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process from continuous and discrete observations

Sara Mazzonetto∗ and Paolo Pigato†

July 20, 2021

Abstract

We refer by threshold Ornstein-Uhlenbeck to a continuous-time threshold autore-
gressive process. It follows the Ornstein-Uhlenbeck dynamics when above or below
a fixed level, yet at this level (threshold) its coefficients can be discontinuous. We
discuss (quasi)-maximum likelihood estimation of the drift parameters, both as-
suming continuous and discrete time observations. In the ergodic case, we derive
consistency and speed of convergence of these estimators in long time and high fre-
quency. Based on these results, we develop a test for the presence of a threshold
in the dynamics. Finally, we apply these statistical tools to short-term US interest
rates modeling.

Keywords: Threshold diffusion, maximum likelihood, regime-switching, self-exciting
process, interest rates, threshold Vasicek Model.
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1 Introduction

We consider the diffusion process solution to the following stochastic differential equation
(SDE)

Xt = X0 +

∫ t

0

σ(Xs) dWs +

∫ t

0

(b(Xs)− a(Xs)Xs) ds, t ≥ 0, (1.1)

with piecewise constant volatility coefficient, possibly discontinuous at r ∈ R,

σ(x) = σ+1{x≥r} + σ−1{x<r} (1.2)

and similarly piecewise affine drift coefficient

b(x) = b+1{x≥r} + b−1{x<r} and a(x) = a+1{x≥r} + a−1{x<r} (1.3)
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Strong existence of a unique solution to (1.1) follows from the results of Le Gall [1985].
Separately on (r,∞) and (−∞, r), the process follows the Ornstein-Uhlenbeck (OU) dy-
namics which, in the context of interest rates modeling, is referred to as Vasicek model.
Following this nomenclature, Decamps et al. [2006] refer to (1.1) as Self Exciting Threshold
(SET) Vasicek model. Su and Chan [2015, 2017] refer to such model as threshold diffusion
(TD) or first-order continuous-time threshold autoregressive model (see also [Tong, 1990]).
Note that if a± > 0, the drift points towards b−/a− when Xs is below the threshold r,
towards b+/a+ when Xs is above r, and the process is ergodic. However, we allow here a
null linear part (a+ = 0 or a− = 0).

In this paper we discuss the asymptotic behavior of maximum likelihood estima-
tors (MLE) and quasi-maximum likelihood estimators (QMLE) for the drift parameters
(a−, a+, b−, b+), both from continuous and discrete time observations. Let N be the num-
ber of equally spaced observations and TN the time horizon. In the ergodic case, if
TN → ∞ and T 2

N/N → 0 as N → ∞, we prove a central limit theorem (CLT) giving
the convergence of the estimators with speed

√
TN to the real parameters, i.e. asymptotic

normality (see Theorem 2 below). To the best of our knowledge, this is the first result of
this kind for TDs (SDEs with discontinuous -drift and diffusion- coefficients).
The discontinuity in the coefficients makes it difficult to pass from discrete to continuous
time observations. Indeed, a precise analysis of the error hinges on the behavior of cer-
tain discretizations of the local time of the diffusion at the threshold. We also prove, for
fixed time horizon, that the discrete (Q)MLE based on N observations converges in high
frequency to the continuous (Q)MLE, with speed N1/4 (see Theorem 3 below). This slow
convergence of the discrete (Q)MLE to the continuous (Q)MLE follows from the slow
convergence, with speed N1/4, of the discretization of the local time.
Based on these results we provide a test to decide whether a threshold is present in the
dynamics. Finally we use these tools to analyze short term US interest rates.

Literature review. Su and Chan [2015, 2017] study the asymptotic behavior of the
continuous time QMLE of a TD with drift as in (1.3) and piecewise regular diffusivity.
In particular, they construct a hypothesis test to decide whether the drift is affine or
piecewise affine.

The estimation of the volatility parameters σ± in (1.1) from high-frequency data is
studied in [Lejay and Pigato, 2018] and the drift estimation in case a± = 0 in [Lejay and
Pigato, 2020]. In the purely linear drift case b± = 0, Kutoyants [2012] studies the problem
of identifying the threshold parameter r and Dieker and Gao [2013] and the related stream
of research consider similar models, with r = 0 (so that the drift function is continuous)
in a multidimensional setting. The (related) problem of drift estimation in a skew OU
process is considered in [Xing et al., 2020].

In this document the coefficients are discontinuous and the behavior at r hard to
handle; we do so using the discretization results in [Mazzonetto, 2019]. The convergence
in high frequency and long time for estimators of discretely observed diffusions have been
discussed e.g. in [Kessler, 1997, Ben Alaya and Kebaier, 2013, Amorino and Gloter, 2020],
but to the best of our knowledge ours is the first such result in the case of discontinuous
coefficients.

Yu et al. [2020] study numerically an approximate MLE (AMLE) from discrete time
observations simultaneously for threshold, drift and diffusion coefficients of threshold dif-
fusions including OU process or CIR model. They compare their AMLE with QMLE,
showing numerical evidence for consistency. The recent preprint [Hu and Xi, 2020] con-
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siders a generalized moment estimator for a TD which is discretely observed, with fixed
time lag.

Threshold autoregressive (TAR) models in discrete time were introduced by H. Tong
in the early 1980s [Tong, 1983, 2011, 2015]. Within this class, self-exciting TAR (SETAR)
models rely on a spatial segmentation, with a change in the dynamics according to the
position of the process, below or above a threshold, and can be seen as a discrete analogue
to the TD. We refer to [Chan, 1993, Rabemananjara and Zakoian, 1993, Yadav et al., 1994,
Brockwell and Williams, 1997, Chen et al., 2011] and references therein for this class of
econometric models and related inference problems.

Diffusion processes have been widely used to model interest rate dynamics, celebrated
classical examples being [Vasicek, 1977, Cox et al., 1985, Hull and White, 1990, Black
and Karasinski, 1991]. These models are designed to capture the fact that interest rates
are typically mean reverting, see [Wu and Zhang, 1996]. However, non linear effects
(e.g. multimodality) are not captured by these models. Ait-Sahalia [1996] shows that
mean-reversion for interest rates is strong outside a middle region, suggesting the existence
of a target band. This is similar to what is observed in exchange rates [Krugman, 1991]
and explainable with policy adjustments in response to changes in such rates. There is
evidence for a “normal” low-mean regime and an “exceptional” high-mean regime, and
in general for bi-modality (or even multi-modality) in interest rate dynamics, that one
can model using TD (1.3). In general, non-linearities and regime changes in short-term
interest rates have been widely documented, and several threshold models have been
proposed both in discrete and continuous time, see [Gray, 1996, Pfann et al., 1996, Ang
and Bekaert, 2002a,b, Kalimipalli and Susmel, 2004, Gospodinov, 2005, Ang et al., 2008,
Archontakis and Lemke, 2008a,b]. We refer to [Decamps et al., 2006] and bibliography
therein for a thorough discussion of SET diffusions in interest rate modeling. In recent
years TDs have been used in several aspects of financial modeling, such as option pricing
[Lipton and Sepp, 2011, Gairat and Shcherbakov, 2016, Dong and Wong, 2017, Lipton,
2018, Pigato, 2019] and time series modeling [Ang and Timmermann, 2012, Lejay and
Pigato, 2019]. TD models for interest rates have been considered in [Pai and Pedersen,
1999, Decamps et al., 2006, Su and Chan, 2015, 2017]. In this paper, we focus on (Q)MLE
estimation of such models, and in particular on inference from high frequency observations
and their convergence to continuous time estimators, as well as their convergence in long
time to real values of the parameters.

Outline. In Section 2 we present our main results on convergence of drift estimators
for threshold OU. In Section 3 we implement the estimators, discuss threshold estimation
and testing and work with US interest rates data. Proofs are collected in Section A.

2 (Quasi) maximum likelihood estimation

In the entire section, let X be the process strong solution to (1.1) where W is a Brownian
motion and X0 is independent of W (e.g., X0 is deterministic).
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2.1 Maximum and quasi-maximum likelihood estimator from
continuous time observations

We assume in this section to observe the process on the time interval [0, T ], T ∈ (0,∞).
For T ∈ (0,∞) and m = 0, 1, 2, we define

M±,m
T :=

∫ T

0

Xm
s 1{±(Xs−r)≥0} dXs and Q±,mT :=

∫ T

0

Xm
s 1{±(Xs−r)≥0} ds (2.1)

and take as likelihood function the Girsanov weight

GT (a+, b+, a−, b−) = exp

(∫ T

0

b(Xs)− a(Xs)Xs

(σ(Xs))2
dXs −

1

2

∫ T

0

(b(Xs)− a(Xs)Xs)
2

(σ(Xs))2
ds

)
.

