

IR and UV Spectroscopy of Neutral Ion Pairs

Eric Gloaguen

Biomolecular Structures Group Paris-Saclay University, France

Spectroscopy and Dynamics of Molecules and Clusters (SDMC) 2019 Shimla, 21-24 february 2019

I. Ion pairing in solution

Ion pairs are found in sea water, aerosols, biological media...

Characterization of the ion pair distribution is challenging:

- Co-existence of all types of pairs and free ions
- Short lifetimes

 \longrightarrow

Supramolecular objects in electrolyte solutions are poorly known

Experiments in solution document macroscopic effects, but struggle to characterize individual objects

----> In turn, mass-selective and conformer-selective techniques in the gas phase can provide a characterization of these objects

I. Neutral ion pairs in the gas phase

Alkali Halides Heating

Microwave spectroscopy

Matrix isolation spectroscopy Laser spectroscopy in molecular jet Groen Kovacs **Vibrational spectroscopy** (2010) Dedonder-Lardeux, Grégoire, Jouvet, Martrenchard, Solgadi **Chemical Review** (2000)

 $[\text{Emim}]^+ [\text{Tf}_2\text{N}]^-$

Distillation at 300°C under reduced pressure to purify ionic liquids

Earle, Esperança, Gilea, Canongia Lopes, Rebelo, Magee, Seddon, Widegren **Nature** (2006)

Photoelectron spectroscopy

Strasser, Goulay, Kelkar, Maginn, Leone JPCA (2007)

He droplet IR spectroscopy

Obi, Leavitt, Raston, Moradi, Flynn, Vaghjiani, Boatz, Chambreau, Douberly **JPCA** (2013)

Double resonance IR/UV spectroscopy

Cooper, Zolot, Boatz, Sporleder, Stearns JPCA (2013)

Vacuum chamber

Energy Early expansion Early expansion Late expansion Internal coordinates •Sample preparation: compound mixed with graphite, and pressed into a solid pellet

• Laser desorption: hot species in the gas phase with limited fragmentation

• Cooling in the supersonic expansion (He/Ne): complexes are trapped in one or more conformations

• Analysis of the conformational populations by IR and UV spectroscopy in the interaction region of a time-of-flight mass spectrometer

II. Gas phase experiment

II. (Li⁺, PA⁻)_g

Habka, Brenner, Mons, Gloaguen JPCL (2016)

- I. Introduction
- II. IR spectroscopy
- III. UV spectroscopy

IV. Perspectives of gas phase experiments

Spectroscopy and Dynamics of Molecules and Clusters (SDMC) 2019 Shimla, 21-24 february 2019

II. IR spectroscopy of (M⁺, PA⁻)_g

II. IR spectroscopy of (M⁺, PA⁻)_g

increase is consistent with a weakening of the cation-anion interaction along the alkali series

BSSE-corrected-Full-CCSD(T)/dhf-TZVPP// RI-B97-D3/dhf-TZVPP

III. Accuracy of mode-dependent scaled vibrational frequencies

III. Conformational exploration of ion pairs in solution

Biased Monte-Carlo Exploration lon(s) at the polarizable force field level (AMOEBA) 3 solvation shells Explicit water molecules Acetate 2 external frozen solvation shells K^+ Na⁺ Li +

Density ~ 1.02

III. Geometry optimization – Frequency calculations

Geometry optimizations Frequency calculations (RI-B97-D3/dhf-TZVPP)

Sampling

Averaged frequencies Averaged intenisties Spectral width

 $AcO^{-}M^{+} nH_{2}O$; $n \in [100;140]$

Density ~ 1.02 Concentration ~ 0.4 mol L^{-1}

The splitting Δv^{a-s} increases when the carboxylate group is in an increasingly asymetric environment

- Theoretical frequencies and intensities (area) reproduce the experimental data within the expected error
- Theoretical spectral width of the antisymmetric is underestimated (temperature effects are not included in the theoretical model)

III. Theoretical spectra of ion pairs: case of 3 | 3 structures with sodium

→ The formation of SIPs induces a red-shift of the (CO₂-)^{anti} stretch transition

CIPs do not have necessarily a vibrational signature very different from SIPs

III. Theoretical spectra of ion pairs: case of 3 2 structures with sodium

 \rightarrow The formation of CIPs induces a blue-shift of the $(CO_2^{-})^{anti}$ stretch transitions

III. Theoretical spectra of ion pairs between acetate and sodium: Conclusions

III. Theoretical vs experimental spectra

The red-shift observed from 0.3 M on both (CO₂⁻)^{sym} and (CO₂⁻)^{anti} is assigned to SIP formation

The change of slope around 2 M is assigned to CIP formation

Conclusions

This approach enables us to assign specific supramolecular structures in solution and give typical concentration ranges

- I. Introduction
- II. IR spectroscopy
- III. UV spectroscopy

IV. Perspectives of gas phase experiments

Spectroscopy and Dynamics of Molecules and Clusters (SDMC) 2019 Shimla, 21-24 february 2019

The change of geometry does not explain the red-shift of the $\pi \rightarrow \pi^*$ transition

RI-B97-D3/dhf-TZVPP

II. Internal Stark effect

Stark spectroscopy of the phenyl ring at very high electric field (up to ~4 GV m⁻¹)

