

The climatic debt is growing in the understorey of temperate forests: Stand characteristics matter

Benoit Richard, Jean-luc Dupouey, Emmanuel Corcket, Didier Alard, Frédéric Archaux, Michaël Aubert, Vincent Boulanger, François Gillet, Estelle Langlois, Sébastien Macé, et al.

▶ To cite this version:

Benoit Richard, Jean-luc Dupouey, Emmanuel Corcket, Didier Alard, Frédéric Archaux, et al.. The climatic debt is growing in the understorey of temperate forests: Stand characteristics matter. Global Ecology and Biogeography, 2021, 30 (7), pp.1474-1487. 10.1111/geb.13312 . hal-03293479

HAL Id: hal-03293479 https://hal.science/hal-03293479v1

Submitted on 21 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 The climatic debt is growing in the understory of

2 **temperate forests: stand characteristics matter**

3 **Running title:**

4 • Explaining the climatic debt of temperate forests

5 Authors

- 6 Benoit Richard^{1,2} | Jean-Luc Dupouey³ | Emmanuel Corcket⁴ | Didier Alard⁴ |
- 7 Frédéric Archaux⁵ | Michaël Aubert² | Vincent Boulanger⁶ | François Gillet⁷ |
- 8 Estelle Langlois² | Sébastien Macé⁶ | Pierre Montpied³ | Thérèse Beaufils⁷ | Carole
- 9 Begeot⁷ | Patrick Behr³ | Jean-Michel Boissier⁸ | Sylvaine Camaret⁹ | Richard
- 10 Chevalier⁵ | Guillaume Decocq¹ | Yann Dumas⁵ | Richard Eynard-Machet¹⁰ | Jean-
- 11 Claude Gégout³ | Sandrine Huet¹¹ | Valéry Malécot¹¹ | Pierre Margerie² | Arnaud
- 12 Mouly⁷ | Thierry Paul³ | Benoît Renaux¹² | Pascale Ruffaldi⁷ | Fabien Spicher¹ |
- 13 Erwin Thirion³ | Erwin Ulrich⁶ | Manuel Nicolas⁶ | Jonathan Lenoir^{1*}

14 Authors' affiliations

- 15 ¹UMR CNRS 7058 « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN),
- 16 Université de Picardie Jules Verne, Amiens, France
- 17 ²Normandie Université, UNIROUEN, INRAE, ECODIV, Rouen, France
- 18 ³Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
- 19 ⁴Université de Bordeaux, INRAE, BIOGECO, Pessac, France
- 20 ⁵INRAE, UR EFNO, Domaine des Barres, Nogent-sur-Vernisson, France
- 21 ⁶Office National des Forêts, Département RDI, Fontainebleau, France
- 22 ⁷UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté,
- 23 Besançon, France
- 24 ⁸Ecosylve, Les Déserts, France
- 25 ⁹UFR LLSH, Université Savoie Mont Blanc, Domaine Universitaire de Jacob-
- 26 Bellecombette, Chambéry, France
- 27 ¹⁰e-Sciences, Cognin, France
- 28 ¹¹Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, Beaucouzé, France
- 29 ¹²Conservatoire botanique national du Massif central, Chavaniac-Lafayette, France

2	
3	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
31	
25	
22	
36	
37	
38	
39	
40	
41	
42	
43	
ΔΔ	
15	
43	
40	
47	
48	
49	
50	
51	
52	
52	
55	
4 רר	
55	
56	
57	
58	
59	

1

The climatic debt is growing in the understory of temperate forests: stand characteristics matter

Running title:

• Explaining the climatic debt of temperate forests

- 5 Abstract
- 6 **Aim**

1

2

3

4

Climate warming reshuffles biological assemblages towards less cold-adapted but 7 8 more warm-adapted species, a process coined thermophilization. However, the 9 velocity at which this process happens is generally lagging behind the velocity of 10 climate change, generating a climatic debt which temporal dynamic remains 11 misunderstood. Relying on high-resolution time series of vegetation data from a long-term monitoring network of permanent forest plots, we aim at quantifying the 12 13 temporal dynamic – up to a yearly resolution – of the climatic debt in the understory 14 of temperate forests before identifying the key determinants allowing to modulate it.

- 15 Location
- 16 France
- 3 17 **Time period**
- 18 1995-2017
 - 19 Taxa studied
 - 20 Vascular plants

1 ว

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
14	
1	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
20	
37	
38	
39	
40	
11	
41	
42	
43	
44	
45	
10	
46	
47	
48	
49	
50	
50	
51	
52	
53	
51	
55	
56	
57	
58	
50	
29	

60

21 22	Methods We used the community temperature index (CTI) to produce a time series of
23	understory plant community thermophilization, which we subsequently compared to
24	a time series of mean annual temperature changes over the same period and for the
25	same sites. The direction and magnitude of the difference (i.e. the climatic debt) was
26	finally analyzed using linear mixed-effect models to assess the relative contribution
27	of abiotic and biotic determinants, including forest stand characteristics.
28	Results

We found a significant increase in CTI values over time (0.08–0.09°C/decade),
whereas the velocity of mean annual temperature changes was three times higher
over the same period (0.22–0.28°C/decade). Hence, the climatic debt increased over
time and was greater in forest stands with higher basal area or older trees as well as
under warmer macroclimate. By contrasts, a greater frequency of anthropogenic
disturbances decreased the climatic debt, while natural disturbances and herbivory
had no impact.

36 Conclusions

Although often overlooked in understanding the climatic debt of forest biodiversity,
changes in forest stand characteristics may modulate the climatic debt by locally
modifying microclimatic conditions. Notably, the buffering effect of the upper canopy
layer implies microclimate dynamics that may provide more time for understory
plant communities to locally adapt.

 $\mathbf{2}$

Keywords

43 Biodiversity, climate change, climatic debt, anthropogenic disturbances, long-term

44 monitoring, plant community, thermophilization

46 Introduction

Climate change induces a global redistribution of biodiversity at various spatial scales, with profound consequences on ecosystem functioning and the provision of ecosystem services (Hooper *et al.*, 2012; Pecl *et al.*, 2017). Typical biodiversity redistribution consists of species shifting their geographical range poleward in latitude and/or upslope in elevation (Lenoir & Svenning, 2015), tracking shifting isotherms through colonization and local extinction processes (Jump & Peñuelas, 2005; Dullinger et al., 2012). Locally, changes in species' abundance and population dynamics, preceding species range shifts, are leading to important re-assemblages in community composition (Hillebrand et al., 2010; Walther, 2010). For example, some studies reported that local species assemblages are increasingly dominated by warm-adapted species (i.e. species from lower elevations and/or latitudes) at the expense of cold-adapted species (i.e. species from higher elevations and/or latitudes), a process referred to as "thermophilization" of communities (Gottfried et al., 2012; De Frenne *et al.*, 2013; Zellweger *et al.*, 2020). However, species and communities may respond asynchronously and most likely with time lags relative to the forcing environmental changes, so that plant species assemblages shifting from one equilibrium state to another may not reflect environmental conditions prevailing at the time of the survey but may rather reflect former environmental conditions (Davis, 1984, 1989; Blonder et al., 2017). Such discrepancies between the observed velocity of climate change and the slower velocities at which species and communities are actually responding have been termed "climatic debt" (i.e. the fact

2
- २
1
4
5
6
7
8
9
10
11
12
13
1/
14
15
16
17
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
35
22
30
3/
38
39
40
41
42
43
44
45
46
40
4/
48
49
50
51
52
53
54
55
56
50
57
58
59

1

that biotic responses are lagging behind climate change) (Menéndez *et al.*, 2006;
Bertrand *et al.*, 2011, 2016; Devictor *et al.*, 2012; Zellweger *et al.*, 2020).

70 To assess the magnitude of the climatic debt or lag between the velocity of 71 mean annual temperature (MAT) changes and the velocity of thermophilization of 72 communities, one needs first to quantify the degree of thermophilization of local 73 species assemblages. The most straightforward approach is to compute the 74 community temperature index (CTI) (Devictor et al., 2008; Zellweger et al., 2020). 75 The CTI is the average value of either individual species' thermal optima or species-76 indicator values for temperature across all species co-occurring in a focal 77 community. How CTI changes over time (i.e. the proportion of cold- and warmadapted species appearing or disappearing from the focal community) likely reflects 78 79 how communities are responding to climate changes (Devictor et al., 2008; Bertrand 80 et al., 2011). This index thus provides an intuitive proxy to estimate the velocity of 81 thermophilization of communities, and can be subsequently compared to the velocity 82 of observed temperature changes (e.g. both expressed in units of degrees Celsius per 83 decade; Devictor et al., 2008). Changes in CTI (or analogous index) over time have 84 already been used to document thermophilization and delayed biotic responses of a wide range of taxonomic groups (e.g. plants, butterflies, fishes and birds; Devictor et 85 86 al., 2012; Bertrand et al., 2011; Cheung et al., 2013; Gaüzère et al., 2017). However, most of these studies relied on a relatively restricted number of observations over 87 88 time, usually a baseline survey and one or two resurveys at best, to compute 89 changes in CTI values over time (Savage & Vellend, 2015; Ash et al., 2017; Fadrique

 $\mathbf{5}$

Global Ecology and Biogeography

1	
2	
3	
4	
5	
s c	
6	
7	
8	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
37	
25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
15	
75 76	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	

90 et al., 2018). Some previous studies even relied on non-permanent or quasi-91 permanent plots to assess changes in CTI values over time (Bertrand *et al.*, 2011; De 92 Frenne et al., 2013; Becker-Scarpitta et al., 2019; Zellweger et al., 2020). 93 Unfortunately, such studies relying on non-permanent plots tend to infer temporal 94 changes blurred by space-for-time substitutions, which are known to overestimate the magnitude of thermophilization of communities in response to contemporary 95 96 climate warming (Elmendorf et al., 2015). Even when studies rely on strictly 97 permanent plots, it requires more than one or two resurveys to build a detailed time 98 series of community composition changes from long-term monitoring programs. 99 Strictly permanent monitoring programs relying on frequent resurveys (e.g. from 100 one-year to five-year intervals) during a sufficiently long time period (e.g. at least 101 two decades) are needed to capture a temporal dynamic in the velocity of community 102 thermophilization and confirm linearity over time. Although such long-term time 103 series of biodiversity monitoring already exist (Dornelas et al., 2018), we still lack a 104 good knowledge and understanding of the temporal dynamic of the climatic debt. Whether the climatic debt of plant communities is steadily growing over time 105 106 and what are the main underlying determinants of this dynamic remain open 107 questions in global change ecology (Essl et al., 2015; Bertrand et al., 2016; Zellweger 108 et al., 2020). For instance, a previous study focusing on temperate forests has 109 suggested an increasing climatic debt in the response of understory plant 110 communities from the lowlands (Bertrand *et al.*, 2011). A follow-up study has

- 111 revealed that this growing climatic debt involved a complex combination of abiotic

1	
2 3 4	1
5 6	1
7 8	1
9 10 11	1
12 13	1
14 15 16	1
17 18	1
19 20 21	1
21 22 23	1
24 25	1
26 27 28	1
29 30	1
31 32 32	1
33 34 35	1
36 37	1
38 39 40	1
40 41 42	1
43 44	1
45 46 47	1
48 49	1
50 51	1
52 53 54	1
55 56	I
57 58	
59 60	

112	and biotic factors with the greatest effect size captured by environmental conditions
113	during the baseline surveys (i.e. a greater climatic debt for plant communities
114	occurring within initially warmer conditions) (Bertrand et al., 2016). Noteworthy,
115	the same authors also found that anthropogenic disturbances contributed very little
116	and unexpectedly to the climatic debt. Yet, previous and more recent findings
117	suggest the opposite with local disturbances amplifying forest community responses
118	to climate change (De Frenne <i>et al.</i> , 2013; Stevens <i>et al.</i> , 2015; Perring <i>et al.</i> , 2018;
119	Brice <i>et al.</i> , 2019). A more recent study has even demonstrated that the climatic lag
120	in forest plant communities is primarily controlled by forest microclimate dynamics
121	suggesting forest stand characteristics to be a strong determinant of the climatic
122	debt (Zellweger et al., 2020). These discrepancies call for more in-depth
123	investigations on the temporal dynamic of the climatic debt in forest understory
124	plant communities and the relative contribution of anthropogenic and natural
125	disturbances.
126	In addition to baseline environmental conditions and stand characteristics
127	modulated by anthropogenic and natural disturbances, ungulates directly impact
128	vegetation dynamics (Post & Pedersen, 2008; Olofsson <i>et al.</i> , 2009; Boulanger <i>et al.</i> ,
129	2018). On the one hand, Olofsson <i>et al.</i> (2009) have shown that herbivores inhibit
130	the climate-driven shrub expansion towards high latitudes, indicating that
131	herbivores could contribute to the climatic debt. On the other hand, Post & Pedersen

32 (2008) have shown that plant community composition (e.g. dwarf birch, willow,

133 graminoids, forbs and mosses) on warmed plots (open-top chambers) did not differ

 $\overline{7}$

Page 23 of 115

Global Ecology and Biogeography

134 from that on ambient plots where herbivores grazed, suggesting no effect of
135 herbivory on the climatic debt. Altogether, these findings show contrasting impacts
136 of herbivory on the climatic debt.

