [x,y] are defined as,

w = [ν x -yϕ ν y + xϕ] , (3) 
where ν x , ν y , and ϕ are the longitudinal, lateral, and spin creepages respectively.

The slip s is first assumed to be zero in Eq. ( 2) and the adhesion region is supposed to cover the entire contact area. From Eqs. ( 2) and (3), the longitudinal and lateral displacements u x and u y are then given as,

u x = (ν x -ϕy)(x -a i ) , (4) 
u y = ν y (x -a i ) + ϕ 2 (x 2 -a 2 i ) , (5) 
where a i denotes the half-length of the contact patch at the ith y-coordinate.

The contact patch considered in the FASTSIM theory is Hertzian. Integrating the expressions for the displacements over this elliptical contact area C with semi-axes a and b gives,

C u x dS = - 8 3 a 2 bν x , (6) 
C u y dS = - 8 3 a 2 bν y - π 4 a 3 bϕ . (7) 
Kalker's linear theory establishes the following expressions for the creep forces in terms of the three creepages,

F x = C p x dS = -Gabc 11 ν x , (8) 
F y = C p y dS = -Gabc 22 ν y -G(ab) 3 2 c 23 ϕ , (9) 
where G is the modulus of rigidity, and c 11 , c 22 , and c 23 are Kalker's coefficients, which are functions of the Poisson's ratio ν and the ellipse ratio b/a. The linear theory is exact for tiny values of creepages. By multiplying the Eqs. ( 8) and [START_REF] Piotrowski | A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations[END_REF] for the creep forces by the flexibility parameter L, and by comparing them with the Eqs. ( 1), [START_REF] Polach | A fast wheel-rail forces calculation computer code[END_REF], and (7), we obtain, not one, but instead three expressions for L,

L x = 8a 3Gc 11 , L y = 8a 3Gc 22 , L ϕ = πa a/b 4Gc 23 . ( 10 
)
The expressions of the non-saturated shears p ns are given as,

p x,ns = - 3 8 Gc 11 ν x - 4 π Gc 23 b a yϕ a i -x a , (11) 
p y,ns = - 3 8 Gc 22 ν y a i -x a + 2 π Gc 23 √ abϕ a 2 i -x 2 a 2 . ( 12 
)
These expressions correspond to the formulation with three flexibilities given in Eq. [START_REF] Ayasse | Determination of the wheel rail contact patch in semi-Hertzian conditions[END_REF], although an alternate formulation is also possible using only one flexibility parameter [START_REF] Kalker | A fast algorithm for the simplified theory of rolling contact[END_REF]. For the total forces, the use of three flexibilities has been shown to offer better accuracy over using a single flexibility for a range of parameter values (creepages & aspect ratio) that occur for realistic vehicles [START_REF] Vollebregt | Fastsim2: A second-order accurate frictional rolling contact algorithm[END_REF].

In the FASTSIM algorithm, the ellipse is discretised into strips with coordinate y i , of width δy and length 2a i . The ith strip itself is discretised into elements of length δx i as shown in Fig. 1. For each ith strip, the tangential tractions p are deduced iteratively, starting from the leading edge (j = 0) where the tractions vanish to zero. The expression for the tractions p a , with adhesion being first assumed at element j, is given by,

p ij,a = p ij-1 -δx i ∂p ij,ns ∂x . ( 13 
)
The magnitude of the traction vector p ij at element [i, j] is limited by the traction bound, which is Coulomb's law applied locally,

p ij = p ij,a if ||p ij,a || ≤ µp n , (14) 
p ij = p ij,a ||p ij,a || µp n if ||p ij,a || > µp n , ( 15 
)
where µ is the friction coefficient, and p n is the normal pressure. 