We also consider a quasi-likelihood defined as in [Su and Chan, 2015] as

ΛT (a+, b+, a−, b−) =

∫ T

0

b(Xs)− a(Xs)Xs dXs −
1

2

∫ T

0

(b(Xs)− a(Xs)Xs)
2 ds. (2.2)

Theorem 1. Let ± ∈ {+,−}.

i) For every T ∈ (0,∞) the MLE and QMLE are given by(
α±T , β±T

)
=
(

M±,0T Q±,1T −Q±,0T M±,1T

Q±,0T Q±,2T −(Q±,1T )2
,

M±,0T Q±,2T −Q±,1T M±,1T

Q±,0T Q±,2T −(Q±,1T )2

)
. (2.3)

Assume now that the process is ergodic.

ii) The following law of large numbers (LLN) holds: (α±T −a±, β
±
T −b±)

a.s.−−−→
T→∞

0, i.e., the

estimator is consistent.

iii) The following CLT holds:
√
T
(
α±T − a±, β±T − b±

) stably−−−→
T→∞

N± =
(
N±,α, N±,β

)
where

(
N+,α, N+,β

)
and

(
N−,α, N−,β

)
are two independent, independent of X,

two-dimensional Gaussian random variables with covariance matrices respectively
σ2

+Γ−1
+ and σ2

−Γ−1
− where

Γ± :=

(
Q
±,2
∞ −Q±,1∞

−Q±,1∞ Q
±,0
∞

)
, (2.4)

and Q
±,i
∞ , i ∈ {0, 1, 2} are real constants such that limt→∞

Q±,it

t

a.s.
= Q

±,i
∞ (explicit

expressions for such constants are given in next Lemma 2; more details on stable
convergence can be found in Remark 1 below).

iv) The LAN property holds for the likelihood evaluated at the true parameters (a+, b+, a−, b−)

with rate of convergence 1√
T

and asymptotic Fisher information Γ =

(
σ−2

+ Γ+ 0R2×2

0R2×2 σ−2
− Γ−

)
.

Remark 1. The notion of stable convergence was introduced by Rényi [1963]. We refer to
[Jacod and Shiryaev, 2003] or [Jacod and Protter, 2012] for a detailed exposition. In this
document we just mention that this notion of convergence is stronger than convergence
in law, but weaker than convergence in probability. We use in this paper the following
crucial property: for random variables Yn, Zn (n ≥ 1), Y and Z,

if Zn
stably−−−→
n→∞

Z and Yn
P−−−→

n→∞
Y then (Yn, Zn)

stably−−−→
n→∞

(Y, Z). (2.5)
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2.2 Maximum and quasi-maximum likelihood estimator from
discrete observations

We assume in this section to observe the process on the discrete time grid i∆N , i =
0, . . . , N with step ∆N = T

N
, for N ∈ N, T ∈ (0,∞). We define Xi := Xi∆N

with
i = 0, . . . , N .

The discrete versions of (2.1) are defined as follows: for m = 0, 1, 2, let

M±,m
T,N :=

N−1∑
k=0

Xm
k 1{±(Xk−r)≥0}(Xk+1 −Xk), and Q±,mT,N := ∆N

N−1∑
k=0

Xm
k 1{±(Xk−r)≥0}.

(2.6)
We refer with discretized likelihood to

GT,N(a+, b+, a−, b−) = exp

(N−1∑
i=0

(b(Xi)− a(Xi)Xi)

σ(Xi)2
(Xi+1−Xi)−

∆N

2

N−1∑
i=0

(b(Xi)− a(Xi)Xi)
2

σ(Xi)2

)
.

and with discretized quasi-likelihood (corresponding to (2.2)) to

ΛT,N(a+, b+, a−, b−) =
N−1∑
i=0

(b(Xi)− a(Xi)Xi)(Xi+1 −Xi)−
∆N

2

N−1∑
i=0

(b(Xi)− a(Xi)Xi)
2.

For N ∈ N, T ∈ (0,∞), let(
â±T,N , b̂±T,N

)
=

(
M±,0T,NQ±,1T,N−Q

±,0
T,NM±,1T,N

Q±,0T,NQ±,2T,N−(Q±,1T,N )2
,

M±,0T,NQ±,2T,N−Q
±,1
T,NM±,1T,N

Q±,0T,NQ±,2T,N−(Q±,1T,N )2

)
. (2.7)

Theorem 2. Let (TN)N∈N be a sequence in (0,∞). For all N ∈ N, let ∆N above be

TN/N , let â±TN ,N , b̂
±
TN ,N

be defined as in (2.7).

i) For every N ∈ N the vector (â+
TN ,N

, b̂+
TN ,N

, â−TN ,N , b̂
−
TN ,N

) maximizes both the likelihood
GTN ,N(a+, b+, a−b−) and the quasi-likelihood ΛTN ,N(a+, b+, a−b−).

Assume now that the process is ergodic and that X is the stationary solution to (1.1), i.e.
X0 follows the stationary distribution (cf. (A.2)). Moreover, assume

lim
N→∞

TN =∞ and lim
N→∞

TN/N = 0.

ii) The following LLN holds: (â±TN ,N , b̂
±
TN ,N

)
P−−−→

N→∞
(a±, b±) (the estimator is consis-

tent).

iii) If limN→∞ T
2
N/N = 0, the following CLT holds:√
TN

(
â±TN ,N − a±, b̂±TN ,N − b±

)
stably−−−→
N→∞

N± =
(
N±,α, N±,β

)
where

(
N+,α, N+,β

)
and

(
N−,α, N−,β

)
are as in Theorem 1.

iv) If limN→∞ T
2
N/N = 0, the LAN property holds for the discretized likelihood evaluated

at the true parameters with rate of convergence 1√
TN

and asymptotic Fisher informa-
tion Γ as in Theorem 1.
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The next result states that, for fixed time horizon, in high frequency, the estimator
from discrete observations converges, with an “anomalous” speed, towards the estimator
from continuous observations. Let Y : Ω × [0,∞) → R be a semi-martingale, let r ∈ R,
and let T ∈ [0,∞). Then we recall that

LrT (Y ) = lim
ε→0

1

2ε

∫ T

0

1{−ε≤Ys−r≤ε}d〈Y 〉s (2.8)

is the symmetric local time of Y at r, up to time T .

Theorem 3. Let T ∈ (0,∞) be fixed.

i) For every N ∈ N, the likelihood GT,N(a+, b+, a−b−) and the quasi-likelihood ΛT,N(a+, b+, a−b−)

are both maximal at (â+
T,N , b̂

+
T,N , â

−
T,N , b̂

−
T,N) given in (2.7).

ii) It holds that (â+
T,N , b̂

+
T,N , â

−
T,N , b̂

−
T,N)

P−−−→
N→∞

(α+
T , β

+
T , α

−
T , β

−
T ) and

N1/4
(

(â+
T,N , b̂

+
T,N , â

−
T,N , b̂

−
T,N)− (α+

T , β
+
T , α

−
T , β

−
T )
)

stably−−−→
N→∞

√
4

3
√

2π

σ2
− + σ2

+

σ− + σ+

(
Q+,1
T − rQ+,0

T

Q+,0
T Q+,2

T − (Q+,1
T )2

,
Q+,2
T − rQ+,1

T

Q+,0
T Q+,2

T − (Q+,1
T )2

,

− Q−,1T − rQ−,0T

Q−,0T Q−,2T − (Q−,1T )2
,− Q−,2T − rQ−,1T

Q−,0T Q−,2T − (Q−,1T )2

)
BLrT (X)

(2.9)

with B Brownian motion independent of X and LrT (X) symmetric local time of X at
r, up to time T (see (2.8)).

Remark 2. The right hand side of (2.9) has the same law as

√
4

3
√

2π

σ2
− + σ2

+

σ− + σ+


(

Q+,2
T −Q+,1

T

−Q+,1
T Q+,0

T

)−1 (
0 0
0 0

)
(

0 0
0 0

) (
Q−,2T −Q−,1T

−Q−,1T Q−,0T

)−1



−r
1
r
−1

√LrT (X)B1.

Remark 3. One usually expects such discretizations to converge with speed
√
N . In this

case, the lower speed of convergence is due to the discontinuity in the coefficients, and
appears in connection with the local time. Indeed, the asymptotic behavior of the esti-
mators is intrinsically related to the one of the local time of the process at the threshold.
More precisely the difference M±,m

T,N −M±,m
T , m = 0, 1 can be rewritten involving terms

LrT,N −LrT (X), where LrT,N is the following approximation of the local time from discrete
time observations

LrT,N := 2
N−1∑
i=0

1{(XiT/N−r)(X(i+1)T/N−r)<0}|X(i+1)T/N − r| (2.10)

for N ∈ N (see equation (A.13) for a more precise statement).

Remark 4 (The skew OU process). Let us consider the solution to the following SDE
involving the local time

Yt = Y0 +

∫ t

0

σ̄(Ys) dWs +

∫ t

0

(
b̄(Ys)− ā(Ys)Ys

)
ds+ β̄Lr̄t (Y ), t ≥ 0, (2.11)
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with β̄ ∈ (−1, 1) and piecewise constant functions σ̄, ā, b̄ possibly discontinuous at the
threshold r̄ ∈ R, as in (1.2) and (1.3).

Xing et al. [2020] assume β̄ and σ̄ known and consider drift parameters estimation
for Y , based on discrete observations, in the case of constant σ̄, ā, b̄ coefficients and local
time at 0. In this setting, Y is referred to as “skew OU process” (see also [Feng, 2016]).