Here, we rely on a long-term (1995-2017) national (France) monitoring network of permanent forest plots organized in a paired design of exclosure (fenced area excluding ungulates) vs. control plots – the RENECOFOR monitoring program - with multiple resurveys (every year to every five years) to generate a high-resolution and unprecedented time series of CTI values for understory plant communities inside and outside the fenced area. Using this information-rich time series, we aimed to: (i) compare the rates of CTI changes to the velocity of MAT changes during the period 1995-2017; (ii) test whether the climatic debt of understory plant communities increased steadily over time; and (iii) assess the relative contribution of several abiotic and biotic factors known to be influential from the scientific literature, including baseline environmental conditions, stand characteristics that are influenced by anthropogenic and natural disturbances, and biotic disturbances from large herbivores.

150 Materials and Methods

151 A long-term national monitoring network of forest ecosystems

To assess changes in understory plant communities, we used vegetation data
collected every five years, and even every year for some sites, throughout a longterm French monitoring network of forest ecosystems (RENECOFOR,

http://www1.onf.fr/renecofor). The RENECOFOR network belongs to the European ICP Forests Level II monitoring program (ICP Forests, http://www.icp-forests.org) and aims at monitoring the health and functioning of forest ecosystems. This monitoring network was established in 1992 by the French National Forest Service (ONF, Office National des Forêts). It includes 102 permanents plots distributed in state and communal forests throughout the whole metropolitan French territory (www1.onf.fr/renecofor/sommaire/sites) (Ulrich, 1995 ; Nicolas *et al.*, 2014). All plots are located in mature and even-aged pure stands, and cover an area of 2 ha with a central fenced zone of 0.5 ha to exclude large herbivores (**Fig. 1**) (for more details, see Boulanger *et al.*, 2018).

Since 1995, vegetation surveys have been conducted every five years (baseline survey in 1995 and resurveys in 2000, 2005, 2010 and 2015). From the total pool of 102 permanent plots, we discarded 58 plots which suffered from major data gaps throughout the studied time period (e.g. the resurvey of 2010 was systematically missing for 53 plots due to a shortage in funding). This yielded a total of 44 plots for which a full time series, at a 5-yr interval, was available between 1995 and 2015, hereafter referred to as the five-year dataset (Fig. 1). Among these 44 plots, 8 plots were monitored annually without discontinuity between 1995 and 2017, hereafter referred to as the yearly dataset (Fig. 1). The whole workflow of analyses was carried out separately for both the five-year and yearly datasets, as these two datasets are very complementary (Supporting Information App. Fig. 1). Although the five-year dataset covers a large spatial extent representative of all temperate

Page 25 of 115

Global Ecology and Biogeography

forests in France, its temporal resolution is rather coarse. *Per contra*, the yearly
dataset covers a restricted spatial extent but provides a very detailed time series at
high temporal resolution. More information on the spatial location and dominant
tree species for each of 44 study plots are provided in *Supporting Information App. Table 1.*

During each monitoring campaign, the vegetation was surveyed by expert botanists according to standardized protocols under a quality assurance and quality control procedure. The quality assurance and quality control procedure involved intercalibration exercises organized the year before each monitoring campaign with all expert botanists surveying the same plots in the same forest (Camaret & Brêthes, 2004; Archaux et al., 2009). During each monitoring campaign, all plots were surveyed both at spring and in summer/autumn, to cover the entire growing season. All vascular plants were recorded in eight $2 \text{ m} \times 50 \text{ m}$ subplots: four inside and four outside the fenced area of 0.5 ha (Fig. 1). The cover-abundance of all taxa occurring in four vegetation layers (tree: > 7 m; high shrub: 2–7 m; low shrub: 0.3–2 m; herb: < 0.3 m) was recorded. Species names were standardized following the nomenclature of *Flora Europaea* (Tutin *et al.*, 2001). A total of 877 taxa were recorded in all vegetation layers, including 751 occurring in the herb layer (hereafter understory plants). Here, we restricted our analyses to understory plants, including tree seedlings, because they represent a relevant component of forest biodiversity which is not directly (but indirectly via the upper canopy layers) impacted by forest management practices, and are expected to be the most

responsive to climate warming. Only taxa identified at the species or subspecies levels were kept for analyses. Identifications at the genus level were considered as incomplete and excluded from our analyses (i.e. 80 taxa excluded; see the list of species provided in Supporting Information App. Table 2). Our dataset encompassed a total of 782 vegetation records, including 347 records from the yearly dataset (492 species) and 435 records from the five-year dataset (593 species). Seasonal surveys (spring and summer/autumn) were aggregated by year with the maximum cover-abundance coefficient retained whenever a species was recorded at both dates. This yielded to a total of 186 and 220 vegetation records for the yearly and five-year dataset, respectively.

Time series of temperature data

To compare the velocity of mean annual temperature (MAT) changes with the velocity of temperature changes inferred from understory plant communities, we first extracted time series of MAT changes. We obtained macroclimate temperature time series from the global dataset TerraClimate (Abatzoglou *et al.*, 2018), which provides monthly climate data for every year from 1958 up to 2018 at a spatial resolution of 2.5 arc-minute (~3.3 km × 4.64 km at 45° of latitude). We also extracted climatic time series from the CHELSA database (Karger *et al.*, 2017) but found very similar trends between TerraClimate and CHELSA (Supporting Information App. *Fig. 2*). Thus, we decided to use only TerraClimate in our subsequent analyses as it better covers the end of our study period (i.e. 2017). As TerraClimate provides only maximum and minimum monthly temperatures, we first calculated the monthly

Page 27 of 115

mean for each of the 44 studied plots (by averaging maximum and minimum temperature values for each month), and then computed mean annual temperature (hereafter MAT) for each year between 1958 and 2017. Between 1958 and 2017, MAT increased across all 44 studied plots, leading to a shift from negative to only positive anomalies towards the end of the reference period (1958–2017) (Supporting Information App. Fig. 3). From the very beginning (1992) of the RENECOFOR monitoring program until 2017, anomalies were mostly positive (values ranging from -0.56 to 1.54 over the period 1992-2017), except for three years (1993, 1996 and 2010), for which anomalies were negative. To infer temperature conditions from local species assemblages, we used the community temperature index (CTI) (Devictor et al., 2008, 2012) (see Equation 1). The CTI was computed based on occurrence data by averaging the indicator values (IVs) for temperature across all species $i(Sp_i)$ occurring in a given relevé j

(containing *S* species, with $S \ge 2$). Here, we used presence/absence data instead of weighting IVs by each species' abundance/dominance in the relevés. We did that to give the same weight to common and rare species. As each RENECOFOR plot includes 8 subplots, we calculated the CTI values at the subplot level and kept this information at the subplot level without aggregating it at the plot level.

(1) $CTI_j = \frac{\sum_{i=1}^{S} IV Temperature Sp_i}{S}$

Species' IVs for temperature were extracted from both the CATMINAT (Julve, 1998)
and EcoPlant (Gégout *et al.*, 2005) databases, and we used them in combination to
take advantage of their respective strengths (*Supporting Information App. Fig. 4*).

1
2
3
4
5
6
7
/ 0
8
9
10
11
12
13
14
15
16
17
18
10
20
∠∪ ว1
21
22
23
24
25
26
27
28
29
30
21
21
5Z
33
34
35
36
37
38
39
40
41
42
43
4J 44
44 45
45
46
47
48
49
50
51
52
53
54
55
55
50
5/
58
59

243	On the one hand, the CATMINAT database is based on expert knowledge similarly
244	to Ellenberg's IVs (Ellenberg et al., 1992), with temperature preferences of plant
245	species coded along an ordinal scale from cold (1) to warm (9) conditions. It contains
246	almost all of species recorded in our dataset (858 out of the 877 species recorded in
247	all vegetation layers), but CTI values are unitless and direct comparisons with
248	macroclimatic temperatures are not possible. On the other hand, EcoPlant IVs for
249	temperature are directly expressed in degrees Celsius (Gégout et al., 2005) allowing
250	the direct computation of CTI values in degrees Celsius, but much less species from
251	our dataset are recorded (396 out of 877 species). Based on these two databases, we
252	calibrated a transfer function to produce CTI values directly expressed in degrees
253	Celsius and transform the unitless CTI values from the CATMINAT database into a
254	CTI value expressed in degrees Celsius (Supporting Information App. Fig. 4 & 5,
255	and see Lenoir <i>et al.</i> , 2013 for a similar approach).

Based on the time series of MAT values and the time series of CTI values,
both expressed in degrees Celsius, we computed the lag as the difference between
the two (MAT - CTI), thus getting a new time series of the difference: the climatic
debt (Bertrand *et al.*, 2016).

260 The main determinants of the climatic debt

Although we were primarily interested in assessing the temporal dynamic of the
difference between MAT and CTI values, thereby testing the effect of time itself on
the direction and magnitude of this difference – as we assumed the climatic debt to

increase over time – we also assessed the relative contributions of several abiotic and biotic determinants known to potentially modulate the climatic debt. For instance, it has already been demonstrated that MAT during or prior to the baseline survey was a strong and positive determinant of the climatic debt in understory plant communities, suggesting greater lags in initially warmer areas (Bertrand et al., 2016). Hence, to account for that potential confounding effect, we computed baseline temperature conditions from TerraClimate as the average of MAT values during the 1961-1990 reference period (i.e. 30-yr average typically used to capture long-term climatic conditions) and added it as a covariate to explain the climatic debt.

In addition to baseline temperature conditions, we gathered information on anthropogenic and natural disturbances, and stand characteristics, all available from the RENECOFOR monitoring program. Because local disturbances may have significant effects on understory plant communities and are known to accelerate their thermophilization rates and reduce the climatic debt (Bengtsson et al., 2000; Stevens et al., 2015; Brice et al., 2019), we built several variables capturing these local disturbances (Supporting Information App. Fig. 6 & 7). First, we distinguished between natural (e.g. windstorm) and anthropogenic disturbances (i.e. local disturbances associated to forest management practices such as thinning, cleaning and tree extraction). For each of these two types of disturbances, we computed the cumulative sum of disturbance events occurring within a given forest plot prior to each survey year. Here, we assumed that repeated disturbance events are likely to

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

286 accelerate the thermophilization rate and thus reduce the climatic debt of 287 understory plant communities. Then, irrespective of the type of disturbance, we also computed the anteriority, i.e. the number of years, between the last disturbance 288 289 event and the year of the survey, assuming that a very short anteriority (less than a 290 year) will impact less the difference between MAT and CTI values. Indeed, plant 291 community composition is unlikely to change during the vegetation season that is 292 just following a stand thinning event. However, significant changes in plant 293 community composition may lag and happen during the next couple of years with 294 light demanding and warm-adapted species germinating from the soil seed bank and 295 increasing CTI values, thus paying off part of the climatic debt. We also retrieved 296 information about stand characteristics at the plot level, including: stand basal area 297 during the monitoring year; stand age in 1995; and the type of dominant tree species 298 (i.e. deciduous *vs.* coniferous). We hypothesized that plots with higher stand basal area and located in older forest stands are likely to be more buffered against the 299 adverse effect of macroclimate warming (Zellweger et al., 2019), thus further 300 301 inflating the climatic debt of understory plant communities (De Frenne et al., 2013). 302 The exclosure effect (i.e. fenced area excluding ungulates and large herbivores 303 vs. control plots outside the fenced area) was added as a covariate in all our analyses 304 on the temporal trends in CTI values and the climatic debt. According to the 305 scientific literature, climate change impacts on vegetation dynamics tend to be 306 inhibited by large herbivores (Post & Pedersen, 2008; Kaarlejärvi et al., 2013), hence we hypothesized a greater climatic debt outside than inside the fenced area. 307

308 Statistical analyses

We used linear mixed-effects models (LMMs) to assess the velocity of MAT changes and thermophilization of understory plant communities. For CTI values, we used the continuous variable "year" of the monitoring as the main fixed effect while accounting for potentially diverging temporal dynamics between the outside and inside of the fenced area, by adding the interaction effect: year \times exclosure. The RENECOFOR plot ID (44 or 8 levels depending on the dataset used) and the vegetation subplot ID (8 levels), nested within the plot ID, were used as a random term to account for the hierarchical structure of the sampling design and the repeated surveys over time. For MAT values, we only used the "year" of the monitoring as a fixed effect and the RENECOFOR plot ID as a random term. Indeed, for MAT, the subplot level was not used in the random component of LMMs since all 8 subplots within a given plot have similar MAT values. To allow between-site variation in the temporal dynamics of MAT and CTI values, we set the random term (e.g. plot ID) of our LMMs so that it modifies the slope coefficient (i.e. random slope term) of the variable "year" for each level of the random term variable. The coefficient estimate of the "year" variable in our LMMs was used as a proxy for estimating the velocities of temperature changes, both for MAT and CTI values. Assumptions of normality and homoscedasticity of the residuals of our models were visually checked and no departure from normality and homoscedasticity were detected. Significance of the predictors in LMMs were assessed using Wald χ^2 tests, after fitting models with the restricted maximum likelihood estimation.