II. Molecular flexibility wihtin ion pairs

RI-B97-D3/dhf-TZVPP

II. Experimental vs. Theoretical conformational landscape

Anions Cations			
Li+	 ✓ Exp: O-O Th: O-O 	✓ 0-0O-0	 ✓ 0-0 + 0-0-π 0-0 + 0-0-π
Na ⁺	✓ 0-0O-0	<mark>0-0</mark> Ο-0 + Ο-Ο-π	 ✓ 0-0 + 0-0-π O-0 + 0-0-π
Κ+	0-0 ★ 0-0 + 0-0-π	 ✓ 0-0 + 0-0-π O-0 + 0-0-π 	
Rb+	0-0 ★ 0-0 + 0-0-π		
Cs⁺	0-0 × 0-0 + 0-0-π		

Inconsistent results between experiment and theory

II. Benchmarks for quantum chemistry

II. Benchmarks for quantum chemistry

K⁺-{carbon in para position} distance (pm)

II. Fragmentation

- I. Introduction
- II. IR spectroscopy
- III. UV spectroscopy

IV. Perspectives of gas phase experiments

Spectroscopy and Dynamics of Molecules and Clusters (SDMC) 2019 Shimla, 21-24 february 2019 Laser Desorption + R2PI : the peptide case

Excitation of states of the neutral followed by a rapid relaxation efficiently quenching ionization

Laser Desorption + R2PI : the ion pair case

A more dramatic decrease is observed for ion pairs !

Laser Desorption + R2PI : the ion pair case

A more dramatic decrease is observed for ion pairs !

Laser Desorption + R2PI : the ion pair case

A more dramatic decrease is observed for ion pairs !

System window for ion pairs is very narrow...

IV. Energy Diagram of ion pairs

A. Quenching of ionization by relaxation of superexcited states of the neutral

Add an IR laser to improve the ionization signal ...40% increase only, work in progress...

Monitoring the fragmentation channels leading to neutral atoms
… next slide …

B. Short lifetime of the π - π * states

Lifetime measurements ...work in progress...

IV. Shedding light on dark channels

Conclusions

Dark states may not be the only explanation to the loss of ion signal

IV. Shedding light on dark channels

Ionization of sodium atoms in the molecular beam scale with the ion pair signal !

Several parameters have been tested (solvent for sample preparation, graphite:salt ratio, way of mixing) but no improvement has been observed

Conclusions

Vaporization may be the main factor contributing to the loss of signal in the case of ion pairs, additional critical parameters need to be explored to improve vaporization efficiency

- \checkmark IR spectroscopy of gas phase neutral ions pairs are useful to solution phase studies
- ✓ The flexibility of molecular ions involved in strong interactions (500 kJ mol⁻¹) can be investigated by conformer-selective techniques
- ✓ Isolated ion pairs open an original approach for Electronic Stark Spectroscopy of UV chromophores at high electric field (4 GV m⁻¹)

Acknowledgements

Biomolecular structures group

Marie GELEOC

Michel MONS

Eric GLOAGUEN

Gildas GOLDSZTEJN Valérie BRENNER Benjamin TARDIVEL

Jeremy DONON

Venkateswara-rao MUNDLAPATI

II. IR/UV double resonance spectroscopy

I. Ion pairing at play in Biology

The non-linear behaviour reveals the existence of ion pairs

Lack of knowledge of the microscopic properties of these systems, and their role in Biology

Biophysical Chemistry (2006, 2012)

II. Competition between cation-anion and cation- π interactions

 \longrightarrow B97-D structures are accurate enough les signatures vibrationnelles caractéristiques des familles O-O et O-O- π

Marshall, Steele, Thanthiriwatte, Sherrill JPCA (2009)

Gas phase studies show that changing the cation lead to the same spectral shift that the one observed in solution which is assigned to a change of ion pair type.

IV. Flushing out dark states

Sodium phenylvalerate (Na⁺ PV⁻)

Conclusions

Ns lasers are probably not fast enough to compete efficiently with the relaxation process

3. Theoretical treatment of conformational cooling

Spectroscopy is carried out at very low temperature where the time needed to reach a conformational equilibrium is much longer than the experimental timescale!

Ac-Ala-Ala-O-Bn

- The compromise between cooling rate and isomerization rate must be modeled in order to account for conformational distribution
- The « cheap » treatment of the interface experiment/theory on conformational distribution must be used with great care

Eigen mechanism (1962) and current modelling: more than electrostatic

- Explicit treatment of solvent molecules is needed to properly account for ion pairing
- The formation of ion pair is determined by
 - ✓ Concentration
 - ✓ Density of charge of the cation and the anion (Law of Matching Water Affinities)

Collins Biophysical Chemistry (1997)

Ion pairing and biomolecules

 \rightarrow What about ion pairing with biomolecules?

Molecular structure (Intramolecular salt bridges in proteins)

- Recognition (Intermolecular salt bridges between Protein-DNA)
- Cristallization (kidney stones)

Protein cristallization /precipitation/salting out (neutralization by contact pairing)

Quel crédit donner au spectre réalisé à basse concentration?

----> Expériences réalisées à l'ICMMO (Pr. D. J. Aitken): non reproductibilité des spectres publiés.

Conclusions

- Les espèces majoritaires à 2 M sont toujours les ions libres
- La non reproductibilité et les erreurs d'attribution viennent probablement des techniques de mesure employées (épaisseurs capillaires, fenêtres AgCl, techniques basées sur l'absorption des ondes évanescentes)

Quel crédit donner au spectre réalisé à basse concentration?

----> Expériences réalisées à l'ICMMO (Pr. D. J. Aitken): non reproductibilité des spectres publiés.