Consider now the more general case of σ̄, ā, b̄ as in (1.2) and (1.3). If we assume that
only β̄ is known, all the results in Section 2 on drift estimation for X hold similarly for
drift estimation of Y . This follows from the fact that a simple transformation allows us
to reduce the skew OU to a threshold OU with threshold at 0, getting rid of the local
time in the dynamics.

3 Threshold estimation, testing and interest rates

We simulate the threshold OU process using the Euler scheme [Bokil et al., 2020] (an
alternative approach for simulation consists in discretizing space instead of time, cf. [Ding
et al., 2020]) and use the estimator based on discrete observations. The implementation
has been done using R. Parameters are as in Table 1. In Figure 1 we see an example of

r b− b+ a− a+ σ− σ+

0.01 −0.002 0.003 0.1 0.11 0.011 0.01

Table 1: Simulations parameters.

the CLT in Theorem 2. In Figure 2 we see an example of the convergence in Theorem 3,
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Figure 1: CLT in Theorem 2.(iii), with parameters as in Table 1. We plot the theoretical
distribution of the estimation error (dashed line) and compare with the distribution of the
error on n = 103 trajectories, with T = 103 and N = 106 observations on each trajectory.

using that (2.9) can be rewritten as

N1/4
( â±T,N − α

±
T

Q±,1T − rQ
±,0
T

,
b̂±T,N − β

±
T

Q±,2T − rQ±,1T

)√ 3
√

2π

4LrT (X)

σ− + σ+

σ2
− + σ2

+

(Q±,0T Q±,2T − (Q±,1T )2)
stably−−−→
N→∞

±B1.

(3.1)

To estimate the local time LrT (X) and the occupation times Q±,iT , we use the discrete
time estimators in (2.10) and (2.6). If we want to simulate a stationary version of process
(1.1), we can simulate X0 using explicit stationary density (A.2) or running the process
until large time T and then using the r.v. XT as initial condition. In Figure 3 we compare
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Figure 2: Convergence in Theorem 3, with parameters as in Table 1. We compare on
n = 100 trajectories the distribution of the left hand side of (3.1), where T = 1 and
N = 500 discrete observations, with a standard Gaussian (dashed line).

the empirical distribution obtained in this way with the theoretical stationary density.
This constitutes an example of bi-modal stationary distribution (density) with two peaks,
corresponding to the two different mean reversion levels.
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Figure 3: Theoretical invariant density in (A.2) vs empirical distribution of XT , with
T = 103, with N = 106 discretization steps in Euler scheme, on n = 103 trajectories.
Parameters are as in Table 1.

3.1 On threshold estimation

The estimation results in Section 2 suppose the previous knowledge of the threshold. In
practice, this assumption is not realistic and the threshold r has to be estimated as well.
In [Su and Chan, 2015], threshold QMLE from continuous observations is shown to be
T -consistent. We implement here also the analogous threshold MLE, and we directly
consider discrete observations starting from the convergence results in Theorem 2.

Given N discrete observations of one trajectory up to time TN , we proceed as follows.
First, for a given threshold r, we compute (Q)MLE (â±, b̂±)TN ,N , and denote this esti-

mator (â±, b̂±)rTN ,N . For each fixed r, we can then compute the quasi-likelihood function
ΛTN ,N . We can also compute the likelihood function GTN ,N , after estimating σ± using the
quadratic variation estimators in [Lejay and Pigato, 2018]. We take c to be the δ-percentile
and d the 1 − δ percentile of the observed data (in the implementation we always take
δ = 0.15 and vary r on a discrete grid). Maximizing now the (quasi-)likelihood function
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over r ∈ [c, d] we obtain the (Q)MLE of the threshold, r̂. The estimator of all the drift

parameters is then (r̂, (â±, b̂±)r̂TN ,N).
We display a sample trajectory in Figure 4, together with the threshold estimated on

that trajectory and mean reversion levels. Estimated parameters are in Table 2 (cf. with

Figure 4: A sample trajectory with parameters as in Table 1, T = 103 and N = 106 time
steps, and the results of estimation of both threshold and parameters, using MLE. On
the left, we show the log-likelihood (on the x-axis) as a function of the threshold (on the
y-axis), in order to visualize the procedure for threshold estimation described in Section
3.1. On the right, we show estimated vs actual threshold level and mean reversion levels
b−/a− and b+/a+.

simulation parameters in Table 1). Note that MLE and QMLE give the same parameter

parameter r b− b+ a− a+ b−/a− b+/a+

MLE and QMLE 0.0109 −0.00222 0.00403 0.119 0.138 −0.0186 0.0292

Table 2: Estimated drift parameters corresponding to Figure 4. Note that in this case,
the threshold maximizing MLE and QMLE is the same (on the discrete grid we consider),
but this is not necessarily the case. With the same threshold, also estimates for a±, b±
are the same, from Theorem 2.(i).

estimates once the threshold is fixed (Theorem 2.(i)). However, when maximizing also
over the choice of the threshold, the MLE can also account of a possible change in the
volatility, and this may give a different choice of the threshold. The model with different
volatilities (SET Vasicek) is used by Decamps et al. [2006]. Su and Chan [2015, 2017] use
the QMLE, so their drift estimator does not account of possible changes in the volatility.

3.2 Testing for treshold

We aim to test the presence of a threshold in the diffusion dynamics. Su and Chan
[2017] propose a test for the presence of a threshold based on quasi-likelihood ratio.
Here, we derive a test from the CLT in Theorem 2.(iii); therefore, we suppose that its
assumptions are satisfied. Moreover, we assume that the threshold parameter r is given.
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In applications, a natural choice for r will be the (Q)MLE r̂. With fixed threshold, we

can estimate the drift parameters obtaining (â±TN ,N , b̂
±
TN ,N

). From Theorem 2.(iii), if T 2
N/N

goes to 0 as N →∞,√
TN

(
(â+
TN ,N

− â−TN ,N)− (a+ − a−), (̂b+
TN ,N

− b̂−TN ,N)− (b+ − b−)
)

stably−−−→
N→∞

N+−N− (3.2)

which is a centered Gaussian vector with covariance matrix given by Σ := σ2
+Γ−1

+ +σ2
−Γ−1
− ,

invertible from Cauchy-Schwarz inequality. The inverse matrix Σ−1 can be expressed as a
function of σ± and Q±,i∞ . Note that σ± can be estimated from one observed trajectory using
quadratic variation as in [Lejay and Pigato, 2018] and Q±,i∞ can be estimated computing

1
TN

Q±,iTN ,N
as Riemann sums on the observed trajectory, from (2.4). We denote Σ̂−1 the

estimate of Σ−1 obtained from these estimations.
To test for the presence of a threshold in the drift we consider hypothesis{

H0 : Null hypothesis (a+, b+) = (a−, b−)

H1 : Alternative hypothesis (a+, b+) 6= (a−, b−).

Under the null hypothesis the statistics

TN

(
(â+
TN ,N

− â−TN ,N), (̂b+
TN ,N

− b̂−TN ,N)
)

Σ̂−1

(
(â+
TN ,N

− â−TN ,N)

(̂b+
TN ,N

− b̂−TN ,N)

)
converges to a χ2 distribution with 2 degrees of freedom. We reject H0 if the statistics is
larger than qα, where qα is the quantile of a χ2 distribution with two degrees of freedom
such that P(χ2

2 ≥ qα) = α.
To conclude, note that (3.2) similarly allows to test separately the presence of a thresh-

old in a(·) or in b(·), i.e. testing for the presence of a discontinuity in the piecewise linear
or in the piecewise constant part of the drift.

3.3 Interest rate analysis

We consider the 3 months US Treasury Bill rate, time series of daily closing rate on period
Jan 04, 1960 - Apr 29, 2020 (source: Yahoo Finance). We perform quasi-maximum and
maximum likelihood estimation using (2.7), adopting the convention that the “daily”
time interval is dt = 0.046 months, while one month is the time unit. The number of
observations is N = 15057, whereas T ≈ 60 years. We choose as percentile for the search
of the threshold δ = 0.15. We report both our MLE and QMLE parameters.

We see in Figure 5 (bottom) that in the case of QMLE our result is consistent with
the one in [Su and Chan, 2015], so that the estimation identifies two regimes. One is low
rates, with negligible drift, so that in this regime the process is almost a martingale. In
the high regime, a stronger reversion to lower rates is ensured by the drift when the rates
are very high. When - in Figure 5 (top) - we use MLE (with σ± estimated using quadratic
variation), the estimation identifies a low regime corresponding to the period of extremely
low rates, with minimal fluctuations, that followed the 2007-2008 financial crisis, whereas
almost all the rest of the time series is in the high regime. Volatilities thus estimated are
σ− = 0.186 in the low regime, σ+ = 0.453 in the high regime. With this choice, the mean
reverting effect looks non-negligible both above and below the threshold.