י ר
2
3
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
19
20
21
21
22
23
24
25
26
27
28
29
30
31
27
5Z 22
33
34
35
36
37
38
39
40
41
12
42
43
44
45
46
47
48
49
50
51
57
J∠ ⊑2
22
54
55
56
57
58

60

330 To analyze the temporal dynamic of the difference between MAT and CTI 331 values over time (i.e. the climatic debt), we used LMMs with the value of the difference (MAT - CTI) as the response variable and the continuous variable "year" 332 333 of monitoring as the main fixed effect variable. In addition to "year", we added 334 several abiotic and biotic covariates as fixed effect variables to assess their relative 335 contribution in modulating the climatic debt. These covariates were: baseline 336 temperature conditions; sum of natural disturbances; sum of anthropogenic 337 disturbances; disturbance anteriority; stand basal area; stand age; type of dominant 338 tree species in forest stand (deciduous vs. coniferous); and the exclosure effect. From 339 the full model including all covariates together with time as fixed effect terms, we 340 ran all possible combinations of models and ranked all candidate models using the corrected Akaike information criteria (AICc). Based on the best candidate model 341 342 with the lowest AICc value, we then computed the difference in AICc values (Δ AICc) 343 for all models relative to the best candidate model. Finally, from the set of selected 344 candidate models with Δ AICc values < 2, we used a model averaging approach to 345 calculate the conditional mean value of each coefficient and its associated 95% 346 confidence interval (Burnham & Anderson, 2002). All continuous predictor variables 347 were standardized (z score) before analyses to improve their interpretability on a 348 comparable scale (Schielzeth, 2010). None of the fixed-effect variables included in 349 our models showed multicollinearity issues (VIF < 3; Zuur *et al.*, 2007). Note that 350 correlation values among all our explanatory variables did not exceed a Spearman's r coefficient of 0.6 (Supporting Information App. Fig. 8). Again, we used the 351 RENECOFOR plot ID (44 or 8 levels depending on the dataset used) and the 352

Page 33 of 115

vegetation subplot ID (8 levels), nested within the plot ID, as a random slope term modifying the effect of "year" of monitoring. The explained variance of LMMs was determined by calculating the marginal (R^2m , associated with fixed effects only) and conditional (R^2c , associated with both fixed and random effects) R^2 values (Nakagawa & Schielzeth, 2013) using the r.squared.GLMM function from the MuMIn package.

All statistical analyses were performed with the R software version 3.6.0 (R Core Team, 2019). Models were performed with the nlme package v.3.1-140 (Pinheiro *et al.*, 2019), and the model selection procedure was assessed with the MuMIn package v.1.43.6 (Bartoń, 2019), using the dredge function. Other packages were used for data handling extraction and graphical visualization: dplyr v.0.8.3 (Wickham *et al.*, 2019); raster v.2.9-23 (Hijmans, 2019); ggplot2 v.3.2.0 (Wickham, 2016); cowplot v.1.0.0 (Wilke, 2019); and sf v.0.7-7 (Pebesma, 2018).

1ez

Results

Temporal trends in macroclimate and community temperatures

Using the 5-yr interval dataset, mean annual temperature (MAT) during 1995–2015 increased by 0.23 \pm 0.02 °C/decade (95 % Confidence Intervals (CI): 0.18-0.28, t =9.05, P < 0.001; Fig. 2a). In the yearly dataset, MAT increased by 0.31 \pm 0.05 °C/decade (95 % CI: 0.20-0.42, t = 5.51, P < 0.001; Fig. 2b) during 1995–2017. Over the same time periods, the velocities of CTI changes were weaker, but similar trends and magnitudes were observed in both the five-year (0.10 \pm 0.03 °C/decade, 95 %

CI: 0.04-0.15, t = 3.62, P < 0.001; Fig. 2a) and yearly (0.08 + 0.03 °C/decade, 95 % CI: 0.01-0.14, t = 2.15, P = 0.031; Fig. 2b) datasets. No significant differences were observed in CTI trends between inside and outside of the fenced area. Further, the difference between MAT and CTI values showed a tendency to increase steadily over time (Fig. 2): the lag in the response of herbaceous plant communities to climate warming increased linearly over time. Although we found a significant effect of time, it contributed weakly to the overall variation in MAT and CTI values: $R^2 m \leq 0.01$ while $R^2 c$ ranged between 0.92 to 0.96.

382 Factors contributing to the climatic debt

For both the yearly and five-year datasets, the model averaging procedure to explain the climatic debt (MAT - CTI) selected 4 and 3 candidate models (Δ AICc < 2), respectively. The best candidate models explained 55% and 70% of the total variation in the difference between MAT and CTI values for the five-year $(R^2 m =$ 0.33; $R^2 c = 0.55$) and yearly ($R^2 m = 0.46$; $R^2 c = 0.70$) datasets, respectively. The best candidate model for the five-year dataset contained 6 variables including the year of sampling, stand age, the anteriority of the last disturbance, the cumulative number of anthropogenic disturbances, stand basal area, and baseline temperature conditions. For the yearly dataset, the best candidate model included the same 6 variables together with the type of dominant tree species (Supporting Information App. Tables 3 & 4 and App. Fig. 9 & 10).

Page 35 of 115

Global Ecology and Biogeography

Irrespective of the dataset considered in our analyses, we found very consistent and similar trends in the factors contributing to the climatic debt (**Fig. 3**). For instance, the year of sampling had a positive effect on the magnitude of the difference, confirming an increasing climatic debt of understory plant communities over time (five-year dataset = 0.06 ± 0.03 SE, *Fig. 3a*; yearly dataset = 0.31 ± 0.04 SE, *Fig. 3b* and *Fig. 4a*).

Baseline temperature conditions had the strongest positive influence on the climatic debt (five-year dataset = 0.77 ± 0.04 SE, Fig. 3a; yearly dataset = $0.72 \pm$ 0.10 SE, Fig. 3b), indicating greater lags in plots with warmer baseline temperature conditions during the period 1961–1990. We also found a positive effect of stand characteristics, through the variables stand age in 1995 and basal area during the year of monitoring, on the magnitude of the lag. More specifically, the lag was larger in denser (five-year dataset = 0.22 ± 0.04 SE, Fig. 3a; yearly dataset = 0.35 ± 0.05 SE, Fig. 3b and Fig. 4b) and older (five-year dataset = 0.15 ± 0.04 SE, Fig. 3a; yearly dataset = 0.46 ± 0.07 SE, *Fig. 3b* and *Fig. 4c*) forests. We found no clear differences in the climatic debt between coniferous and deciduous forests as well as between inside and outside of the fenced area.

411 In contrast, forest disturbance had a negative effect on the climatic debt (*Fig.* 412 3). Notably, the magnitude of the lag was negatively correlated with the anteriority 413 of the last disturbance event (five-year dataset = -0.12 ± 0.02 SE, *Fig. 3a*; yearly 414 dataset = -0.10 ± 0.03 SE, *Fig. 3b*), revealing that lags decrease in plots recently 415 disturbed. Moreover, the cumulative number of anthropogenic disturbances were

negatively correlated to the climatic debt (five-year dataset = -0.17 ± 0.04 SE, *Fig. 3a*; yearly dataset = -0.19 ± 0.07 SE, *Fig. 3b*), indicating that lags decrease in the most frequently disturbed plots, following logging events. The cumulative number of natural disturbances was only retained in the models based on the five-year dataset, albeit its tendency towards a negative effect did not differ from zero (-0.04 ± 0.04 SE, *Fig. 3a*).

422 Discussion

423 Velocities of thermophilization

Irrespective of the temporal resolution in the data (i.e. the yearly vs. five-year dataset), we show a very similar increase in temperature conditions inferred from understory plant communities over the period 1995–2017, consistent with a thermophilization process. This finding adds to a growing body of evidence describing thermophilization of plant communities across many forest ecosystems around the globe (e.g. in temperate, boreal and tropical ecosystems; Lenoir et al., 2010; Bertrand et al., 2011; De Frenne et al., 2013; Savage & Vellend, 2015; Fadrique et al., 2018; Zellweger et al., 2020), as well as across other ecosystems and taxonomic groups (e.g. in mountain plant communities, Gottfried *et al.*, 2012; marine fishes and invertebrates, Cheung et al., 2013; birds and butterflies, Devictor et al., 2012; bumblebee communities, Fourcade et al., 2018). The velocities of thermophilization we report here (ranging from 0.08 to 0.10 °C/decade) are broadly in the range of those reported in the scientific literature (from 0.03 to 0.38)

1	
2	
3	4
4	
5	
6	4
7	
8	4
9	
10	
11	4
12	
12	,
13	-
14	
15	4
16	
17	
18	2
19	
20	4
21	
22	
23	
23	4
24	
25	,
26	-
27	
28	4
29	
30	
31	2
32	
33	4
34	
35	
36	4
27	
20	4
20	
39	
40	4
41	
42	,
43	-
44	
45	4
46	
47	
48	2
49	
50	4
50	
51	
52	2
53	
54	,
55	-
56	
57	
58	
59	
60	

°C/decade; Supporting Information App. Table. 5), but also are among the highest 437 438 rates recorded for plant communities (maximum value of 0.27 °C/decade; Duque et al., 2015). Specifically, we show velocities that are twice as fast as the average 439 440 thermophilization rate estimated for understory plant communities across 441 temperate deciduous forests in Europe (i.e. 0.041 °C/decade; De Frenne et al., 2013). 442 Nevertheless, these rates are still much lower than those found in marine 443 ecosystems, where environmental constraints may weakly limit the dispersal of 444 species in response to rising temperatures (Lenoir et al., 2020). 445 Our findings consist in the most recent updates supporting and consolidating 446 previous reports of plant community thermophilization which happened across the same study area (France) (Bertrand et al., 2011; Martin et al., 2019). Focusing on a 447 448 completely independent dataset from the period 1965–2008, Bertrand et al. (2011) 449 were the first to highlight a thermophilization of understory plant communities in the French forests. More recently, Martin et al. (2019) have described a similar 450 451 thermophilization trend extending to other plant communities at national and 452 regional scales in France over the period 2009–2017. Unlike these previous studies 453 relying either on massive collection of opportunistic surveys over time (Bertrand et al., 2011) or citizen science data (Martin et al., 2019), our study is the first that used 454 455 a long-term monitoring program based on strictly permanent plots intensively 456 monitored over time (up to every year), providing a very detailed time series of 457 changes in understory plant community composition. Hence, we argue that the 458 velocities we report here do not suffer from biases due to space-for-time

substitutions and are thus likely to be more accurate than those previously reported (Elmendorf et al., 2015), which matters for informing our society on future scenarios of biodiversity changes (IPBES, 2019). Furthermore, our yearly resurveys over a period of 25 years confirm that the thermophilization rate of understory plant communities in temperate forests is following a linear trajectory over time. This is an important and novel finding that helps us to understand the temporal dynamic of the biotic responses to anthropogenic climate change. Yet, time alone had a very minor contribution to explain the variation in temperature conditions inferred from understory plant communities. This suggests that other abiotic and biotic determinants, such as the macroclimatic context as well as local stand characteristics influenced by anthropogenic disturbances may potentially explain local variations in temperature conditions.

471 The climatic debt and its potential determinants

One of our most striking results is that the velocity at which atmospheric air temperatures are rising is twice faster, on average, than the velocity at which understory plant communities are responding, generating a climatic debt that is steadily growing over time, even after accounting for the relative contribution of several abiotic and biotic determinants modulating it. Although the idea of an increasing climatic debt over time has already been suggested (Bertrand et al., 2011). we provide the first evidence that the climatic debt of understory plant communities in response to the ongoing climate change is steadily increasing over time. This contrasts with a previous report showing no clear temporal signal in the

2	
3 4	4
5 6	4
/ 8 9	4
10 11	4
12 13	4
14 15 16	4
17 18	4
19 20	4
21 22 23	4
24 25	4
26 27	4
28 29 30	
31 32	4
33 34	4
35 36 37	4
38 39	4
40 41	4
42 43	4
44 45 46	4
47 48	4
49 50	5
51 52 53	5
54 55	5
56 57	
58 59 60	
00	

81 climatic debt of herbaceous plant communities in French forests (Bertrand et al., 82 2016). Considering the velocity of the predicted future climate change (Loarie *et al.*, 83 2009), this is an important result because it raises the question whether the lag will 84 continue to steadily accumulate and approach a potential critical breakpoint for 85 understory biodiversity and forest ecosystem functioning. Interestingly, the linear 86 increase of the climatic debt over time is clearer and more pronounced (higher effect 87 size) in the yearly dataset than in the five-year dataset. This is probably because the 88 long-term increasing trend in the climatic debt was better separated from inter-89 annual variations in the yearly dataset than in the five-year dataset. Inter-annual 90 variations tend to play a bigger role in blurring the long-term response of understory plant communities when the frequency between resurveys is lower. 91 92 Importantly, we demonstrate that forest stand characteristics and 93 anthropogenic disturbances significantly matter in modulating the climatic debt, by either increasing (positive effect) or mitigating (negative effect) the lag. For 94 95 instance, both the anteriority of the last disturbance event and the cumulative 96 number of anthropogenic disturbances have a negative effect on the climatic debt. 97 Such findings are in accordance with recent works indicating that local disturbances speed up the process of thermophilization in plant communities (Stevens et al., 98

.99 2015; Brice et al., 2019; Zellweger et al., 2020). However, it remains to be 00 investigated in more details whether the thermophilization of understory plant 01 communities following anthropogenic disturbances is due to warm-adapted species

02 that are: (i) replacing more mesophilous species (pure turnover); (ii) increasing the

1
2
3
1
4 5
2
6
7
8
9
10
11
12
13
14
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
27
5Z
33
34
35
36
37
38
39
10
0 //1
41
42
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
58