Extension of FASTSIM for non-Hertzian contact patches

To extend FASTSIM to non-elliptical patches, certain modifications must be introduced in the expressions presented in the previous section. First, the spin term ϕ associated with the longitudinal creepage ν x in Eq. ( 3) vanishes, and the creepages at a given lateral coordinate y i become,

w i = [ν xi ν yi + xϕ i ] , (16) 
where the subscript i indicates local values for each strip. The neglected term from Eq. ( 3) accounts for the rolling radius variation, which will be considered in the local expression for the longitudinal creepage ν xi . If the contact angle γ i does not vary much over the patch, and if the spin creepage is supposed to be purely geometric, the contribution of the spin in the longitudinal component of w i can be approximated as,

y i ϕ ≈ - y i sin γ i R 0 = δr i R 0 , ( 17 
)
where R 0 is the rolling radius and δr i is the rolling radius variation. Subsequently, the local expression for ν xi , as shown in Fig. 2, is given as,

ν xi = ν x - δr i R 0 . ( 18 
)
The assumption made in Eqs. [START_REF] Vollebregt | Comments on 'the Kalker book of tables for non-Hertzian contact of wheel and rail[END_REF][START_REF] Vollebregt | Assessing the accuracy of different simplified frictional rolling contact algorithms[END_REF] still introduces a slight approximation of the linear theory in the Eqs. [START_REF] Vollebregt | User guide for CONTACT, rolling and sliding contact with friction[END_REF][START_REF] Vollebregt | Fastsim2: A second-order accurate frictional rolling contact algorithm[END_REF] for non-saturated shears [START_REF] Ayasse | Determination of the wheel rail contact patch in semi-Hertzian conditions[END_REF]. The spin creepage is supposed to be purely geometric,

ϕ i = - sin γ i R 0 , ( 19 
)
and the lateral creepage in each strip is similarly given as,

ν yi = ν y cos γ i . (20) 
The Eqs. [START_REF] Vollebregt | User guide for CONTACT, rolling and sliding contact with friction[END_REF][START_REF] Vollebregt | Fastsim2: A second-order accurate frictional rolling contact algorithm[END_REF] for non-saturated shears p ns are modified by defining each parameter as a function of local curvatures,

p x,ns = - 3 8 Gc 11i ν xi a i a a i -x a i , (21) 
p y,ns = - 3 8 Gc 22i ν yi a i a a i -x a i - 2 π Gc 23i n i m i ϕ i a i a i a a 2 i -x 2 a 2 i , (22) 
where m and n denote the Hertzian coefficients for the longitudinal and lateral semi-axes respectively. For non-elliptical patches, the ratio of the longitudinal semi-axes a i /a is replaced by a coefficient k i , between zero and one, whose value is a i /a in the case of an elliptical patch.

For convenience, the original FASTSIM algorithm is developed using normalised creepages as input, which are defined as the ratio of the non-saturated forces by the Coulomb's limit, both expressed over the ellipse [START_REF] Kalker | A fast algorithm for the simplified theory of rolling contact[END_REF]. A similar procedure is used when extending FASTSIM to non-elliptical patches, the difference being that the normalised creepages are expressed for each individual strip. In order to derive the expressions of these entries of FASTSIM, the non-saturated forces F i,ns are deduced from the summation of expressions (21-22) over each strip. Thus,

F xi,ns = - 3 4 Gc 11i a i k i δy i ν xi , (23) 
F yi,ns = - 3 4 Gc 22i a i k i δy i ν yi - 8 3π Gc 23i a 2 i k i n i m i δy i ϕ i . (24) 
The normalised forces f i,ns , and the associated normalised creepages A xi , A yi , and A ϕi are finally defined as,

f xi,ns = F xi,ns µ i N i = -A xi , (25) 
f yi,ns = F yi,ns µ i N i = -A yi -A ϕi , (26) 
where N i denotes the normal force acting over each strip. The final adjustment to the original FASTSIM algorithm concerns the choice of the traction bound. Here, several possibilities may be explored: taking the traction bound either as parabolic or semi-ellipsoidal in the longitudinal x direction. According to Hertz theory, p n is semi-ellipsoidal. However, a parabolic traction bound has been shown to present better results in terms of the division of the stick-slip zones [START_REF] Kalker | A fast algorithm for the simplified theory of rolling contact[END_REF][START_REF] Vollebregt | Fastsim2: A second-order accurate frictional rolling contact algorithm[END_REF]. Through some mathematical manipulation, the expression of the normal pressure distribution p n,p corresponding to the choice of a parabolic traction bound in terms of normal force per strip is given as,