In this analysis, following Su and Chan [2015, 2017], we estimated our model param-
eters on the whole period 1960-2020. From an econometric perspective, it is natural to
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Figure 5: 3 months US Treasury Bill rate, time series of daily closing rate on period Jan
04, 1960 - Apr 29, 2020. In the top figure we use the MLE, in the bottom figure the
QMLE. On the right hand side we show log-likelihood and quasi-likelihood as a function
of the threshold. On the right hand side we show estimated threshold levels (solid grey
line) and mean reversion levels b−/a− and b+/a+ (dashed grey line).

wonder whether it is reasonable to assume the stationarity of the process on such a long
time interval. To address this issue, we consider within the period 2010-2020 five two-
years time windows, with daily observations as before. With this choice, T 2 ≈ N , and
therefore we expect from Theorem 2 that the discretization error should be negligible,
assuming that T ≈ 2 years is large enough for the theorem to apply.

With with 1% significance level, only in the subperiod Jan 2018-Dec 2019 the H0

hypothesis (absence of a threshold in the parameters) is not rejected. In all other time
windows (2010-2011, 2012-2013, 2014-2015, 2016-2017) we conclude that a threshold is
present. In Figure 6 we see three examples of estimation in such windows. In order to
check whether such test is reliable on time series with such sample sizes, we tried the
same procedure (selection of threshold and successive test with 1% significance level) on
simulated time series with parameters and sample sizes of the same order as the estimated
ones. We found that when there is no threshold present (constant parameters) H0 is
rejected 14% of the times, when the threshold is present (non-constant parameters) H0 is
rejected 96% of the times, which seems to confirm the validity of the procedure, even in
these smaller time windows.

11



parameter r b− b+ a− a+ b−/a− b+/a+

MLE 0.919 0.0469 0.0492 0.284 0.0106 0.165 4.63
QMLE 6.73 0.00131 0.417 0.00115 0.0481 1.14 8.67

Table 3: Estimated drift parameters corresponding to Figure 5.

Figure 6: 3 months US Treasury Bill rate, time series of daily closing rate on periods
Jan, 2010 - Dec 2012, Jan, 2014 - Dec 2016, Jan, 2018 - Dec 2020. Estimated threshold
level and mean reversion levels given by QMLE. Each time window consists in 24 months,
with 22 observations per month. Our test concludes that a threshold in the dynamics is
present in every time window, except Jan, 2018 - Dec 2020.

A Proofs

A.1 The regimes of the process

In this section, we establish for which values of the coefficients (a±, b±) the process X
is (positively or null) recurrent or transient. Since X is a one-dimensional diffusion it is
characterized by two quantities: scale function S and speed measure.
X is recurrent if and only if limx→+∞ S(x) = +∞ and limx→−∞ S(x) = −∞, otherwise it
is transient. Moreover a recurrent process is positive recurrent if the speed measure is a
finite measure, otherwise null recurrent.

The scale density is continuous, unique up to a multiplicative constant, and its deriva-

tive satisfies S ′(x) = exp
(
−
∫ x
r

2(b(y)−a(y)y)
(σ(y))2 dy

)
. It follows that X is recurrent if and only

if [(a+ > 0 and b+ ∈ R) or (a+ = 0 and b+ ≤ 0)] and [(a− > 0 and b− ∈ R) or (a− = 0
and b− ≥ 0)]. The complementary leads to transience.

The density of the speed measure with respect to the Lebesgue measure is given by
m(x) := 2

(σ(x))2S′(x)
. It is discontinuous if and only if σ2 is so. Assume X is recurrent. The

speed measure is a finite measure, and so X is positive recurrent, if and only if

[(a+ > 0 and b+ ∈ R) or (a+ = 0 and b+ < 0)]

and [(a− > 0 and b− ∈ R) or (a− = 0 and b− > 0)].
(A.1)

See Lemma 1 below. In these cases, the process is actually ergodic and the stationary
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distribution µ is equal to the renormalized speed measure:

µ(dx) =
m(x)∫∞

−∞m(y) dy
dx. (A.2)

Lemma 1. Let ± ∈ {−,+} and let

m± :=

√
π

σ±
√
a±

exp

(
a±
σ2
±

(
b±
a±
− r
)2
)

erfc

(
∓
√
a±

σ±

(
b±
a±
− r
))

. (A.3)

Then ∫ ∞
−∞

1{±(y−r)≥0}m(y) dy =


+∞ if a± = 0 and b± = 0,

1
|b±| if a± = 0 and ∓ b± > 0,

m± if a± > 0 and b± ∈ R.

Lemma 2. Assume the process is ergodic. Let m−,m+, given by (A.3), b± = 1/|b±|,
± ∈ {−,+}, and µ be the stationary distribution. For all i ∈ {0, 1, 2} let Q

±,i
∞ be the

constant such that Q
±,i
∞

a.s.
= limt→∞

Qi,±t
t
∈ R. We have the following explicit formulas:

• if a+ > 0, a− > 0, b−, b+ ∈ R then

Q
±,0
∞ =

m±
m+ + m−

, Q
±,1
∞ =

1

m+ + m−

(
b±
a±

m± ±
1

a±

)
, and

Q
±,2
∞ =

1

m+ + m−

((
b2
±

a2
±

+
σ2
±

2a±

)
m± ±

(
b±
a±

+ r

)
1

a±

)
;

• if a+ = 0, a− = 0, b+ < 0, b− > 0 then

Q
±,0
∞ =

b±
b+ + b−

, Q
±,1
∞ =

b±
b+ + b−

(
r ±

σ2
±

2
b±

)
, and

Q
±,2
∞ =

b±
b+ + b−

(
r2 ± rσ2

±b± +
σ4
±

2
(b±)2

)
;

• a+ > 0, b+ ∈ R, a− = 0, b− > 0 then

Q
+,0

∞ =
m+

m+ + b−
, Q

−,0
∞ =

b−
m+ + b−

Q
+,1

∞ =
1

m+ + b−

(
b+

a+

m+ +
1

a+

)
, Q

−,1
∞ =

b−
m+ + b−

(
r −

σ2
−

2
b−

)
,

Q
+,2

∞ =
1

m+ + b−

((
b2

+

a2
+

+
σ2

+

2a+

)
m+ +

(
b+

a+

+ r

)
1

a+

)
, and

Q
−,2
∞ =

b−
m+ + b−

(
r2 − rσ2

−b− +
σ4
−

2
(b−)2

)
;
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• a+ = 0, b+ < 0, a− > 0, b− ∈ R then

Q
+,0

∞ =
b+

b+ + m−
, Q

−,0
∞ =

m−
b+ + m−

Q
+,1

∞ =
b+

b+ + m−

(
r +

σ2
+

2
b+

)
, Q

−,1
∞ =

1

b+ + m−

(
b−
a−

m− −
1

a−

)
,

Q
+,2

∞ =
b+

b+ + m−

(
r2 + rσ2

+b+ +
σ4

+

2
(b+)2

)
, and

Q
−,2
∞ =

1

b+ + m−

((
b2
−

a2
−

+
σ2
−

2a−

)
m− −

(
b−
a−

+ r

)
1

a−

)
.

A.2 Proof of Theorem 1

Proof of Item (i) of Theorem 1. Let θ := (a+, b+, a−, b−). It holds that

ΛT (θ) =
∑

±∈{−,+}

(
b±M

±,0
T − a±M±,1

T − 1

2

(
b2
±Q

±,0
T + a2

±Q
±,2
T − 2a±b±Q

±,1
T

))
. (A.4)

To find the maximum we compute the derivatives with respect to a±, b± and observe
that the gradient has a unique singular point given by (2.3) and the Hessian is negative
definite.

Moreover the fact that ∂a±ΛT = σ2
±∂a± logGT and ∂b±ΛT = σ2

±∂b± logGT shows that
the MLE for the drift parameters will be the same as the QMLE, i.e. (2.3).

In order to study the asymptotic behavior of the estimator we introduce a different
expression for the estimators in (2.3) based on the following notation. Given T ∈ (0,∞),
let

Q±,iT :=

∫ T

0

|Xs − r|i1{±(Xs−r)≥0} ds and M±,j
T := σ±

∫ T

0

|Xs − r|j−11{±(Xs−r)≥0} dWs

with i ∈ {0, 1, 2}, j ∈ {1, 2}. Observe that (1.1) yields for i ∈ {0, 1}:

M±,i
T = riM±,1 ± iM±,2 + b±Q

±,i
T − a±Q

±,i+1
T . (A.5)

Moreover, Q±,0T = Q±,0T , Q±,1T = ±
(
Q±,1T ± rQ±,0T

)
, and Q±,2T = Q±,2T ± 2rQ±,1T + r2Q±,0T .

Lemma 3. Let T ∈ (0,∞). The MLE and QMLE can be expressed asα
±
T = a± ±

Q±,1T M±,1T −Q±,0T M±,2T

Q±,2T Q±,0T −(Q±,1T )2

β±T = b± +
(Q±,2T ±rQ±,1T )M±,1T −(Q±,1T ±rQ±,0T )M±,2T

Q±,2T Q±,0T −(Q±,1T )2
,

(A.6)

that can be rewritten as(
α±T
β±T

)
=

(
a±
b±

)
+

(
0 ∓1
1 ∓r

)(
Q±,0T Q±,1T

Q±,1T Q±,2T

)−1(
M±,1

T

M±,2
T

)
. (A.7)

Proof. Note that Q±,0T Q±,2T − (Q±,1T )2 = Q±,0T Q±,2T − (Q±,1T )2 which is P-a.s. positive by
Cauchy-Schwarz. This and replacing the equalities (A.5) in (2.3) completes the proof.