60

503	local species pool (nestedness); or both simultaneously. For instance, Closset-Kopp	
504	et al. (2018) have shown that understory plant communities in heavily managed	
505	forest stands had the tendency to be richer in warm-adapted species in 2015 than in	
506	1970, mostly due to an increase in local species richness but no species turnover. In	
507	our study, both processes seem to occur. Indeed, while the total number of species	
508	per plot increases over time, suggesting a process of nestedness, the set of warm-	
509	adapted species that are colonizing (i.e. species gain) the plots of our monitoring	
510	network between 1995 and 2015 are also replacing relatively more mesic species	
511	that are disappearing (i.e. species loss) (Supporting Information, App. Fig. 11),	
512	suggesting a process of turnover. Not only the richness of warm-adapted species	
513	increases at the expense of cold-adapted species, but this effect is concomitant with	
514	4 a relative increase in the richness of light- and nitrogen-demanding species at the	
515	expense of species tolerating shade conditions and nitrogen-poor soils (Supporting	
516	Information, App. Fig. 12). These trends further confirm the importance of local	
517	disturbances as key factors modulating the lag between macroclimatic conditions	
518	and plant community thermophilization. Noteworthy, our results contrast with	
519	those from Bertrand et al. (2016), who reported non-significant effects of	
520	anthropogenic disturbances on the climatic debt of understory plant communities.	
521	1 Looking at the effects of stand characteristics, our results underline the key role of	
522	stand age and basal area to modulate the climatic debt. Older and denser (high	
523	basal area) forest stands provide particular microclimatic conditions (e.g. cooler	
524	ground-level temperatures due to increased shading and humidity conditions) that	
525	are likely to buffer the adverse effects of macroclimatic warming on understory	

Page 41 of 115

plant communities thus providing thermal microrefugia for species persistence (Lenoir et al., 2017; De Frenne et al., 2019; Zellweger et al., 2020). In contrast, repeated disturbances are likely to create canopy openings in forest stands, modifying the microhabitat and associated microclimate that strongly exacerbate the impact of macroclimate temperature warming for understory vegetation (Vanderwel & Purves, 2014; Zellweger *et al.*, 2020). This can in turn lead to drastic changes in the overall composition of the plant community (i.e. by increasing the proportion of warm-adapted species through either species turnover or an increase in local species richness) that will reduce the climatic debt. Paying off the climatic debt of understory plant communities in temperate forests implies to break off this microclimate stability, which can consequently reduce the microrefugia capacity of forest habitats for the survival of forest-dwelling species under anthropogenic climate change (Lenoir et al., 2017). Accepting the idea that the climatic debt of understory plant communities might be a positive sign of local adaptation has significant implications on the concept of climatic debt itself, which might be interpreted as a macroclimatic debt but not a microclimatic debt.

542 Contrary to our initial expectation that large herbivores should contribute to 543 the climatic debt by further increasing the lag in the response of understory plant 544 communities to macroclimate warming, we found no difference in the observed 545 climatic debt between outside and inside the fenced area. This suggests that the 546 climatic debt generated by the buffering effect of microclimate in the understory 547 may mostly stem from the canopy layer and independently from the shrub layer, as

Page 42 of 115

1
2
3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
17
18
19
20
20 21
21
22
23
24
25
26
27
28
29
30
31
27
5Z
33
34
35
36
37
38
39
40
41
42
43
13
44
40
46
47
48
49
50
51
52
53
54
55
55
50
5/
58
59

60

548 large herbivores are mostly impacting woody species from the understory shrub 549 layer (Olofsson et al., 2009; Boulanger et al., 2018). The indirect effects of herbivores 550 on vegetation responses to climate warming can be highly dependent on the 551 ecological context, as pointed out by Vuorinen et al., (2020). 552 Together with previous studies, our results show that the climatic debt in 553 understory plant communities seem to be much more pronounced in situations 554 where temperature conditions were warmer during the period preceding the 555 baseline surveys (Bertrand et al., 2016), such as in the lowlands (Bertrand et al., 556 2011). However, the fact that warmer baseline conditions increase the climatic debt of understory plant communities could also stem from a bias towards an 557 558 underestimation of CTI values in communities where immigrating species can only 559 come from even warmer regions likely outside the calibration range used to compute 560 the CTI values. This could therefore lead to a systematic overestimation of the observed climatic debt in the warmest part of the study area. This hypothesis is 561 562 supported by the extreme values observed in the distribution of indicator values (IVs) from the EcoPlant database (Supporting Information App. Fig. 5), which may 563 564 indicate that the model calibration range is too limited and should be extended to 565 other environmental conditions (i.e. here, the Mediterranean regions to capture the 566 pool of immigrating species coming from for warmer conditions). This potential bias 567 supports general recommendations to take into account existing differences in 568 sensitivity between species pools when assessing temporal changes in CTI values 569 (Burrows et al., 2019; Williams et al., 2020). More data on species IVs, either expert-

2 3 4	570	based or biogeographically-derived IVs, are needed from warmer regions to improve
5 6 7	571	estimates of CTI values in the current context of global warming.
8 9 10 11	572	Conclusion
12 13	573	This study shows that the thermophilization of understory plant communities in
14 15 16	574	French forests continued during the last two decades with rapid but insufficient
17 18	575	rates to track the velocity of current climate warming, leading to a steadily increase
19 20 21	576	in the climatic debt. Additionally, we report that forest stand structure and
22 23	577	anthropogenic disturbances can be modulated to increase or decrease the climatic
24 25 26	578	debt. For instance, the positive effect of denser and older canopy layers on forest
20 27 28	579	microclimate dynamics could inflate the climatic debt of understory plant
29 30	580	communities and provide more time for understory plant communities to locally
31 32 33	581	adapt. However, it remains uncertain how big the climatic debt can grow over time
34 35	582	before a tipping point is reached such that the climatic debt will suddenly be paid
36 37 20	583	off. For instance, repeated drought events leading to extensive tree dieback and
38 39 40	584	massive crown defoliation could exceed this tipping point by suddenly recoupling the
41 42	585	understory layer with macroclimatic conditions prevailing outside forests. Such a
43 44 45	586	quick recovery of the climatic debt will have drastic consequences on forest
46 47	587	biodiversity and ecosystem functioning.
48 49 50 51 52 53 54 55 56	588	

Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A. & Hegewisch, K.C. (2018)

water balance from 1958–2015. *Scientific Data*, **5**, 170191.

Bartoń, K. (2019) MuMIn: Multi-Model Inference.

Ecology and Management, 132, 39–50.

warming in lowland forests. Nature, 479, 517-520.

TerraClimate, a high-resolution global dataset of monthly climate and climatic

Archaux, F., Camaret, S., Dupouey, J.L., Ulrich, E., Corcket, E., Bourjot, L., ...

Touffet, J. (2009) Can we reliably estimate species richness with large plots? an

Ash, J.D., Givnish, T.J. & Waller, D.M. (2017) Tracking lags in historical plant

species' shifts in relation to regional climate change. *Global Change Biology*, 23,

Becker-Scarpitta, A., Vissault, S. & Vellend, M. (2019) Four decades of plant

Bengtsson, J., Nilsson, S.G., Franc, A. & Menozzi, P. (2000) Biodiversity,

disturbances, ecosystem function and management of European forests. Forest

Bertrand, R., Lenoir, J., Piedallu, C., Dillon, G.R., De Ruffray, P., Vidal, C., ...

Gégout, J.C. (2011) Changes in plant community composition lag behind climate

29

community change along a continental gradient of warming. *Global Change Biology*,

assessment through calibration training. *Plant Ecology*, **203**, 303–315.

1	
2	
3	
4	
5	
6 7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21	
22	
23 24	
24 25	
25	
26	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

References

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

1305-1315.

25, 1629–1641.

1 2		
2 3 4	609	Bertrand, R., Riofrío-Dillon, G., Lenoir, J., Drapier, J., De Ruffray, P., Gégout, J.C.
5 6	610	& Loreau, M. (2016) Ecological constraints increase the climatic debt in forests.
/ 8 9	611	Nature Communications, 7.
10 11 12	612	Blonder, B., Moulton, D.E., Blois, J., Enquist, B.J., Graae, B.J., Macias-Fauria, M.,
13 14	613	Svenning, JC. (2017) Predictability in community dynamics. <i>Ecology Letters</i> , 20 ,
15 16 17	614	293–306.
18 19 20	615	Boulanger, V., Dupouey, J., Archaux, F., Badeau, V., Baltzinger, C., Chevalier, R.,
21 22	616	Ulrich, E. (2018) Ungulates increase forest plant species richness to the benefit of
23 24 25	617	non-forest specialists. <i>Global Change Biology</i> , 24 , e485–e495.
26 27 28	618	Brice, M., Cazelles, K., Legendre, P. & Fortin, M. (2019) Disturbances amplify tree
29 30 31	619	community responses to climate change in the temperate–boreal ecotone. <i>Global</i>
32 33 34	620	Ecology and Biogeography, geb.12971.
35 36	621	Burnham, K.P. & Anderson, D.R. eds. (2002) Model Selection and Multimodel
37 38	622	Inference: A Practical Information-Theoretic Approach. pp. 49–97. Springer-Verlag
39 40 41	623	New York.
42 43 44 45	624	Burrows, M.T., Bates, A.E., Costello, M.J., Edwards, M., Edgar, G.J., Fox, C.J.,
46 47	625	Halpern, B.S., Hiddink, J.G., Pinsky, M.L., Batt, R.D., García Molinos, J., Payne,
48 49	626	B.L., Schoeman, D.S., Stuart-Smith, R.D. & Poloczanska, E.S. (2019) Ocean
50 51	627	community warming responses explained by thermal affinities and temperature
52 53 54 55 56	628	gradients. Nature Climate Change, 9, 959–963.
57 58		
22		30

Camaret, S. & Brêthes, A. (2004) Suivi de la composition floristique des placettes du

1	
2 3 4	629
5 6	630
7 8 9	631
10	
11 12 12	632
13 14 15	633
16 17	634
18 10	
20	635
21 22	636
23 24	
25 26	637
27 28	638
29 30	639
31 32	
33 34	640
35 36	641
37	
38 39	642
40 41	643
42 43	644
44	644
43 46 47	645
47	
49 50	646
51 52	647
53 54	648
55	0-10
56 57	
58	
59 60	

630	réseau (1994/95-2000) et élaboration d'un programme d'assurance qualité intensif,
631	Office National des Forêts-Direction Technique.
632	Cheung, W.W.L., Watson, R. & Pauly, D. (2013) Signature of ocean warming in
633	global fisheries catch. <i>Nature</i> , 497 , 365–368.
634	Closset-Kopp, D., Hattab, T. & Decocq, G. (2018) Do drivers of forestry vehicles also
635	drive herb layer changes (1970-2015) in a temperate forest with contrasting habitat
636	and management conditions? <i>Journal of Ecology</i> .
637	Davis, M.B. (1984) Climatic Instability, Time, Lags, and Community
638	Disequilibrium. Community ecology Community ecology. (ed. by J.M. Diamond) and
639	T.J. Case), pp. 269–284. Harper; Row.
640	Davis, M.B. (1989) Lags in vegetation response to greenhouse warming. <i>Climatic</i>
641	<i>Change</i> , 15 , 75–82.
642	De Frenne, P., Rodríguez-Sánchez, F., Coomes, D.A., Baeten, L., Verstraeten, G.,
643	Vellend, M., Verheyen, K. (2013) Microclimate moderates plant responses to
644	macroclimate warming. Proceedings of the National Academy of Sciences of the
645	United States of America, 110 , 18561–5.
646	De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B.R., Hylander, K.,
647	Luoto, M., Lenoir, J. (2019) Global buffering of temperatures under forest
648	canopies. Nature Ecology and Evolution, 3 , 744–749.

1 2	
- 3 4	64
5 6 7	6
7 8 9	6
10 11 12	6:
13 14	6
15 16 17	6
18 19 20	6:
21 22	6
23 24 25	6
26 27 28	6:
29 30 21	6
31 32 33	60
34 35 36	60
37 38 30	60
39 40 41	60
42 43 44	60
45 46 47	60
48 49 50	60
51 52	60
53 54 55	60
56 57	
58 59	
00	

649	Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. (2008) Birds are tracking climate
650	warming, but not fast enough. Proceedings of the Royal Society B: Biological
651	<i>Sciences</i> , 275 , 2743–2748.
652	Devictor, V., Swaay, C. van, Brereton, T., Brotons, L., Chamberlain, D., Heliölä, J.,
653	Jiguet, F. (2012) Differences in the climatic debts of birds and butterflies at a
654	continental scale. Nature Climate Change, 2, 121–124.
655	Dornelas, M., Antão, L.H., Moyes, F., Bates, A.E., Magurran, A.E., Adam, D.,
656	Zettler, M.L. (2018) BioTIME: A database of biodiversity time series for the
657	Anthropocene. Global Ecology and Biogeography, 27, 760–786.
658	Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N.E., Guisan,
659	A., Hülber, K. (2012) Extinction debt of high-mountain plants under twenty-first-
660	century climate change. <i>Nature Climate Change</i> , 2 , 619–622.
661	Duque, A., Stevenson, P.R. & Feeley, K.J. (2015) Thermophilization of adult and
662	juvenile tree communities in the northern tropical Andes. <i>Proceedings of the</i>
663	National Academy of Sciences of the United States of America, 112, 10744–10749.
664	Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. & Paulißen, D. (1992)
665	Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica.
666	Elmendorf, S.C., Henry, G.H.R., Hollister, R.D., Fosaa, A.M., Gould, W.A.,
667	Hermanutz, L., Walker, M. (2015) Experiment, monitoring, and gradient methods
668	used to infer climate change effects on plant communities yield consistent patterns.