p n,p = 32 9π k i 3 4 
N i a i δy i a 2 i -x 2 a 2 i . (27) 
Similarly, the expression for the semi-ellipsoidal normal pressure distribution p n,e is given as,

p n,e = 2 π N i a i δy i a 2 i -x 2 a 2 i . ( 28 
)
Using a parabolic expression can sometimes lead to cases where the shears exceed the elliptic traction limit, which in turn implies that Coulomb's law is violated. The normalised output from the presented approach are thus weighted using the Hertzian expression to be coherent with Coulomb's theory. The weighing process consists in multiplying the shear stresses obtained using the FASTSIM with a parabolic traction bound by the ratio p n,e /p n,p .

Results

Worn profiles of wheel-rail pair S1002-UIC60 (1:40) [START_REF] Shackleton | Comparison of wheel-rail contact codes for railway vehicle simulation: an introduction to the Manchester contact benchmark and initial results[END_REF], as shown in Fig. 3, are chosen to investigate the tangential contact stresses and the stick-slip zone division using the approach described in the previous section. The curvatures are processed following procedure described in [START_REF] Ayasse | Determination of the wheel rail contact patch in semi-Hertzian conditions[END_REF]. To differentiate the presented method from the original FASTSIM algorithm, the extended method is subsequently referred to as FASTSIM SH , where the subscript denotes the idea of the semi-Hertzian approach. The nominal rolling radius is taken as 460 mm. The material properties are those of steel, with the modulus of rigidity G = 82670 MPa, and the Poisson's ratio ν = 0.27. The coefficient of friction µ is taken as 0.3. A multi-body simulation of the passenger vehicle from the Manchester Benchmark [START_REF] Iwnicki | Manchester benchmarks for rail vehicle simulation[END_REF] running on a curved track is used to obtain the steady state input parameters for the FASTSIM SH algorithm. The normal contact force is 64.7 kN. The lateral position of the wheel over the rail t y = 5.8 mm, where a positive value indicates an outward movement of the wheel. The creepage values are taken as ν x = 0.58 ‰, ν y = 0.061 ‰, and ϕ = 0.274 m -1 , with the origin located at the point of geometrical contact. The results are validated using the program CONTACT [START_REF] Vollebregt | User guide for CONTACT, rolling and sliding contact with friction[END_REF], which is based on Kalker's complete theory [START_REF] Kalker | Rolling contact phenomena: Linear elasticity[END_REF] for the contact between two elastic half-spaces. The normal contact results for the considered wheel position and normal contact force using CONTACT, the semi-Hertzian approach from [START_REF] Ayasse | Determination of the wheel rail contact patch in semi-Hertzian conditions[END_REF], and the Hertzian theory are presented in Fig. 4.