14



Proof of Item (ii) of Theorem 1. Follows from combining equation (A.6) in Lemma 3
with [Lépingle, 1995, Theorem 1, p.150] and Lemma 2.

Proof of Item (iii) of Theorem 1. Follows from Lemma 2, (2.4), and Theorem 2.2 in
[Crimaldi and Pratelli, 2005].

Proof of Item (iv) of Theorem 1. Let us denote by (a+, b+, a−, b−) the vector of the true
parameters and (∆a±,∆b±)±∈{−,+} the small perturbations. Note that

log
GT (a+ + 1√

T
∆a+, b+ + 1√

T
∆b+, a− + 1√

T
∆a−, b− + 1√

T
∆b−)

GT (a+, b+, a−, b−)

=
∑

±∈{+,−}

( 1√
Tσ2
±
A±T ·

(
∆a±
∆b±

)
− 1

2Tσ4
±

(
∆a±
∆b±

)
· 〈A±, A±〉T

(
∆a±
∆b±

))
.

where A±T :=

(
−r ∓1
1 0

)(
M±,1

T

M±,2
T

)
. Indeed (A.5) ensures that, at the true parameters

(a±, b±), the gradient is σ2
±A
±
T and

〈(
A+

A−

)
,

(
A+

A−

)〉
T

= −
(
σ2

+HT (a+, b+) 0R2×2

0R2×2 σ2
−HT (a−, b−)

)
where HT is given HT (a±, b±) :=

(
−Q±,2T +Q±,1T

+Q±,1T −Q±,0T

)
. Lemma 2 and the same argument

as in the proof of Theorem 1.(iii) show that

1√
T

(
σ−2

+ A+
T

σ−2
− A−T

)
law−−−→
T→∞

N (0,Γ) and
1

T

〈(
σ−2

+ A+

σ−2
− A−

)
,

(
σ−2

+ A+

σ−2
− A−

)〉
T

a.s.−−−→
T→∞

Γ.

A.3 Proof of Theorem 2

The proof of Item (i) of Theorem 2 is analogous to the proof of Item (i) of Theorem 1,
therefore omitted. The proof of Items (ii)-(iii) of Theorem 2 follows from Lemma 4 below.
Let us be more precise. For all N ∈ N it holds(

â±TN ,N − a±, b̂
±
TN ,N

− b±
)

=
(
â±TN ,N − α

±
TN
, b̂±TN ,N − β

±
TN

)
+
(
α±TN − a±, β

±
TN
− b±

)
.

The second term of the sum is handled with Theorem 1 (more precisely Item (iii)) provid-
ing the desired limit distribution. The first instead can be rewritten, using equations (2.3)
and (2.7), as an expression which involves only terms of the kind(

Q±,iTN ,N

Q±,0TN ,N
Q±,2TN ,N

− (Q±,1TN ,N
)2
−

Q±,iTN

Q±,0TN
Q±,2TN

− (Q±,1TN
)2

)
M±,j

TN
+

Q±,iTN ,N
(M±,j

TN ,N
−M±,j

TN
)

Q±,0TN ,N
Q±,2TN ,N

− (Q±,1TN ,N
)2

for j ∈ {0, 1}, i ∈ {0, 1, 2},
Combining Lemma 4 with Lemma 2 and Theorem 2.2 in [Crimaldi and Pratelli, 2005]

ensures, the consistency of the estimator if TN/N → 0 as N → ∞, and if T 2
N/N → 0 as

N →∞ then it implies also that√
TN

(
â±TN ,N − α

±
TN
, b̂±TN ,N − β

±
TN

)
P−−−→

N→∞
0.
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Lemma 4. Assume the process is ergodic. Let X be the solution to (1.1), with X0

distributed as the stationary distribution µ in (A.2), let λ ∈ {1, 2} be fixed, and let

(TN)N∈N ⊂ (0,∞) be a sequence satisfying, as N → ∞, that TN → ∞ and
TλN
N
→ 0.

Then for all m ∈ {0, 1, 2}, j ∈ {0, 1} it holds

lim sup
N→∞

T
−1/λ
N E

[
|Q±,mTN

−Q±,mTN ,N
|
]

= 0 and lim sup
N→∞

T
−1/λ
N E

[
|M±,j

TN
−M±,j

TN ,N
|
]

= 0

where Q±,mTN
, Q±,mTN ,N

, M±,j
TN

, M±,j
TN ,N

are defined in (2.1) and (2.6).

Proof. Without loss of generality, we reduce to prove the statement for threshold r =
0. Indeed the quantities Q±,mTN

− Q±,mTN ,N
and M±,m

TN
−M±,m

TN ,N
for the process X (with

threshold r) can be written as linear combination (coefficients depending on m and r) of
the same quantities for the process X − r (which solves (1.1) with threshold 0 and new
drift coefficients b±− a±r and a±). We keep denoting as b± (instead of b±− a±r) and a±
the drift coefficients. In this proof we use the round ground notation btc∆N

:= k TN
N

for

t−k TN
N
∈ [0, TN

N
). Moreover, without loss of generality, we assume TN ≤ N for all N ∈ N.

Let us first note that for m = 0, 1, 2:

Q±,mTN
−Q±,mTN ,N

= ∓
∫ TN

0

sgn(Xbtc∆N )Xm
btc∆N

1{Xbtc∆N Xt<0} dt+

∫ TN

0

(Xm
t −Xm

btc∆N
)1{±Xt>0} dt

therefore E
[
|Q±,mTN

−Q±,mTN ,N
|
]
≤
∫ TN

0
E
[
|Xbtc∆N |

m1{Xbtc∆N Xt<0}

]
+ E

[
|Xm

t −Xm
btc∆N

|
]

dt.

Analogously observe that for m = 0, 1 it holds

M±,m
TN
−M±,m

TN ,N
=

∫ TN

0

(Xm
t 1{±Xt>0} −Xm

btc∆N
1{±Xbtc∆N >0})(b(Xt)− a(Xt)Xt) dt

+

∫ TN

0

(Xm
t 1{±Xt>0} −Xm

btc∆N
1{±Xbtc∆N >0})σ(Xt) dWt.

Let us rewrite the integrand as

Xm
t 1{±Xt>0} −Xm

btc∆N
1{±Xbtc∆N >0} = (Xm

t −Xm
btc∆N

)1{±Xt>0} − sgn(Xbtc∆N )Xm
btc∆N

1{XtXbtc∆N <0}.

Triangular inequality, Hölder’s inequality, and Itô-isometry imply that

E
[
|M±,m

TN
−M±,m

TN ,N
|
]
≤
∫ TN

0

E
[
|Xm

t −Xm
btc∆N

|(|b±|+ a±|Xbtc∆N |+ a±|Xt −Xbtc∆N |)
]

dt

+

∫ TN

0

E
[
|Xbtc∆N |

m1{XtXbtc∆N <0}(|b−| ∨ |b+|+ (a− ∨ a+)(|Xbtc∆N |+ |Xt −Xbtc∆N |)
]

dt

+
√

2(σ− ∨ σ+)

(∫ TN

0

E
[
(Xm

t −Xm
btc∆N

)2 +X2m
btc∆N

1{XtXbtc∆N <0}

]
dt

)1/2

.

Hence, the proof of Lemma 4, reduces to prove two inequalities:∫ TN

0

E
[
|Xt −Xbtc∆N |

j|Xbtc∆N |
m
]

dt is o(T
1/λ
N ) for all j ∈ {1, 2, 4},m ∈ {0, 1, 2}, (A.8)

∫ TN

0

E
[
|Xbtc∆N |

m1{Xbtc∆N Xt<0}

]
dt is o(T

1/λ
N ) for m ∈ {0, 1, 2, 3, 4}. (A.9)
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Step 1. Given s ∈ [0,∞) and t ∈ [0, TN
N

], we show that for every j ∈ {1, 2, 4} there
exists a constant C ∈ (0,∞) depending only on j, a±, b±, σ± such that

E
[
|Xt+s −Xs|j|Xs

]
≤ Ctj/2(1 + |Xs|j). (A.10)

Let ξt := Xt+s −Xs then

ξt =

∫ t

0

(b(ξu +Xs)− a(ξu +Xs)Xs)− a(ξu +Xs)ξu du+

∫ t

0

σ(ξu +Xs) dW s
u

where W s a Wiener process independent of σ(Xu, u ∈ [0, s]). So, given Xs, ξ is an OU with
threshold −Xs (since X has threshold 0). And, e.g. [Hudde et al., 2021, Corollary 2.5]
applied to ξ implies (A.10).