Proceedings of the National Academy of Sciences of the United States of America,

2
3
4
5
6
7
/
8
9
10
10
11
12
12
15
14
15
16
10
17
18
19
20
20
21
22
22
23
24
25
26
20
27
28
20
29
30
31
22
22
33
34
35
20
36
37
38
20
39
40
41
12
42
43
44
45
10
40
47
48
10
50
51
52
52
22
54
55
56
50
57
58
50
60

1

669

670 **112**, 448–52. 671 Essl, F., Dullinger, S., Rabitsch, W., Hulme, P.E., Pyšek, P., Wilson, J.R.U. & 672 Richardson, D.M. (2015) Delayed biodiversity change: no time to waste. Trends in 673 *Ecology & Evolution*, **30**, 375–378. Fadrigue, B., Báez, S., Dugue, Á., Malizia, A., Blundo, C., Carilla, J., ... Feeley, K.J. 674 675 (2018) Widespread but heterogeneous responses of Andean forests to climate 676 change. Nature. Fourcade, Y., Åström, S. & Öckinger, E. (2018) Climate and land-cover change alter 677 678 bumblebee species richness and community composition in subalpine areas. 679 Biodiversity and Conservation. 680 Gaüzère, P., Princé, K. & Devictor, V. (2017) Where do they go? The effects of topography and habitat diversity on reducing climatic debt in birds. Global Change 681 682 *Biology*, 23, 2218–2229. 683 Gégout, J.C., Coudun, C., Bailly, G. & Jabiol, B. (2005) EcoPlant: A forest site 684 database linking floristic data with soil and climate variables. Journal of Vegetation 685 Science, 16, 257-260. Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Benito Alonso, 686 J.L., ... Grabherr, G. (2012) Continent-wide response of mountain vegetation to 687 688 climate change. Nature Climate Change, 2, 111–115.

2 3 4	689	Hijmans, R.J. (2019) raster: Geographic Data Analysis and Modeling.
5 6 7	690	Hillebrand, H., Soininen, J. & Snoeijs, P. (2010) Warming leads to higher species
8 9 10	691	turnover in a coastal ecosystem. <i>Global Change Biology</i> , 16 , 1181–1193.
11 12 13	692	Hooper, D.U., Adair, E.C., Cardinale, B.J., Byrnes, J.E.K., Hungate, B.A., Matulich,
14 15	693	K.L., Connor, M.I. (2012) A global synthesis reveals biodiversity loss as a major
16 17 18	694	driver of ecosystem change. <i>Nature</i> , 486 , 105–108.
20 21	695	IPBES (2019) Summary for policymakers of the global assessment report on
22 23	696	biodiversity and ecosystem services of the Intergovernmental science-policy platform
24 25 26	697	on biodiversity and ecosystem services.
27 28 29	698	Julve, P. (1998) Baseflor: Index botanique, écologique et chorologique de la flore de
30 31 32	699	France. Version 2009.
33 34 35	700	Jump, A.S. & Peñuelas, J. (2005) Running to stand still: adaptation and the
36 37	701	response of plants to rapid climate change. <i>Ecology Letters</i> , 8 , 1010–1020.
39 40	702	Kaarlejärvi, E., Eskelinen, A. & Olofsson, J. (2013) Herbivory prevents positive
41 42 43	703	responses of lowland plants to warmer and more fertile conditions at high altitudes.
44 45 46	704	<i>Functional Ecology</i> , 27 , 1244–1253.
47 48	705	Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W.,
49 50 51	706	Kessler, M. (2017) Climatologies at high resolution for the earth's land surface
52 53 54 55 56 57	707	areas. <i>Scientific Data</i> , 4 , 170122.
58 59		34
2		
----	--	
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		

708	Lenoir, J., Gégout, J.C., Dupouey, J.L., Bert, D. & Svenning, J.C. (2010) Forest plant
709	community changes during 1989-2007 in response to climate warming in the Jura
710	Mountains (France and Switzerland). Journal of Vegetation Science, 21, 949–964.
711	Lenoir, J., Graae, B.J., Aarrestad, P.A., Alsos, I.G., Armbruster, W.S., Austrheim,
712	G., Svenning, J.C. (2013) Local temperatures inferred from plant communities
713	suggest strong spatial buffering of climate warming across Northern Europe. Global
714	<i>Change Biology</i> , 19 , 1470–1481.
715	Lenoir, J., Hattab, T. & Pierre, G. (2017) Climatic microrefugia under anthropogenic
716	climate change: implications for species redistribution. <i>Ecography</i> , 40 , 253–266.
717	Lenoir, J. & Svenning, JC. (2015) Climate-related range shifts - a global
718	multidimensional synthesis and new research directions. <i>Ecography</i> , 38 , 15–28.
719	Lenoir, J., Bertrand, R., Comte, L. <i>et al.</i> (2020) Species better track climate warming
720	in the oceans than on land. <i>Nature Ecology Evolution</i> 4 , 1044–1059.
721	Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B. & Ackerly, D.D.
722	(2009) The velocity of climate change. <i>Nature</i> , 462 , 1052–1055.
723	Martin, G., Devictor, V., Motard, E., Machon, N. & Porcher, E. (2019) Short-term
724	climate-induced change in French plant communities. <i>Biology Letters</i> , 15 , 20190280.
725	Menéndez, R., Megías, A.G., Hill, J.K., Braschler, B., Willis, S.G., Collingham, Y.,
726	Thomas, C.D. (2006) Species richness changes lag behind climate change.
727	Proceedings of the Royal Society B: Biological Sciences, 273, 1465–1470.

1	
2	
2	
3	
4	
5	
5	
6	
7	
'	
8	
9	
10	
10	
11	
10	
12	
13	
14	
1 -	
15	
16	
17	
17	
18	
19	
20	
20	
21	
22	
22	
23	
24	
25	
25	
26	
27	
2/	
28	
29	
20	
30	
31	
22	
52	
33	
34	
25	
35	
36	
27	
57	
38	
39	
10	
40	
41	
42	
42	
43	
44	
Λ5	
45	
46	
47	
40	
48	
49	
50	
50	
51	
52	
52	
53	
54	
55	
22	
56	
57	
57	
58	
59	

	728	Nakagawa, S. & Schielzeth, H. (2013) A general and simple method for obtaining R2
	729	from generalized linear mixed-effects models. <i>Methods in Ecology and Evolution</i> , 4 ,
	730	133–142.
)	731	Nicolas, M., Jolivet, C. & Jonard, M. (2014) How monitoring networks contribute to
}	732	the understanding and to the management of soil and forest ecosystems? Revue
, ,	733	forestière française.
;))	734	Olofsson, J., Oksanen, L., Callaghan, T., Hulme, P.E., Oksanen, T. & Suominen, O.
2	735	(2009) Herbivores inhibit climate-driven shrub expansion on the tundra. Global
; - ;	736	<i>Change Biology</i> , 15 , 2681–2693.
, ,	737	Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, IC.,
)	738	Williams, S.E. (2017) Biodiversity redistribution under climate change: Impacts on
-	739	ecosystems and human well-being. <i>Science (New York, N.Y.)</i> , 355 , eaai9214.
;	740	Pebesma, E. (2018) Simple Features for R: Standardized Support for Spatial Vector
;	741	Data. The R Journal, 10, 439–446.
)	742	Perring, M.P., Bernhardt-Römermann, M., Baeten, L., Midolo, G., Blondeel, H.,
; -	743	Depauw, L., Verheyen, K. (2018) Global environmental change effects on plant
, ,	744	community composition trajectories depend upon management legacies. <i>Global</i>
;)	745	<i>Change Biology</i> , 24 , 1722–1740.
)	746	Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team (2019) nlme: Linear
; ; ;	747	and Nonlinear Mixed Effects Models.
) ,		
;		

Post, E. & Pedersen, C. (2008) Opposing plant community responses to warming

R Core Team (2019) R: A Language and Environment for Statistical Computing.

United States of America, 105, 12353–12358.

with and without herbivores. Proceedings of the National Academy of Sciences of the

2	
3 4	748
5 6	749
7 8	750
9 10	
11 12	751
13 14	
14 15 16	752
10 17 18	753
19 20	754
21	
22 23	755
24 25	756
26 27	
28 29	757
30	758
31 32	138
33 34	759
35	
36 37	760
38 39	761
40	
41	762
43 44	763
45 46	
47 48	764
49	-
50 51	765
52 53	766
54	
55 56	
57	
58 59	
60	

Savage, J. & Vellend, M. (2015) Elevational shifts, biotic homogenization and time
lags in vegetation change during 40 years of climate warming. <i>Ecography</i> , 38 , 546-
555.
Schielzeth, H. (2010) Simple means to improve the interpretability of regression
coefficients. <i>Methods in Ecology and Evolution</i> , 1 , 103–113.
Stevens, J.T., Safford, H.D., Harrison, S. & Latimer, A.M. (2015) Forest disturbance
accelerates thermophilization of understory plant communities. Journal of Ecology,
103 , 1253–1263.
Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M. & Webb,
D.A. (2001) Flora Europaea 5 Volume Set and CD-ROM Pack.
Ulrich, E. (1995) Le réseau RENECOFOR: objectifs et réalisation. Revue forestière
française.
Vanderwel, M.C. & Purves, D.W. (2014) How do disturbances and environmental
heterogeneity affect the pace of forest distribution shifts under climate change?
<i>Ecography</i> , 37 , 10–20.

1 2		
3 4	767	Vuorinen, K.E.M., Kolstad, A.L., De Vriendt, L., Austrheim, G., Tremblay, J.P.,
5 6	768	Solberg, E.J. & Speed, J.D.M. (2020) Cool as a moose: How can browsing counteract
7 8 9 10	769	climate warming effects across boreal forest ecosystems? <i>Ecology</i> , 101 , 1–10.
10 11 12	770	Walther, GR. (2010) Community and ecosystem responses to recent climate
13 14	771	change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365,
15 16 17	772	2019–2024.
19 20	773	Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag
21 22 23	774	New York.
24 25 26	775	Wickham, H., François, R., Henry, L. & Müller, K. (2019) dplyr: A Grammar of Data
27 28 29	776	Manipulation.
30 31	777	Wilke, C.O. (2019) cowplot: Streamlined Plot Theme and Plot Annotations for
32 33 34	778	"ggplot2."
35 36 37	779	Williams, J.J., Bates, A.E. & Newbold, T. (2020) Human-dominated land uses favour
38 39	780	species affiliated with more extreme climates, especially in the tropics. <i>Ecography</i> ,
40 41 42	781	43 , 391–405.
43 44 45	782	Zellweger, F., Coomes, D., Lenoir, J., Depauw, L., Maes, S.L., Wulf, M., De
46 47	783	Frenne, P. (2019) Seasonal drivers of understorey temperature buffering in
48 49 50	784	temperate deciduous forests across Europe. Global Ecology and Biogeography,
51 52 53	785	geb.12991.
54 55		
56 57 58		
59 60		38

2 3	786	Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-
4 5 6	787	Römermann, M., Coomes, D. (2020) Forest microclimate dynamics drive plant
7 8 9	788	responses to warming. <i>Science</i> , 368 , 772 LP–775.
10 11 12	789	Zuur, A., Ieno, E.N. & Graham, S.M. (2007) Analyzing Ecological Data, Springer-
13 14 15	790	Verlag New York.
16 17 18 19 20 21 22 23 24 25 27 28 20 31 22 23 24 25 27 28 20 31 32 33 45 36 7 89 04 12 23 24 25 27 28 20 31 23 34 35 37 83 90 41 24 25 25 25 26 27 28 20 31 22 23 24 25 26 27 28 20 31 32 33 45 36 37 38 90 41 20 21 22 23 24 25 26 7 89 30 31 23 34 35 36 37 38 90 41 2 2 34 45 56 57 20 20 20 20 20 20 20 20 20 20 20 20 20	791	
57 58		
59 60		39

1 2 3 4	792	Data Accessibility Statement
5 6 7	793	Datasets on CTI values are provided in Supporting Information, and will be
8 9 10	794	archived in an appropriate public repository after the process of review and
11 12 13	795	acceptance of the manuscript.
$\begin{array}{c} 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 21\\ 22\\ 32\\ 42\\ 52\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 55\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 56\\ 56\\ \end{array}$	796	
57 58 59		40

797 Figures

798 List and captions

799	Figure	1
1))	Garo	-

Workflow implemented in the study. The 102 plots of the RENECOFOR network are mapped, and the two datasets used in our analyses are represented in color (in red and blue for the five-year and yearly datasets, respectively). Analyses of temporal trends in mean annual temperature (MAT) and the community temperature index (CTI) and factors contributing to the lag between MAT and CTI (MAT-CTI) are conducted on the two datasets separately. For more details, see the Materials and Methods section.

807 Figure 2.

Temporal trends for mean annual temperature (MAT) and the community temperature index (CTI) in (a) the five-year dataset from 1995 to 2015 and (b) the yearly dataset from 1995 to 2017. Linear trends (dashed lines) with standard errors (ribbons) of estimated MAT or CTI values are shown. For CTI, the values for exclosure or enclosure are plotted separately. Observed values for temperatures (MAT or CTI) are represented with their associated standard errors and symbol sizes are proportional to sample size (number of plots).