The tangential stresses, their directions and the stick-slip zone division using the various available options are presented in Fig. 5. The advantage of using a parabolic traction bound as opposed to a semi-ellipsoidal one is clear, which is also consistent with the results obtained by Kalker [START_REF] Kalker | A fast algorithm for the simplified theory of rolling contact[END_REF] and Vollebregt [START_REF] Vollebregt | Fastsim2: A second-order accurate frictional rolling contact algorithm[END_REF]. Nev- ertheless, as stated previously, the parabolic traction bound sometimes results in cases where the tractions exceed Coulomb's limit. The weighted parabolic traction bound ensures that the condition max(p) µpn ≤ 1 is verified for all cases. The contact stresses and directions using the weighted parabolic setting can be observed to be in a relatively good agreement with the reference results obtained using CONTACT. The presented approach also provides an adequate estimation of the stick and slip zones, which is denoted using the solid line. In MBS codes, the creep forces rather than the contact stresses are used during online vehicle dynamics simulations. The original FASTSIM algorithm provides a good fast estimation of the tangent forces, which is one of the reasons for its popularity. To evaluate the performance of extended FASTSIM SH algorithm, the creep forces are evaluated for a range of values of the creepages, considering the case of pure spin, where ν x = ν y = 0, and pure creepage, where ν x = ν y and ϕ = 0. As the normal contact results when using the S1002-UIC60 vary considerably for small variations of the wheel position t y (e.g. see the comparison of normal wheel-rail contact methods in [START_REF] Qazi | A semi-analytical numerical method for modelling the normal wheel-rail contact[END_REF]), we restrict ourselves to the contact patches presented in Fig. 4 to focus on the behaviour of the tangential contact algorithm. The results are presented in Fig. 6 and Fig. 7 respectively, using the setting of a weighted parabolic traction bound for the FASTSIM SH algorithm. The FASTSIM results are calculated using the Hertzian solution at the geometrical contact point. The comparison is not entirely fair in the pure spin case because in FASTSIM, the origin is at the centre of the contact ellipse, which is the same as the pressure centre of gravity, leading to zero F x . On the contrary, in FASTSIM SH the origin is not at the pressure centre of gravity. It is also possible to take into account this shift of origin with FASTSIM in Eq. ( 3) [START_REF] Vollebregt | Comments on 'the Kalker book of tables for non-Hertzian contact of wheel and rail[END_REF], however as the general comparison in this study is made with respect to the original algorithm [START_REF] Kalker | A fast algorithm for the simplified theory of rolling contact[END_REF], we do not opt for this choice. In the pure spin case (Fig. 6), the normalised longitudinal creep forces |F x |/µN , denoted as f x , computed using FASTSIM SH can be observed to be slightly overestimated for higher values of the spin creepage. This isn't surprising and may be attributed to the assumption made in Eqs. [START_REF] Vollebregt | Comments on 'the Kalker book of tables for non-Hertzian contact of wheel and rail[END_REF][START_REF] Vollebregt | Assessing the accuracy of different simplified frictional rolling contact algorithms[END_REF]. The normalised lateral creep forces can be seen to be in good agreement with the reference results, although the FASTSIM algorithm leads to an overestimation in this case. The creep forces in the pure creepage setting (Fig. 7) are generally observed to be in better agreement with the CONTACT results for both algorithms. As the pure spin and pure creepage cases are largely theoretical, we can additionally consider a combination of all three creepages within a range of realistic values. The longitudinal and lateral creepages are assumed to vary between 0 to 2 ‰, and the spin creepage from 0 to 2 m -1 . In the statistical studies presented in [START_REF] Vollebregt | Assessing the accuracy of different simplified frictional rolling contact algorithms[END_REF] and [START_REF] Vollebregt | Fastsim2: A second-order accurate frictional rolling contact algorithm[END_REF] for Hertzian contact patches, the ellipse ratio is considered as an additional varying parameter. Introducing a contact patch parameter in a non-Hertzian case is not so simple, where the normal contact results differ considerably depending on the method that is used [START_REF] Qazi | A semi-analytical numerical method for modelling the normal wheel-rail contact[END_REF], and is therefore not considered in this study. A design of experiments is constructed with 8000 simulations, using the FASTSIM SH algorithm with both the semi-ellipsoidal and weighted parabolic traction bounds, and the program CONTACT for different combinations of the creepages acting on the contact patches presented in Fig. 5. The normalised creep forces are presented in Fig. 8.