Step 2. (Proof of (A.8)). Since X0 is distributed as the stationary distribution µ then
supu∈[0,∞) E[|Xu|m] = E[|X0|m] =

∫∞
−∞ |x|

mµ( dx) < ∞. This, the tower property, and
(A.10) imply that there exists C ∈ (0,∞) depending only on m, j, a±, b±, σ± such that

1

T
1/λ
N

∫ TN

0

E
[
|Xt −Xbtc∆N |

j|Xbtc∆N |
m
]

dt ≤ C

√
T
j+2(1−λ−1)
N

N j
= C

√
T
j+(λ−1)
N

N j
−−−→
N→∞

0.

Step 3. (Proof of (A.9)). Let s, t ∈ [0,∞) be fixed such that t−s ∈ [0, TN
N

]. Let us first
note that we just need to consider E

[
1{±Xt<0}1{±Xs>0}|Xs

]
. This, given Xs, is bounded

by P (τs,± ≤ t− s) ≤ P (τs,± ≤ TN/N) where τs is the first hitting time of the level 0 of
the OU process solution to the following SDE: ξu = Xs+

∫ u
0
b±−a±ξv dv+σ±W

s
u with W s

a Brownian motion independent of σ(Xv, v ∈ [0, s]). If a± 6= 0, [Lipton and Kaushansky,

2020, Section 6.2.1] with b = − b±√
a±σ±

, z =
√
a±
σ±

Xs − b±√
a±σ±

, and t = a±TN/N , prove that

P (τs,± ≤ TN/N) = 2e
− b±
σ2
±
Xs

Φ

(
−
√
a±

σ±
|Xs|γN

)
with γN :=

e−
a±TN

2N√
sinh(a±TN/N)

.

If a± = 0 and ±b± < 0 then

P (τs,± ≤ TN/N) =

∫ TN/N

0

|Xs|
σ±
√

2πu3
exp

(
−(Xs − b±u)2

2σ2
±u

)
du

≤

(
1 + e

2|Xs||b±|
σ2
±

)
Φ

(
−
√

N

TN

|Xs| − |b±|TNN√
2σ2
±

)
.

Therefore, using the stationary distribution (A.2), it suffices to prove that the following
quantity vanishes as N →∞ to establish Step 3:

1

T
1/λ
N

∫ TN

0

E
[
|Xbtc∆N |

mP
(
τbtc∆N ,± ≤ TN/N

)]
dt.

Let us first consider the case a± = 0 and ±b± < 0. The desired quantity is bounded by

TN

T
1/λ
N

1∫∞
−∞m(y) dy

∫
R±

2|y|m

(σ±)2
exp

(
2yb±
(σ±)2

)(
1 + e

2|y||b±|
σ2
±

)
Φ

(
−
√

N

TN

|y| − |b±|TNN√
2σ2
±

)
dy

≤ C1
TN

T
1/λ
N

1∫∞
−∞m(y) dy

∫
R±

exp

(
−C2|y|2

N

TN

)
dy ≤ C3

T
1+ 1

2
− 1
λ

N

N
1
2

≤ C3
TN

N
1
2

−−−→
N→∞

0
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for constants C1, C2, C3 ∈ (0,∞) depending on a±, b±, σ±. Let us now consider the case
a± > 0 and b± ∈ R. The desired quantity is bounded by

TN

T
1/λ
N

1∫∞
−∞m(y) dy

∫
R±

2|y|m

(σ±)2
exp

(
−y(a±y − 2b±)

(σ±)2

)
2e
− b±
σ2
±
y
Φ

(
−
√
a±

σ±
|y|γN

)
dy

≤ C1
TN

T
1/λ
N

1∫∞
−∞m(y) dy

∫
R±

exp
(
−C2|y|2γ2

N

)
dy ≤ C3

T
1− 1

λ
N

γN

for constants C1, C2, C3 ∈ (0,∞) depending on a±, b±, σ±. The latter term vanishes since

limN→∞
T

1− 1
λ

N

γN
≤ limN→∞

√
TN

TN
N

= 0. The proof is thus completed.

Proof of Item (iv) of Theorem 2. Similarly to Item (iv) of Theorem 1. The analogous
of A±T is AN,±TN

:=
(
−M±,1

TN ,N
− a±Q

±,2
TN ,N

+ b±Q
±,1
TN ,N

, M±,0
TN ,N

− b±Q
±,0
TN ,N

+ a±Q
±,1
TN ,N

)
and

Lemma 4 ensures that the asymptotic behavior of the latter quantity is the same as the
one of the continuous time analogue, Theorem 2.(iv).

A.4 Proof of Theorem 3

The proof of Item (i) of Theorem 3 is along the lines of the one of Theorem 2.(i).
The proof of Item (ii) of Theorem 3 is based on Lemma 5 and Lemma 6 below.

Let us be more precise. For all T ∈ (0,∞) andN ∈ N the difference
(
â±T,N − α

±
T , b̂±T,N − β

±
T

)
can be rewritten, using Theorem 1.(i) and Theorem 3.(i), as an expression involving only
terms of the kind(

Q±,iT,N

Q±,0T,NQ
±,2
T,N − (Q±,1T,N)2

− Q±,iT

Q±,0T Q±,2T − (Q±,1T )2

)
M±,j

T +
Q±,iT,N(M±,j

T,N −M±,j
T )

Q±,0T,NQ
±,2
T,N − (Q±,1T,N)2

for j ∈ {0, 1}, i ∈ {0, 1, 2}. The convergence (â+
T,N , b̂

+
T,N , â

−
T,N , b̂

−
T,N)

P−−−→
N→∞

(α+
T , β

+
T , α

−
T , β

−
T )

is obtained combining Lemma 2 and Theorem 2.2 in [Crimaldi and Pratelli, 2005] with
the convergences in probability in Lemma 5 and Lemma 6 below. The proof of (2.9) relies
on Lemma 2, Theorem 2.2 in [Crimaldi and Pratelli, 2005] Lemma 6 and equation (A.11)
in Lemma 5.

Lemma 5. Let m = 0, 1. Then M±,m
T,N

P−−−→
N→∞

M±,m
T and

N1/4(M±,m
T,N −M±,m

T )
stably−−−→
N→∞

±rm
√

4

3
√

2π

σ2
− + σ2

+

σ− + σ+

BLrT (X) (A.11)

where B is a Brownian motion independent of X.

Lemma 6. Let m ∈ N. Then
√
N(Q±,mT,N −Q±,mT )

P−−−→
N→∞

0.

Moreover, if the threshold r = 0, then
√
N1+mε(Q±,mT,N −Q±,mT )

P−−−→
N→∞

0 for every ε < 1.

The latter convergence result extends [Lejay and Pigato, 2018, Theorem 4.14], where
only m = 0 is considered. The proof strategies are the same.

In the remainder of the section we prove Lemma 5 and Lemma 6 below for X solution
to (1.1).
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A.4.1 Proof of Lemma 5

Without loss of generality we can assume X0 deterministic and also reduce ourselves to
prove all results of the section in the case of null drift, i.e. X is an oscillating Brownian
motion (OBM). Indeed all statements are about convergence in probability or stable
convergence, and, once these convergences have been proved for the null drift case, they
can be extended to the drifted case (piecewise linear drift) using the fact that Girsanov
weight is an exponential martingale and dominated convergence theorem. In the case
of convergence in probability one proves that for every sub-sequence there exists a sub-
sub-sequence converging a.s., instead stable convergence follows by property (2.5) and
Skorokhod representation theorem.

Therefore, in the remainder of the section, let X be an OBM with deterministic
starting point X0 and let T ∈ (0,∞) be fixed.

Lemma 7. It holds that

N
1
4

(N−1∑
k=0

(X(k+1)T/N −XkT/N)21{±(XkT/N−r)>0} − σ2
±

∫ T

0

1{±(Xs−r)>0} ds

)
P−−−→

N→∞
0.

Proof of Lemma 7. We write Xr,± := (X − r)1{±(X−r)>0}, Xk := Xk T
N

, and ∆kX :=

Xk+1 − Xk. Moreover we can assume r = 0 (just note that given X with threshold 0,
η = X + r has threshold r and ∆iX = ∆iη, ∆iX

0,± = ∆iη
r,±).

We observe that

N−1∑
i=0

(∆iX)21{±Xi>0} =
N−1∑
i=0

∆iX∆iX
0,± ∓

N−1∑
i=0

(∆iX)|Xi+1|1{XiXi+1<0}.

Proposition 2 in Mazzonetto [2019] (or [Lejay et al., 2019, Proposition 2]) ensures that

1

N1/4
·N1/2

N−1∑
i=0

(∆iX)|Xi+1|1{XiXi+1<0}
P−−−→

N→∞
0 ·

2
√

2(σ2
+ + σ2

−)

3
√
π(σ+ + σ−)

L0
T (X) = 0.

Now consider the remaining term. In [Lejay and Pigato, 2018] (cf. proof of Theorem 3.1,
page 3591) it is shown that there exists a constant C ∈ R such that

√
N

(N−1∑
k=0

(∆kX)21{±Xk>0} − σ2
±

∫ T

0

1{±Xs>0} ds

)
stably−−−→
N→∞

√
2Tσ2

±

∫ T

0

1{±Xs>0}dBs ∓ CL0
T (X)

where B is a Brownian motion independent of X. Using (2.5) completes the proof.