⁴⁹ 815 **Figure 3.**

816 Coefficient estimates and 95% confidence intervals extracted from linear mixed 52
 53 817 officient estimates the solution contribution of second hostical chiefic and histi

⁵⁵ 817 effects models testing the relative contribution of several potential abiotic and biotic

- determinants on the magnitude and direction of the lag between mean annual

1		
2 3 4	819	temperature (MAT) and the community temperature index (CTI) values in (a) the
5 6 7	820	five-year dataset and (b) yearly dataset. Points (with 95% confidence intervals)
, 8 9	821	represent the standardized mean coefficients averaged from the selected models (\varDelta
10 11 12	822	AICc < 2) in the model-averaging procedure. Colors show the magnitude and
12 13 14	823	significance of effects (red: significant amplification of the lag; blue: significant
15 16 17	824	mitigation of the lag; light grey: non-significant).
18 10	825	Figure 4.
20 21	826	Plots of partial residuals illustrating the contribution of three factors in explaining
22 23 24	827	the magnitude and direction of the lag between mean annual temperature (MAT)
25 26	828	and the community temperature index (CTI) for the yearly dataset. These plots
27 28 29	829	indicate the effects of each of the three factors when all others factors in the model
30 31	830	are accounted for and set to their mean value for quantitative variables. Qualitative
32 33 34	831	variables were set to deciduous stands and to outside the fence area here. The
35 36	832	factors (a) 'Years', (b) 'Stand Basal Area' and (c) 'Stand Age in 1995' were extracted
37 38 20	833	from the best model (in the model-averaging procedure) explaining the lagged
40 41	834	responses of forest plant communities in the yearly dataset. Solid lines and ribbons
42 43	835	represent the linear trend and associated standard errors, respectively.
44 45 46	836	
47 48		
49		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		42

Figure 1. Workflow implemented in the study. The 102 plots of the RENECOFOR network are mapped, and the two datasets used in our analyses are represented in color (in red and blue for the five-year and yearly datasets, respectively). Analyses of temporal trends in mean annual temperature (MAT) and the community temperature index (CTI) and factors contributing to the lag between MAT and CTI (MAT-CTI) are conducted on the two datasets separately. For more details, see the Materials and Methods section.

Figure 2. Temporal trends for mean annual temperature (MAT) and the community temperature index (CTI) in (a) the five-year dataset from 1995 to 2015 and (b) the yearly dataset from 1995 to 2017. Linear trends (dashed lines) with standard errors (ribbons) of estimated MAT or CTI values are shown. For CTI, the values for exclosure or enclosure are plotted separately. Observed values for temperatures (MAT or CTI) are represented with their associated standard errors and symbol sizes are proportional to sample size (number of plots).

926x1296mm (72 x 72 DPI)

Figure 3. Coefficient estimates and 95% confidence intervals extracted from linear mixed-effects models testing the relative contribution of several potential abiotic and biotic determinants on the magnitude and direction of the lag between mean annual temperature (MAT) and the community temperature index (CTI) values in (a) the five-year dataset and (b) yearly dataset. Points (with 95% confidence intervals) represent the standardized mean coefficients averaged from the selected models (Δ AICc < 2) in the model-averaging procedure. Colors show the magnitude and significance of effects (red: significant amplification of the lag; blue: significant mitigation of the lag; light grey: non-significant).

987x1234mm (72 x 72 DPI)

Figure 4. Plots of partial residuals illustrating the contribution of three factors in explaining the magnitude and direction of the lag between mean annual temperature (MAT) and the community temperature index (CTI) for the yearly dataset. These plots indicate the effects of each of the three factors when all others factors in the model are accounted for and set to their mean value for quantitative variables. Qualitative variables were set to deciduous stands and to outside the fence area here. The factors (a) 'Years', (b) 'Stand Basal Area' and (c) 'Stand Age in 1995' were extracted from the best model (in the model-averaging procedure) explaining the lagged responses of forest plant communities in the yearly dataset. Solid lines and ribbons represent the linear trend and associated standard errors, respectively.

740x1358mm (72 x 72 DPI)

2 3			
4 5			
6	1		Supplementary Information
/ 8			
9			
10 11	2	Ti	tle:
12	-		
13 14	3	1.	The climatic debt is growing in the understory of temperate forests: stand
15			
16 17	4		characteristics matter
18			
19 20	5	2.	Running title: Explaining the climatic debt of temperate forests
21			
22 23			
24	6	Li	st of appendices (figures and tables):
25 26			
27	7	1.	App. Fig. 1 Location of the monitored plots throughout France and the time-
28 29			
30	8		sequence of resurveys for each plot.
31 32			
33	9	2.	App. Fig. 2 Comparison between different dataset sources for macroclimate
34 35	10		
36	10		temperature time series.
37 38		_	
39	11	3.	App. Fig. 3 Trends in mean annual temperatures anomalies from 1958 to 2017
40 41	12		across the 44 study plots
42			
43 44	19	4	Ann Fig. 4 Construction of the Community Tomporature Indiana (CTIa) and
45	15	4.	App. Fig. 4 Construction of the Community Temperature malces (CTIS) and
46 47	14		the transfer function.
48			
49 50	15	5	App Fig. 5 Information used to construct the transfer function for calculating
51	10	0.	1.pp. 1.g. o information about to constract the transfer function for calculating
52 53	16		CTI values.
54			
55 56			
57			
58 59			1
~			

2 3	17	6.	App. Fig. 6 Illustration of the indices created to account for disturbance and		
4 5	forest management				
6 7	10		lorest management.		
8 9	19	7.	App. Fig. 7 Plots of disturbance and forest management indices with data		
10 11	20		from each studied nlot		
12 13	20		from each studied plot.		
14 15	21	8.	App. Fig. 8 Correlation matrix plots for explanatory variables used in our		
16 17	22		models		
18 19					
20 21	23	9.	App. Fig. 9 Partial residuals plots for variables explaning lags in the best		
22	24		model in the five-year dataset.		
24					
25 26 27	25	10.	App. Fig. 10 Partial residuals plots for variables explaning lags in the best		
27	26		model in the yearly dataset.		
29 30					
31 32	27	11.	App. Fig. 11 Average of species richness over time (a), number of species		
33 34	28		gained or lost between survey years (b), and mean of IV for Temperature over		
35 36	29		time in group of species gained or lost between survey years (c).		
37 38					
39 40	30	12.	App. Fig. 12 Trends over time of species richness within each class of IV for		
41 42	31		Temperature, Light and Nitrogen.		
43 44					
45	32	13.	App. Table 1 Informations on sites characteristics.		
40 47					
48 49	33	14.	App. Table 2 List of 751 forest species found in the herbaceous layer in our		
50 51	34		study.		
52 53					
54					
55 56					
57			2		
58 59			Z		
60					

3 4	35	15.	App. Tables 3 & 4 Results of the model-averaging procedures and selected
5 6 7	36		models.
8 9 10	37	16.	App. Table 5 Review of some scientific publications studying the
11 12	38		thermophilization rates (expressed in °C/decade) in different ecosystems and
13 14 15	39		taxonomic groups.
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 31 32 33 45 36 37 38 39 40 41 23 44 45 46 47 48 9 50 51 52 34 55 67 58 59 57 58 59	40		

Captions:

App. Figure 1. Location of the monitored plots throughout France (a) and the timesequence plot for the repeated surveys (b). The two datasets are distinguished by color (in black and light blue for the five-year dataset and yearly dataset, respectively). Seasonal relevés are represented by different symbols (o, Spring; +, Summer; \times , Autumn) and grouped by year. Labels refer to the names of plots in the RENECOFOR network. The baseline TerraClimate temperature conditions over the 1960–1990 period is used as background raster. App. Figure 2. Comparisons between three sources of time-series for macroclimate temperatures (TerraClimate, CHELSA and local meteorological stations). For comparisons, only 13 sites from the RENECOFOR network were used because they had local meteorological stations nearby. a) Location of the 13 sites from the RENECOFOR network used for comparisons. b) Time-series of macroclimate temperatures provided by TerraClimate, CHELSA, and the meteorological stations. Shaded ribbon (in grey) and dotted line show the beginning of vegetation surveys in

56 the RENECOFOR monitoring program.

App. Figure 3. Trends in mean annual temperatures anomalies from 1958 to 2017 in
the 44 permanent plots studied. Temperature anomalies are computed for each
permanent plot as the difference between yearly temperatures and the mean
temperature over the period 1958–2017. The black line depicts a 5-year moving
average of MAT. Mean of temperature anomalies and standard errors are

62	rep	resented, red and blue colors correspond to positive and negative values,	
63	respectively. Shaded ribbon in grey and arrow show the beginning of vegetation		
64	surveys in the RENECOFOR monitoring program.		
65	Ap	p. Figure 4. Workflow conducted to calculate the Community Temperature	
66	Indices (CTIs) through the transfer function.		
67	App. Figure 5. Supporting information for the construction of Community		
68	Temperature Indices (CTIs) using the transfer function.		
69	a)	Venn diagram depicting the number of taxa recorded in the CATMINAT and	
70		EcoPlant databases for species indicator value of temperature. Our dataset	
71		includes a total of 877 taxa (all strata of vegetation combined).	
72	b)	Relationship between the IVs of temperature of CATMINAT and EcoPlant at	
73		the species level.	
74	c)	Map of the sites where the NFI floristic surveys have been performed, and	
75		which have been used to model the transfer function.	
76	d)	Hexagonal binning plot between the CTIs calculated with CATMINAT and	
77		EcoPlant at the community level, and the transfer function fitted to obtain CTI	
78		values from CATMINAT in degrees Celsius.	
79	Tez	<i>xt details for App. Figure 5</i> : To infer temperature from plant species	
80	ass	emblages, we used an approach based on Community Temperature Indices	
81	(C]	FIs) with species Indicator Values (IVs), and a transfer function to model the	

 $\mathbf{5}$

relationship of two databases : CATMINAT (Julve, 1998) and EcoPlant (Gégout et al., 2005). These two databases were chosen, because CATMINAT contains almost all of species recorded in our dataset and EcoPlant, poorer in species, has the advantage to allow the direct computation of CTI values in degrees Celsius. CATMINAT (Julve, 1998) is based on expert knowledge similarly to Ellenberg IVs (Ellenberg et al., 1992), with temperature preferences of plant species coded along an ordinal scale from cold (1) to warm (9) environments. While the CATMINAT database contains almost all of the species sampled in the RENECOFOR monitoring program (858 out of the 877 species recorded within all strata of vegetation; App. Fig. 5a), CTI values estimated with these species IVs are unitless and direct comparisons with macroclimatic temperatures are not possible. On the other hand, EcoPlant allows the computation of CTI values in degrees Celsius. EcoPlant is a phyto-ecological database which provides information about ecological optimum for key variables of forest plant species based on their distribution over the French territory. In EcoPlant, species IV for temperature are expressed in degrees Celsius as they are estimated using logistic regression models based on climatic data from AURELHY dataset for the historical period (1961–1990). Nevertheless, the EcoPlant database covers much less species from our dataset (396 out of 877 species). Therefore, we calibrated a transfer function to transform the unitless CTI values from the CATMINAT database into a CTI value expressed in degrees Celsius. By regressing CTI values from EcoPlant against CTI values from CATMINAT, we can obtain predicted CTI values from CATMINAT expressed in degrees Celsius (see

Page 72 of 115

2 3 4	104	Ler	noir et al., 2013 for a similar approach). To improve the quality of the fit, we used	
5 6 7	105	the community level and not directly the species level App. Fig. 5b-d).		
, 8 9 10	106	To	construct the transfer function, we processed as follows:	
11 12 13	107	1.	We used an independent dataset of floristic surveys gathered from the French	
14 15	108		National Forest Inventory (NFI) for the 2005–2016 period to calibrate our	
16 17 18 19 20 21 22 23 24 25	109		transfer function. Homogenization procedures were performed to avoid	
	110		taxonomic and nomenclatural issues between our dataset, the NFI data and the	
	111		IV databases. We selected only the floristic surveys from NFI performed during	
	112		the growing season and surveys recording at least 2 species. This yielded a total	
26 27 28	113		of 45 379 surveys covering the whole French territory (App. Fig. 5c).	
29 30	114	2.	Then, we computed the CTI values for each floristic survey both with	
31 32 33	115		CATMINAT and EcoPlant, using species presence/absence to give the same	
34 35	116		weight to common and rare species. The relationship between CTI values from	
36 37	117		the two IV datasets was also analyzed with species abundance and results were	
38 39 40	118		similar (Pearson' correlation between occurrence and abundance data = 0.88 , $t =$	
41 42 43	119		386, df = 45 377, P < 0.001).	
44 45 46	120	3.	To model the relationship between CTI values from CATMINAT and CTI from	
40 47 48	121		EcoPlant, we used a Generalized Additive Model (GAM) with a	
49 50	122		calibration/training procedure to select the best smoothness parameter λ . The	
51 52 53	123		dataset was split into a training set and a test set (i.e. proportion of 70/30,	
54 55 56 57 58 59 60			7	

Page 73 of 115

1

Global Ecology and Biogeography

2	
3	
1	
4	
5	
6	
-	
/	
8	
~	
9	
10	
11	
11	
12	
12	
15	
14	
15	
10	
16	
17	
10	
10	
19	
20	
20	
21	
22	
າວ	
23	
24	
25	
25	
26	
27	
20	
28	
29	
20	
50	
31	
ิรว	
52	
33	
34	
25	
35	
36	
27	
57	
38	
за	
22	
40	
41	
12	
42	
43	
ΔΔ	
л-т 4 г	
45	
46	
17	
4/	
48	
<u>4</u> 0	
77	
50	
51	
52	
53	
E /	
54	
55	
56	
57	
58	
29	
60	

124 respectively). The final GAM was adjusted with $\lambda = 6$ (model with the lowest 125 RMSE) and it explained 72.9% of the total deviance (App. Fig. 5d).