The absolute error in the normalised creep forces with respect to CONTACT

|f F AST SIM SH x,y -f CON T ACT x,y
| is used as the quantity of interest to be assessed, and is presented in Fig. 9 as a function of the percentage of the total tested cases. The absolute error is found to be less than approximately 0.1 in all the cases. For the normalised lateral contact forces f y , this reduces to below 0.04 for 80% of the tested cases. For the normalised longitudinal contact forces f x , the absolute error is comparatively higher and reduces to below 0.06 for around 30% of the tested cases. The weighted parabolic traction bound can also be observed to offer a better representation of the creep forces as compared to the semi-ellipsoidal traction bound.

Conclusion

The FASTSIM algorithm has been adapted to be used in the case of steady state non-Hertzian contact by using the local geometric properties of the interacting bodies. The paper addresses the fine details of this extrapolation by using the so called FASTSIM SH algorithm, which was first presented by Ayasse & Chollet in [START_REF] Ayasse | Determination of the wheel rail contact patch in semi-Hertzian conditions[END_REF]. The results are presented by comparing the tangential tractions, their directions, and the stick-slip zone division with the fully detailed method used in the program CONTACT [START_REF] Vollebregt | User guide for CONTACT, rolling and sliding contact with friction[END_REF], for a non-elliptical wheel-rail contact case. The influence of the choice of traction bound is investigated, and the parabolic traction bound is shown to provide a better representation of the stick-slip zone, which is in accordance with the previous studies in [START_REF] Kalker | A fast algorithm for the simplified theory of rolling contact[END_REF][START_REF] Vollebregt | Fastsim2: A second-order accurate frictional rolling contact algorithm[END_REF]. However, as the parabolic traction bound may sometimes lead to cases where the Coulomb's law is violated, a weighted parabolic traction bound is used in the presented results. The longitudinal and lateral forces are plotted for a range of creepage values, considering the pure spin and pure creepage conditions. A design of experiment has been constructed using 8000 simulations for different combinations of the three creepages. The absolute error in the normalised creep forces, as compared to the CONTACT results, is used as the quantity of interest. The error in normalised creep forces is found to be less than approximately 0.1 for all the simulations in the considered non-Hertzian contact case, which seems to agree relatively well with the performance of FASTSIM algorithm for Hertzian contact cases [START_REF] Vollebregt | Fastsim2: A second-order accurate frictional rolling contact algorithm[END_REF]. When considering the lateral creep forces, this error drops to below 0.04 for around 80% of the tested cases, while the same is true for around 20% of the longitudinal creep force values.

From the point of view of implementation in MBS codes, the FASTSIM SH method provides a relatively straightforward approach, with the global parameters used in the original FASTSIM approach replaced by their local values. As the basic principle remains more or less the same, FASTSIM SH is as fast as the original algorithm. FASTSIM is already widely used in the railway industry, and using the presented method should offer a good procedure for its extension to non-Hertzian contact patches.
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 1 Fig. 1. FASTSIM discretisation
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 2 Fig.2. Description of the longitudinal creepage νxi for a strip located in yi.[START_REF] Ayasse | Determination of the wheel rail contact patch in semi-Hertzian conditions[END_REF] 
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 3 Fig. 3. Nominal and worn profiles described in the tangent plane (top) and the lateral B curvature (bottom) for the wheel-rail pair S1002-UIC60 at position ty = 5.8 mm
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 4 Fig. 4. Contact area (left), and the maximum normal pressure distribution at xc = 0 mm (right) for the wheel position ty = 0 mm.
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 5 Fig. 5. Tangential tractions, their directions, and the stick-slip zone division. From top left, in clockwise direction: 1) CONTACT, 2) FASTSIMSH with semi-ellipsoidal traction bound, 3) FASTSIMSH with weighted parabolic traction bound, and 4) FASTSIMSH with parabolic traction bound.
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 6 Fig. 6. Normalised creep forces: pure spin (νx = νy = 0)
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 7 Fig. 7. Normalised creep forces: pure creepage (νx = νy, ϕ = 0)
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 89 Fig. 8. Comparison of the normalised contact forces computed with the FASTSIMSH algorithm w.r.t. CONTACT