We are now ready to prove Lemma 5.

Proof of Lemma 5. Let {·}± denote positive and negative part. Note that for all t ∈ [0, T ]
it holds P-a.s. that (Xt − r)1{±(Xt−r)>0} = ±{Xt − r}±. Applying Itô-Tanaka formula
establishes that the following equalities hold P-a.s.:

(XT + r)i{XT − r}± − (X0 + r)i{X0 − r}± = ±2iM±,i
T ± iσ

2
±Q

±,0
T +

ri

21−iL
r
T (X),

(A.12)
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for i = 0, 1. Next note that it holds P-a.s. for all i ∈ {0, . . . , N − 1} that

1{±(Xi−r)>0}∆iX = ±{Xi+1 − r}± ∓ {Xi − r}± ∓ 1{(Xi−r)(Xi+1−r)<0}|Xi+1 − r|

and

2Xi1{±(Xi−r)>0}∆iX

= (X2
i+1 − r2)1{±(Xi+1−r)>0} − (X2

i − r2)1{±(Xi−r)>0} − (Xi+1 −Xi)
21{±(Xi−r)>0}

∓ 2r1{(Xi−r)(Xi+1−r)<0}|Xi+1 − r| ∓ 1{(Xi−r)(Xi+1−r)<0}|Xi+1 − r|(Xi+1 − r).

Combining this with (2.10) and (A.12) imply that it holds P-a.s. that

∓ 2
(
M±,0

T,N −M±,0
T

)
= LrT,N − LrT (X) and (A.13)

2
(
M±,1

T,N −M±,1
T

)
= ∓r(LrT,N − LrT (X))−

N−1∑
k=0

(Xk+1 −Xk)
21{±(Xk−r)>0} + σ2

±Q
±,0
T

∓
N−1∑
k=0

(Xk+1 − r)|Xk+1 − r|1{(Xk−r)(Xk+1−r)<0}.

The result follows from [Mazzonetto, 2019, Proposition 7], Lemma 7, and from the fol-
lowing convergence:

√
N

N−1∑
i=0

(Xi+1 − r)|Xi+1 − r|1{(Xi−r)(X(i+1)−r)<0}
P−−−→

N→∞

2
√

2

3
√
π

(σ+ − σ−)LrT (X)

which follows from [Mazzonetto, 2019, Proposition 2] or [Lejay et al., 2019, Proposition 2].

A.4.2 Proof of Lemma 6

As in the previous section, let X be an OBM with deterministic starting point X0 and
let T ∈ (0,∞) be fixed. We reduce to consider threshold r = 0 because for t ∈ (0,∞) it
holds that Q±,mt := Q±,mt (X, r) =

∑m
k=0

(
m
k

)
rm−kQ±,kt (X − r, 0) and the same holds for

Q±,mN,t .
The following result follows from Lemma 4.3 in [Lejay and Pigato, 2018] and the

scaling property for OBM.

Lemma 8. Let f be a bounded function such that
∫
|x|k|f(x)| dx < ∞ for k = 0, 1, 2.

Then for all T ∈ (0,∞)

(N/T )−1/2

N−1∑
i=0

f(
√
N/T XiT/N)

P−−−→
N→∞

λσ(f)L0
T (X) (A.14)

where λσ(f) :=
(

1
σ2

+

∫∞
0
f(x) dx+ 1

σ2
−

∫ 0

−∞ f(x) dx
)

.

Let us denote by G the natural filtration associated to the process X (or equivalently to
its driving BM). Let m ∈ N be fixed. For i = 1, . . . , N , we consider Xi−1,N := X(i−1)T/N ,
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Gi−1,N := G(i−1)T/N , and

J
(m)
i,N =

(
T

N
Xm
i−1,N1{±Xi−1,N≥0} −

∫ iT
N

(i−1)T
N

Xm
s 1{±Xs≥0} ds

)

= ± sgn(Xi−1,N)Xm
i−1,N

∫ iT
N

(i−1)T
N

1{Xi−1,NXs<0} ds+

∫ iT
N

(i−1)T
N

(Xm
i−1,N −Xm

s )1{±Xs>0} ds,

U
(m)
i,N = J

(m)
i,N − E[J

(m)
i,N |Gi−1,N ].

(A.15)

Observe that U
(m)
i,N are martingale increments and

Q±,mT,N −Q±,mT =
N∑
i=1

E[J
(m)
i,N |Gi−1,N ] +

N∑
i=1

U
(m)
i,N .

The following lemma proves the convergence of the two terms.

Lemma 9. Let ε ∈ [0, 1), m ∈ N, and let G, J
(m)
i,N and U

(m)
i,N , i ∈ {1, . . . , N} defined by

(A.15). Then

i) N
1+mε

2

∑N
i=1 E[J

(m)
i,N |Gi−1,N ]

P−−−→
N→∞

0 and

ii) N
1+mε

2

∑N
i=1 U

(m)
i,N

P−−−→
N→∞

0.

Proof of Lemma 9. In this proof we use the following notation: For every q ∈ [0,∞) let
fm, gm,q, hq be the real functions satisfying

fm(x) =

{
2σ+

σ−+σ+

∫ 1

0
xmΦ(−x/(σ+

√
t)) dt if x ≥ 0

−2σ−
σ−+σ+

∫ 1

0
xmΦ(x/(σ−

√
t)) dt if x < 0

with Φ = 1√
2π

∫ ·
−∞ e

− y
2

2 dy, hq(x) = |x|q|f0(x)|, and

gm,q(y) :=


∫ 1

0

∫∞
0
|ym − xm|q 1√

2πt
1
σ+
e
− 1

2t

(
x
σ+
− y
σ+

)2
(

1 + σ−−σ+

σ−+σ+
e
− 4xy

2tσ2
+

)
dx dt if y ≥ 0∫ 1

0

∫∞
0
|ym − xm|q 1√

2πt

2σ−
σ−+σ+

e
− 1

2t

(
x
σ+
− y
σ−

)2

dx dt if y < 0.

Let us show that the functions above satisfy the assumptions of Lemma 8. Indeed, since
Φ(−x)1{x≥0} ≤ 1

2
e−x

2/2, it holds

|f0(x)| ≤ σ(x)

σ− + σ+

∫ 1

0

e
− x2

2tσ(x)2 dt ≤ σ(x)

σ− + σ+

e
− x2

2σ(x)2 .

This ensures that the coefficients (defined in (A.14)) λσ(fm), λσ(hq) are finite. Moreover
it can be shown that λσ(gm,q) <∞ for q ∈ [0,∞). In particular note that

λσ(fm) =
2(σm+ − (−σ−)m)

σ− + σ+

∫ ∞
0

xm
∫ 1

0

Φ(−x/
√
s) ds dx.
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Hence Lemma 8 shows for all q ∈ [0,∞), t ∈ (0,∞), f ∈ {fm, hq, gm,q} that

1√
N

N−1∑
i=0

f(
√
N/T XiT/N)

law−−−→
N→∞

λσ(f)√
T
LT (X). (A.16)

Let us first show an easy useful equality, which uses the explicit expression of the
transition density of the OBM

qσ(t, σ(x)x, σ(y)y) =
1√

2πtσ(y)

(
e−

(x−y)2

2t +
(σ− − σ+)

(σ− + σ+)
sgn(y)e−

(|x|+|y|)2
2t

)
. (A.17)

Let Y be an OBM with starting point Y0 and threshold r = 0, then for all c ∈ {−1,+1},
q ∈ [0,∞), Fubini, (A.17), a change of variable yield

1{cY0>0}E

[∫ T
N

0

|Y0|q1{cYs<0} ds|Y0

]
= 1{cY0>0}

∫ T
N

0

|Y0|qE
[
1{cYs<0}|Y0

]
ds

= 1{cY0>0}(T/N)
q
2

+1

∫ 1

0

2σ(Y0)|
√
N/T Y0|q

σ− + σ+

Φ(−|
√
N/T Y0|/(σ(Y0)

√
t)) dt.

(A.18)

Let us now prove Item (i).
First step. Let i ∈ {1, . . . , N} be fixed.
We prove in this step that

N
1+mε

2

N−1∑
k=0

E

[∫ (k+1)T
N

kT
N

± sgn(Xk,N)Xm
k,N1{Xk,NXs<0} ds|Gk,N

]
P−−−→

N→∞
0. (A.19)

Note that the Markov’s property and (A.18) ensure that

√
N1+mε

N∑
i=1

E

[∫ iT
N

(i−1)T
N

± sgn(X(i−1)T/N)Xm
(i−1)T/N1{X(i−1)T/NXs<0} ds|Gi−1,N

]

= ±T 1+m
2

N−1∑
i=0

N−
1+m(1−ε)

2 fm(
√
N/TXiT/N).

(A.20)

This vanishes because equation (A.16) holds and λσ(f0) = 0 and when m 6= 0 it holds
ε < 1. The proof of (A.19) is thus completed.