126**App. Figure 6.** Illustrative examples of the indices created to account for disturbance 127and forest management. Two cases are presented : a) A site with two anthropogenic 128events that occurred during several vegetation surveys; and b) A site with one 129anthropogenic event and two natural events that occurred during several vegetation 130surveys. For survey year, we recorded informations about : (i) Cumulated disturb., 131as the cumulative number of disturbance known in a forest stand since the plot 132etablishment, whatever its nature (anthropogenic or natural event); (ii) the Type of 133last event (anthropogenic or natural event); (iii) Anteriority, as the anteriority in year of the last disturbance whatever its nature; (iv) the Cumulated disturb. of 134135anthropogenic events : (v) the Cumulated disturb. of natural events. Only the 136columns filled in grey were used in our analyses. Anthropogenic events include mainly silvicultural operations such as thinning, logging, tree extraction, cleaning 137138brush and forestry machine passage. Natural events include for example, windfalls 139and tree uprooting after a storm event.

App. Figure 7. Cumulative number of disturbance events along time for each studied
plot. The type of disturbance is distinguished by different symbols, and the
anteriority (in years) of the last disturbance is shown by a color scale.

App. Figure 8. Correlation matrix plots between explanatory variables used in our
analyses, showing scatterplots, density curves and Pearson correlation coefficients
for the explanatory variables tested in the models. 'lags': difference MAT – CTI;

2		
<u> </u>		
3		
4		
ŕ		
5		
6		
_		
/		
R		
-		
9		
1	٥	
'	0	
1	1	
1	2	
1	2	
1	3	
1	4	
I	4	
1	5	
	~	
I	6	
1	7	
	,	
1	8	
1	9	
:	~	
2	υ	
2	1	
<u> </u>		
2	2	
2	3	
<u>~</u>		
2	4	
2	5	
~	5	
2	6	
ว	7	
~	/	
2	8	
ว	0	
2	9	
3	0	
2	1	
S	1	
3	2	
`	2	
5	3	
3	4	
- -	-	
3	5	
3	6	
2	-	
3	/	
3	8	
_	0	
3	9	
Δ	0	
	0	
4	1	
4	2	
į	-	
4	3	
4	4	
Ż	r	
4	С	
4	6	
,	-	
4	/	
4	8	
į	~	
4	9	
5	0	
-	-	
5	I	
5	2	
-	-	
5	3	
5	4	
-	-	
5	5	
	-	
5	6	
5	6	
5 5	6 7	
5 5 5	6 7 8	
5 5 5	6 7 8	

1

'Years': Year of survey; 'Baseline T°C': the baseline temperature conditions during
the 1961–1990 period; 'Age in 1995': Age of forest stand in 1995 (year of the first
field campaign); 'Disturb. anterior': Anteriority (in years) of the last disturbance
which occurred in the plot ; 'Cum.anthr.disturb.': cumulative sum of the number of
annual anthropogenic disturbances; 'Cum.nat.disturb.': cumulative sum of the
number of natural disturbances ; 'Basal area': forest stand basal area. See Materials
and methods for further details.

App. Figure 9. Partial residuals plots for factors contributing to lags in the best model selected by the model averaging procedure in the five-year dataset. Partial residuals are the residuals that remain after removing the effect of all other covariates in the model.

App. Figure 10. Partial residuals plots for factors contributing to lags in the best model selected by the model averaging procedure in the yearly dataset. Partial residuals are the residuals that remain after removing the effect of all other covariates in the model.

App. Figure 11. Species richness changes over time (a), Number of species gained or lost between survey years (b), and Temporal changes over time for averages of IVs for Temperature within the group of species gained or lost between survey years (c). Points and error bars correspond to the average of values between the 44 studied sites and the standard errors, respectively. For the temporal changes, we compared the species lists between the first survey in 1995 and the later surveys of each plot to identify the pools of species gained and lost between each pair of surveys. In

Page 75 of 115

1 2	
2 3 4	16
5 6	16
7 8 0	17
) 10	
11 12	17
13 14	17
15 16 17	17
18 19	17
20 21	17
22 23	17
24 25 26	17
27 28	1.5
29 30	17
31 32	17
33 34 25	18
35 36 37	18
38 39	18
40 41 42	18
43 44	18
45 46	
47 48	18
49 50	18
51 52	18
53 54 55	18
55 56 57	
58	
59	
bU	

particular, these two pools are used to calculate temporal β -diversity between two surveys of a given plot (Legendre, 2019). Then, we computed the average of IVs for Temperature within the gained and lost species.

171 App. Figure 12. Temporal changes over time in species richness within each class of

172 IV for Temperature, Light and Nitrogen (from CATMINAT, Julve, 1998). Each class

173 of IV are detailed in the online version of CATMINAT

174 (http://philippe.julve.pagesperso-orange.fr/catminat.htm). Species richness per

175 classes are expressed in pourcentage of the total species richness in a given plot.

176 Points correspond to the average of species richness between the 44 studied sites,

177 and only significant linear regressions are displayed (P < 0.05).

178 App. Table 1 Informations on sites characteristics detailing the name of

179 RENECOFOR plots, the dominant tree species in the forest stands, the altitude, the

180 geographical coordinates (latitude and longitude in WGS84), and the dataset(s) in

181 which they occurred (see Materials and Methods for details on the yearly or five-

182 year datasets).

App. Table 2 List of 751 forest species inventoried in the herbaceous layer. Species
retained for analyses are marked with a "1" in the éponymous column.

App. Tables 3 & 4 Results of the model-averaging procedures and selected models
for the studyy of the effects of different variables on lag (difference between MAT
and CTI). Only the top 20 models are presented. Coefficients of variables were
estimated using linear mixed-effects models (LMMs including 'plot' and 'nested

subplots' as random effects) in a model-averaging procedure. All variables were

standardized (z score) to interpret estimates as relative effect sizes. Coefficient

and R^2 c describe the variation explained by fixed effects only and variation

values < 2 were used to estimate coefficients.

explained by the fixed and random effects, respectively. Only models with $\Delta AICc$

App. Table 5 Review of some scientific publications studying the thermophilization

۵.

1

rates (expressed in °C/decade) in different ecosystems and taxonomic groups.

estimates for predictor variables, marginal R^2 m and conditional R^2 c are shown. R^2 m

1
2
3
4
5
6
0
/
8
9
10
11
12
13
14
15
10
10
1/
18
19
20
21
22
23
22
24
25
26
27
28
29
30
31
32
33
31
24 25
35
36
37
38
39
40
41
42
43
45
44
45
46
47
48
49
50
51
52
52
55
54 55
55
56

189

190

191

192

193

194

195

196

197

57 58

59

220 App. Figure 8.

48 221

 $\mathbf{2}$

1		
2 3 4 5	234	App. Table 1 cf. Excel file
6 7 8	235	App. Table 2 cf. Excel files
9 10 11	236	App. Tables 3 & 4 cf. Excel files
12 13 14	237	App. Tables 5 cf. Excel files
15 16 17 18 19 20 21 22 23 24 25 26 27 28	238	
28 29 30 31 32 33 34		
35 36 37 38 39 40		
41 42 43 44		
45 46 47 48 49		
50 51 52 53		
54 55 56 57		
58 59 60		2

1
2
2
1
4
5
6
7
8
Q
10
10
11
12
13
14
15
16
17
1/
18
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
26
30
37
38
39
40
41
47
ד∠ 12
45
44
45
46
47
48
<u>4</u> 0
77
50
51
52
53
54
55
55
50
5/
58
59

References

240	Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W., & Paulißen, D. (1992).
241	Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica.
242	Gégout, J. C., Coudun, C., Bailly, G., & Jabiol, B. (2005). EcoPlant: A forest site
243	database linking floristic data with soil and climate variables. Journal of Vegetation
244	Science, 16(2), 257–260. https://doi.org/10.1111/j.1654-1103.2005.tb02363.x
245	Julve, P. (1998). Baseflor: Index botanique, écologique et chorologique de la flore de
246	France. Version 2009. http://philippe.julve.pagesperso-orange.fr/catminat.htm
247	Legendre, P. (2019). A temporal beta-diversity index to identify sites that have
248	changed in exceptional ways in space-time surveys. <i>Ecology and Evolution</i> , 9(6),
249	3500–3514. https://doi.org/10.1002/ece3.4984
250	Lenoir, J., Graae, B. J., Aarrestad, P. A., Alsos, I. G., Armbruster, W. S., Austrheim,
251	G., Bergendorff, C., Birks, H. J. B., Bråthen, K. A., Brunet, J., Bruun, H. H.,
252	Dahlberg, C. J., Decocq, G., Diekmann, M., Dynesius, M., Ejrnæs, R., Grytnes, J. A.,
253	Hylander, K., Klanderud, K., Svenning, J. C. (2013). Local temperatures inferred
254	from plant communities suggest strong spatial buffering of climate warming across
255	Northern Europe. Global Change Biology, 19(5), 1470–1481.
256	https://doi.org/10.1111/gcb.12129

1	C'1		11.11 J.		NUCCO (
2	Site name	Dominant tree species A	ltitude	Latitude_WGS84 Longitude	_WGS84	Dataset(s)
3	CHP 18	Pedunculate oak	175	46.825	2.573	five-year
4	CHP 59	Pedunculate oak	149	50.171	3.754	five-year
6	CHP 70	Pedunculate oak	240	47.87	6.211	five-year
7	CHS 18	Sessile oak	176	47.254	2.125	five-year
8	CHS 35	Sessile oak	80	48.177	-1.536	five-year
9	CHS 41	Sessile oak	127	47.569	1.259	five-year
10	CHS 51	Sessile oak	180	49.032	4.959	five-year
11 12	CHS 57a	Sessile oak	315	48.871	6.482	five-year; yearly
13	CHS 57b	Sessile oak	320	49.016	7.461	five-year
14	CHS 68	Sessile oak	256	47.693	7.466	five-year
15	CHS 72	Sessile oak	170	47.796	0.379	five-year
16	CHS 86	Sessile oak	116	46.626	0.494	five-year
17	CHS 88	Sessile oak	330	48.026	6.039	five-year; yearly
18 10	CPS 67	Sessile or pedunculate oa	350	48.99	7.728	five-year
20	CPS 77	Sessile or pedunculate oa	80	48.454	2.716	five-year
21	EPC 08	Norway spurce	480	49.948	4.809	five-year
22	EPC 63	Norway spurce	950	45.754	2.965	, five-year
23	EPC 73	Norway spurce	1700	45.586	6.789	, five-year; yearly
24	EPC 74	Norway spurce	1200	46.228	6.348	five-vear: vearly
25 26	EPC 87	Norway spurce	650	45.8	1.816	five-vear
20	HFT 14	Beech	90	49.182	-0.858	five-vear
28	HFT 26	Beech	1320	44.917	5.294	five-vear: vearly
29	HFT 29	Beech	50	47 836	-3 545	five-vear
30	HET 30	Beech	1400	47.030	3 5 4 2	five-vear
31	HET 55	Beech	250	/0 17	5 004	five-vear
32 33		Beech	120	40.274	2 975	five-year
34		Beech	100	43.324	-0.66	five-year
35		Beech	400	43.145	-0.00	five year
36		Beech	400	45.020	6 244	five year
37			400	40.100	0.244	five year, yearly
38	IVIEL US	European Iarch	1850	44.704	0.501	live-year
39 40		Maritime pine	15	45.982	-1.2/3	live-year
41	PIVI 40a	Maritime pine	27	43.942	-1.352	five-year
42		Maritime pine	150	44.045	-0.004	five-year
43	PM /2	Maritime pine	153	47.746	0.333	five-year
44	PS 35	Scots pine	80	48.201	-1.558	five-year
45	PS 67a	Scots pine	175	48.85	7.71	five-year
40	PS 78	Scots pine	170	48.695	1.732	five-year
48	PS 88	Scots pine	500	48.225	6.695	five-year
49	SP 05	Silver fir	1360	44.489	6.458	five-year; yearly
50	SP 11	Silver fir	950	42.866	2.101	five-year
51	SP 26	Silver fir	1150	44.947	5.331	five-year; yearly
52	SP 38	Silver fir	1100	45.42	6.13	five-year
55 54	SP 57	Silver fir	400	48.609	7.134	five-year
55	SP 68	Silver fir	680	47.933	7.124	five-year
56						
57						
58						

1		
2	Species	Species retained for analyses
3	Abies alba	1
4	Abies grandis	1
5	Acer campestre	1
6	Acer platanoides	1
/	Acer pseudonlatanus	-
8	Acer pseudoplatallus	1
9 10	Acer sp.	0
10	Aceras anthropophorum	1
12	Achillea macrophylla	1
13	Achillea millefolium	1
14	Aconitum lycoctonum subsp. vulparia	1
15	Aconitum sp.	0
16	Aconitum variegatum subsp. paniculatum	1
17	Actaea snicata	-
18	Adopactulas alliarias	1
19	Adenostyles allianae	1
20	Adenostyles alpina	1
21	Adoxa moschatellina	1
22	Aegopodium podagraria	1
25	Aetheorhiza bulbosa	1
24	Aethusa cynapium subsp. cynapioides	1
26	Agrimonia eupatoria	1
27	Agrimonia procera	1
28	Agrostis agrostiflora	1
29	Agrostis canina	
30	Agrostis canillaris	1
31	Agrostis cupilialis	1
32	Agrostis curtisii	1
33 24	Agrostis sp.	0
35	Agrostis stolonifera	
36	Ajuga pyramidalis	1
37	Ajuga reptans	1
38	Ajuga sp.	0
39	Alchemilla alpina	1
40	Alchemilla coriacea	1
41	Alchemilla glaucescens	1
42	Alchemilla xanthochlora	1
43		-
44 15	Alnus dutinosa	1
46	Almus giutinosa	1
47	Alnus viriais	1
48	Alopecurus pratensis	1
49	Anchusa officinalis	1
50	Anemone apennina	1
51	Anemone nemorosa	1
52	Angelica sylvestris	1
53	Antennaria dioica	1
54 55	Anthoxanthum odoratum	1
55 56	Anthoxanthum sp.	0
57	Anthriscus sylvestris	- 1
58	Anthyllic vulneraria	± 1
59		1 A
60	Aquilegia vulgaris	1
	Aradis brassica	1