Second step. Let j ∈ {1, 2}. We prove now that

N
j(1+mε)

2

N∑
i=1

E

[∫ iT
N

(i−1)T
N

(Xm
i−1,N −Xm

s )j1{Xs>0} ds|Gi−1,N

]
P−−−→

N→∞
0. (A.21)

By the Markov property, a simple change of variable, Fubini, and the explicit expres-
sion of the transition density of the OBM in (A.17) we obtain for all i ∈ {1, . . . , N}

E

[∫ iT
N

(i−1)T
N

|Xm
(i−1)T
N

−Xm
s |j1{Xs>0} ds|Gi−1,N

]

=
T

N

∫ 1

0

E
[
|Xm

(i−1)T
N

−Xm
t T
N
|j1{X

t T
N
>0}|X (i−1)T

N

]
dt =

(
T

N

)mj
2

+1

gm,j(
√
N/T X (i−1)T

N

).
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Combining (A.16) with the fact that λσ(g0,j) = 0 and ε < 1 it follows that the latter
quantity converges in probability to 0 with the speed which proves (A.21). Taking j = 1
establishes Item (i).

Third step. (Proof of Item (ii)). Note that Jensen’s inequality implies that

E[(U
(m)
i,N )2|Gi−1,N ] = E[(J

(m)
i,N )2|Gi−1,N ]−

(
E[J

(m)
i,N |Gi−1,N ]

)2

≤ E[(J
(m)
i,N )2|Gi−1,N ]

≤ E

[
2T

N
X2m
i−1,N

∫ iT
N

(i−1)T
N

1{Xi−1,NXs<0} ds+
2T

N

∫ iT
N

(i−1)T
N

(Xm
i−1,N −Xm

s )21{Xs>0} ds|Gi−1,N

]
.

This and (A.21) with j = 2 ensure that it suffices to prove

N
1
2

+mεE

[
2T

N
X2m
i−1,N

∫ iT
N

(i−1)T
N

1{Xi−1,NXs<0} ds|Gi−1,N

]
P−−−→

N→∞
0.

By the Markov’s property and (A.18) we reduce to study the convergence of

2N−
1
2

+m(ε−1)

N−1∑
k=0

N−
1
2h2m(

√
N/T XkT/N).

It follows from (A.16) that the latter quantity converges to 0 in probability as N → ∞.
We have therefore obtained that

N1+mε

N∑
i=1

E[(U
(m)
i,N )2|Gi−1,N ]

P−−−→
N→∞

0.

Applying Theorem 4.4 in [Lejay and Pigato, 2018] completes the proof.

References

Y. Ait-Sahalia. Testing Continuous-Time Models of the Spot Interest Rate. The Review of
Financial Studies, 9(2):385–426, 1996.

C. Amorino and A. Gloter. Contrast function estimation for the drift parameter of ergodic jump
diffusion process. Scandinavian Journal of Statistics, 47(2):279–346, 2020.

A. Ang and G. Bekaert. Regime Switches in Interest Rates. Journal of Business & Economic
Statistics, 20(2):163–182, 2002a.

A. Ang and G. Bekaert. Short rate nonlinearities and regime switches. Journal of Economic
Dynamics and Control, 26(7):1243 – 1274, 2002b. Finance.

A. Ang and A. Timmermann. Regime Changes and Financial Markets. Annual Review of
Financial Economics, 4:313–337, 2012.

A. Ang, G. Bekaert, and M. Wei. The Term Structure of Real Rates and Expected Inflation.
The Journal of Finance, 63(2):797–849, 2008.

T. Archontakis and W. Lemke. Bond pricing when the short-term interest rate follows a threshold
process. Quantitative Finance, 8(8):811–822, 2008a.

T. Archontakis and W. Lemke. Threshold Dynamics of Short-term Interest Rates: Empirical
Evidence and Implications for the Term Structure. Economic Notes, 37(1):75–117, 2008b.

M. Ben Alaya and A. Kebaier. Asymptotic Behavior of the Maximum Likelihood Estimator for
Ergodic and Nonergodic Square-Root Diffusions. Stochastic Analysis and Applications, 31(4):
552–573, 2013.

23



F. Black and P. Karasinski. Bond and Option Pricing When Short Rates Are Lognormal.
Financial Analysts Journal, 47(4):52–59, 1991.

V. Bokil, N. Gibson, S. Nguyen, E. Thomann, and E. Waymire. An Euler-Maruyama method
for diffusion equations with discontinuous coefficients and a family of interface conditions.
Journal of Computational and Applied Mathematics, 368:112545, 2020.

P. J. Brockwell and R. J. Williams. On the Existence and Application of Continuous-Time
Threshold Autoregressions of Order Two. Advances in Applied Probability, 29(1):205–227,
1997.

K. S. Chan. Consistency and Limiting Distribution of the Least Squares Estimator of a Threshold
Autoregressive Model. Ann. Statist., 21(1):520–533, 03 1993.

C. W. S. Chen, M. K. P. So, and F.-C. Liu. A review of threshold time series models in finance.
Statistics and its Interface, 4(2):167–181, 2011.

J. C. Cox, J. E. Ingersoll, and S. A. Ross. An Intertemporal General Equilibrium Model of Asset
Prices. Econometrica, 53(2):363–384, 1985.

I. Crimaldi and L. Pratelli. Convergence results for multivariate martingales. Stochastic Process.
Appl., 115(4):571–577, 2005.

M. Decamps, M. Goovaerts, and W. Schoutens. Self exciting threshold interest rates models.
Int. J. Theor. Appl. Finance, 9(7):1093–1122, 2006.

A. B. Dieker and X. Gao. Positive recurrence of piecewise Ornstein-Uhlenbeck processes and
common quadratic Lyapunov functions. Ann. Appl. Probab., 23(4):1291–1317, 08 2013.

K. Ding, Z. Cui, and Y. Wang. A Markov chain approximation scheme for option pricing under
skew diffusions. Quantitative Finance, pages 1–20, 2020.

F. Dong and H. Y. Wong. Variance Swaps under the Threshold Ornstein-Uhlenbeck Model.
Appl. Stoch. Model. Bus. Ind., 33(5):507–521, Sept. 2017.

A. Feng. Parameter Estimations for Skew Ornstein-Uhlenbeck Processes. International Journal
of Science and Research (IJSR), pages 1776–1781, June 2016.

A. Gairat and V. Shcherbakov. Density of skew Brownian motion and its functionals with
application in finance. Mathematical Finance, 26(4):1069–1088, 2016.

N. Gospodinov. Testing For Threshold Nonlinearity in Short-Term Interest Rates. Journal of
Financial Econometrics, 3(3):344–371, 07 2005.

S. F. Gray. Modeling the conditional distribution of interest rates as a regime-switching process.
Journal of Financial Economics, 42(1):27 – 62, 1996.

Y. Hu and Y. Xi. Parameter estimation for threshold Ornstein-Uhlenbeck processes from discrete
observations. arXiv e-prints, art. arXiv:2011.10793, Nov. 2020.

A. Hudde, M. Hutzenthaler, and S. Mazzonetto. A stochastic Gronwall inequality and applica-
tions to moments, strong completeness, strong local Lipschitz continuity, and perturbations.
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F. Su and K.-S. Chan. Quasi-likelihood estimation of a threshold diffusion process. J. Econo-

metrics, 189(2):473–484, 2015.
F. Su and K.-S. Chan. Testing for threshold diffusion. J. Bus. Econom. Statist., 35(2):218–227,

2017.
H. Tong. Threshold models in nonlinear time series analysis, volume 21 of Lecture Notes in

Statistics. Springer-Verlag, New York, 1983.
H. Tong. Non-linear Time Series: A Dynamical System Approach. Oxford University Press,

1990.
H. Tong. Threshold models in time series analysis — 30 years on. Statistics and its Interface,

4, 2011.
H. Tong. Threshold models in time series analysis—some reflections. J. Econometrics, 189(2):

485–491, 2015.
O. Vasicek. An equilibrium characterization of the term structure. Journal of Financial Eco-

nomics, 5(2):177 – 188, 1977.
Y. Wu and H. Zhang. Mean Reversion in Interest Rates: New Evidence from a Panel of OECD

Countries. Journal of Money, Credit and Banking, 28(4):604–621, 1996.
X. Xing, D. Zhao, and B. Li. Parameter estimation for the skew Ornstein-Uhlenbeck processes

based on discrete observations. Communications in Statistics - Theory and Methods, 49(9):
2176–2188, 2020.

25



P. Yadav, P. Pope, and K. Paudyal. Threshold autoregressive modeling in finance: The price
differences of equivalent assets. Mathematical Finance, 4(2):205–221, 1994.

T.-H. Yu, H. Tsai, and H. Rachinger. Approximate maximum likelihood estimation of a threshold
diffusion process. Computational Statistics & Data Analysis, 142:106823, 2020.

26


	Introduction
	(Quasi) maximum likelihood estimation
	Maximum and quasi-maximum likelihood estimator from continuous time observations
	Maximum and quasi-maximum likelihood estimator from discrete observations

	Threshold estimation, testing and interest rates
	On threshold estimation
	Testing for treshold
	Interest rate analysis

	Proofs
	The regimes of the process
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 5
	Proof of Lemma 6


	Bibliography