1		
2	Arabis hirsuta	1
3	Arbutus unedo	1
4	Arctium nemorosum	1
5	Arenaria montana	1
6	Arnica montana	1
/	Arrhenatherum elatius	1
8		1
9 10		1
10	Arum maculatum	1
12	Arum sp.	0
13	Aruncus dioicus	1
14	Aruncus sp.	0
15	Asparagus officinalis	1
16	Asphodelus albus	1
17	Asplenium trichomanes	1
18	Asplenium trichomanes-ramosum	1
19	Astrantia maior	1
20	Astralitia Inajor	1
21	Athyrium distentifolium	1
22	Athyrium filix-femina	1
23	Atropa bella-donna	1
25	Avena sativa	1
26	Avena sp.	0
27	Betula pendula	1
28	Betula pubescens	1
29	Betula sp.	0
30	Blackstonia perfoliata	1
31	Blechnum snicant	1
32 22	Brachunadium ninnatum	1
33	Brachypoulum pinnatum	1
35	Brachypodium sp.	0
36	Brachypodium sylvaticum	1
37	Briza media	1
38	Bromus benekenii	1
39	Bromus ramosus	1
40	Bromus sp.	0
41	Buxus sempervirens	1
42	Calamagrostis epigejos	1
45 44	Calamagrostis sp.	0
45	Calamagrostis varia	1
46		1
47	Calamiagi Ostis Villosa	1
48		1
49	Calamintha sylvatica	1
50	Callitriche sp.	0
51	Calluna vulgaris	1
52	Caltha palustris	1
55 54	Campanula barbata	1
55	Campanula cervicaria	1
56	Campanula latifolia	1
57	Campanula rapunculoides	1
58	Campanula rhomboidalis	1
59	Campanula rotundifolia	- 1
60	Campanula trachelium	- 1
		T

1		
2	Cardamine flexuosa	1
3	Cardamine heptaphylla	1
4	Cardamine hirsuta	1
5	Cardamine impatiens	1
6 7	Cardamine pentaphyllos	1
/ Q	Cardamine pratensis	1
0 0	Cardamine proteinis	- 0
10	Carduus carlinifalius	1
11	Carduus cammonds	1
12		1
13	Carex acutiformis	1
14	Carex alba	1
15	Carex arenaria	1
16	Carex bohemica	1
1/	Carex brizoides	1
18	Carex caryophyllea	1
19 20	Carex curta	1
20	Carex demissa	1
22		1
23		1
24		1
25	Carex echinata	1
26	Carex ferruginea subsp. australpina	1
27	Carex flacca	1
28	Carex flava	1
29	Carex hallerana	1
30 31	Carex hirta	1
32	Carex laevigata	1
33	Carex montana	1
34	Carex muricata	1
35	Carex muricata subsn Jamprocarna	1
36	Carex arnithanada	1
37		1
38	Carex ovalis	
39	Carex pallescens	1
40 41	Carex panicea	1
41	Carex pendula	1
43	Carex pilosa	1
44	Carex pilulifera	1
45	Carex remota	1
46	Carex sp.	0
47	Carex strigosa	1
48	Carex sylvatica	1
49	Carex umbrosa	1
50 51		1
52		1
53		T
54	Carum verticillatum	1
55	Castanea sativa	1
56	Centaurea montana	1
57	Centaurea nigra	1
58	Centaurea uniflora	1
59 60	Centaurium erythraea	1
00	Cephalanthera damasonium	1

1		
2	Cephalanthera longifolia	1
3	Cephalanthera rubra	1
4 5	Cephalanthera sp.	0
6	Cerastium arvense	1
7	Cerastium fontanum	1
8	Cerastium fontanum subsp. vulgare	1
9	Cerastium glomeratum	1
10	Cerastium sp.	0
 12	Ceratocapnos claviculata	1
12	Chaerophyllum aureum	1
14	Chaerophyllum hirsutum	1
15	Chaerophyllum sp.	0
16	Chaerophyllum villarsii	1
17	Chenopodium album	1
18	Chenopodium bonus-henricus	1
19 20	Chrysosplenium alternifolium	1
20	Chrysosplenium oppositifolium	1
22	Cicerbita alpina	-
23	Cicerbita nlumieri	1
24	Circaea alnina	1
25 26	Circaea lutetiana	1
20 27		1
28		1
29	Circium orionhorum	1
30		1
31		1
32	Cirsium palustre	1
33 34	Cirsium sp.	0
35		1
36	Cirsium vulgare	1
37	Cistus salvitolius	1
38	Clematis alpina	1
39	Clematis vitalba	1
40 41	Clinopodium vulgare	1
41	Colchicum autumnale	1
43	Conopodium majus	1
44	Convallaria majalis	1
45	Conyza canadensis	1
46	Corallorhiza trifida	1
4/ 19	Cornus mas	1
40 49	Cornus sanguinea	1
50	Cornus sp.	0
51	Corylus avellana	1
52	Cotoneaster nebrodensis	1
53	Crataegus laevigata	1
54 55	Crataegus monogyna	1
55	Crataegus sp.	0
57	Crepis biennis	1
58	Crepis convzifolia	1
59	Crepis paludosa	1
60	Cynoglossum germanicum	- 1
	-, -0	-

1		
2	Cytisus scoparius	1
3	Cytisus sp.	0
4	Dactylis glomerata	1
5	Dactylis sp.	0
0 7	Dactylorhiza maculata	1
2	Danthonia decumbens	1
9	Danthonia sp	0
10	Danhne cneorum	1
11	Daphne gnidium	1
12	Dapine gildidin	1
13	Dapine laureola	1
14	Daphne mezereum	1
15	Daucus carota	1
16	Deschampsia cespitosa	1
17	Deschampsia flexuosa	1
10	Digitalis grandiflora	1
20	Digitalis lutea	1
21	Digitalis purpurea	1
22	Draha sp.	0
23	Dryonteris affinis	1
24	Dryopteris affinis cuben borrori	1
25	Dryopteris annus subsp. borren	1
26	Dryopteris cartnusiana	1
2/ 20	Dryopteris dilatata	1
20	Dryopteris filix-mas	1
30	Dryopteris remota	1
31	Dryopteris sp.	0
32	Elymus caninus	1
33	Elymus sp.	0
34	Epilobium angustifolium	1
35	Epilobium collinum	1
36	Epilobium hirsutum	1
3/ 20	Enilohium montanum	1
30	Epilobium obscurum	
40		
41	Ephobium sp.	0
42	Epilobium tetragonum	1
43	Epipactis atrorubens	1
44	Epipactis helleborine	1
45	Epipactis microphylla	1
46	Epipactis sp.	0
47	Epipogium aphyllum	1
40	Equisetum arvense	1
50	Equisetum palustre	1
51	Equisetum ramosissimum	1
52	Equisetum sylvaticum	1
53	Erica ciliaris	1
54	Frica cinerea	- 1
55		1 1
56 57	Erica scoparia	T
57 58		1
50 59	Erigeron alpinus	1
60	Erigeron annuus	1
	Euonymus europaeus	1

1		
2	Euonymus latifolius	1
3	Eupatorium cannabinum	1
4	Euphorbia amygdaloides	1
5	Euphorbia cyparissias	1
0 7	Euphorbia dulcis	1
8	Euphorbia hyberna	1
9	Euphorbia portlandica	1
10	Eunhorhia serrulata	1
11	Fagus sylvatica	1
12	Facture altissima	1
13		1
14		1
15	Festuca flavescens	1
10 17	Festuca gigantea	1
17	Festuca glauca	1
19	Festuca heterophylla	1
20	Festuca ovina	1
21	Festuca pratensis	1
22	Festuca rubra	1
23	Festuca rubra subsp. pruinosa	1
24	Festura sp	0
25	Festuca tenuifolia	1
20 27	Fostuca trichophylla	1
27		1
29		1
30	Filipendula ulmaria	1
31	Fragaria sp.	0
32	Fragaria vesca	1
33	Frangula alnus	1
34	Fraxinus excelsior	1
35	Fraxinus sp.	0
30 37	Galeopsis tetrahit	1
38	Galium album	1
39	Galium aparine	
40	Galium arenarium	1
41	Galium aristatum	1
42	Calium boroalo	1
43		1
44		1
45 46	Gallum mollugo	1
40	Galium odoratum	1
48	Galium palustre	1
49	Galium pumilum	1
50	Galium rotundifolium	1
51	Galium saxatile	1
52	Galium sp.	0
53	Galium sylvaticum	1
54 55	Galium uliginosum	1
55 56	Galium verum	1
57	Genista anglica	-
58	Genista nilosa	- 1
59	Continuo acculio	1 1
60	Gentiana acaulis	1
	Genuana lutea	T

1		
2	Gentiana purpurea	1
3	Gentiana verna	1
4	Gentianella ciliata	1
5	Geranium columbinum	1
6	Geranium nodosum	1
/	Geranium robertianum	1
0	Geranium sylvaticum	1
9 10		1
11		1
12	Geum rivale	1
13	Geum sp.	0
14	Geum urbanum	1
15	Glechoma hederacea	1
16	Glechoma hirsuta	1
17	Glyceria fluitans	1
18 10	Glyceria striata	1
19 20	Gnaphalium sp.	0
20	Goodvera renens	1
22	Evenocarnium sp	0
23	Unimocarpium sp.	1
24	Haimum alyssoides	1
25	Hedera helix	1
26	Helictotrichon sedenense	1
27	Helleborus foetidus	1
28	Helleborus viridis	1
29	Helleborus viridis subsp. occidentalis	1
30 21	Hepatica nobilis	1
37	Heracleum sphondylium	1
33	Hieracium bifidum	1
34	Hieracium iuranum	-
35	Hieracium Jaevigatum	1
36		1
37		1
38	Hieracium pilosella	1
39	Hieracium prenanthoides	1
40	Hieracium rapunculoides	1
41	Hieracium sp.	0
43	Hieracium umbellatum	1
44	Hieracium vulgatum	1
45	Hippocrepis comosa	1
46	Holcus lanatus	1
47	Holcus mollis	1
48	Holcus sp	0
49	Homogyne alpina	1
50 51		1
52	Hordelymus europaeus	1
53	Hordeum vulgare	1
54	Humulus lupulus	1
55	Hyacinthoides non-scripta	1
56	Hypericum androsaemum	1
57	Hypericum hirsutum	1
58	Hypericum humifusum	1
59	Hypericum maculatum	1
60	Hypericum montanum	1

1		
2	Hypericum perforatum	1
3	Hypericum pulchrum	1
4	Hypericum richeri	1
5	Hypericum sp.	0
6	Hypochoeris maculata	1
/	Hypochoeris radicata	1
8 0	Hypochoeris ch	0
9 10	Hypochoens sp.	1
11		1
12	Impatiens noli-tangere	1
13	Impatiens sp.	0
14	Inula conyza	1
15	Iris foetidissima	1
16	Isopyrum thalictroides	1
17	Jasione montana	1
18	Juglans regia	1
19		1
20		1
21		1
22		1
24	Juncus conglomeratus	1
25	Juncus effusus	1
26	Juncus inflexus	1
27	Juncus sp.	0
28	Juncus tenuis	1
29	Juniperus communis subsp. alpina	1
30	Knautia arvensis	1
31	Knautia divensis	1
32 22	Knautia dipsacifolia subsp. gracilis	1
33		1
35	Lactuca serriola	1
36	Lactuca virosa	1
37	Lamiastrum galeobdolon	1
38	Lamiastrum sp.	0
39	Lamium album	1
40	Lapsana communis	1
41	Larix decidua	1
42	Laserpitium halleri	1
43	Lasernitium siler	1
44 45		0
46	Lathurus laguizatus suben posidentalis	1
47	Lathyrus laevigatus subsp. occidentalis	1
48	Lathyrus montanus	1
49	Lathyrus niger	1
50	Lathyrus pratensis	1
51	Lathyrus sp.	0
52	Lathyrus sphaericus	1
53	Lathyrus tuberosus	1
54 55	Lathyrus vernus	1
55 56	, Leontodon hispidus	1
57	Leontodon nyrenaicus subsn. helveticus	-
58	Leontodon sn	- 0
59	Leontouon sp.	1
60	Leucantnemum vulgare	1
	Ligustrum vulgare	1

1		
2	Lilium martagon	1
3	Linaria repens	1
4	Lithospermum officinale	1
5	Lobelia urens	1
6 7	Lolium perenne	1
/	I onicera alnigena	1
0		1
10		1
11		1
12	Lonicera periciymenum	1
13	Lonicera xylosteum	1
14	Lotus corniculatus	1
15	Lotus sp.	0
16	Lotus uliginosus	1
17	Lunaria rediviva	1
18	Luzula campestris	1
19		1
20		1
21		1
22		1
24	Luzula multiflora	1
25	Luzula multiflora subsp. congesta	1
26	Luzula nivea	1
27	Luzula pilosa	1
28	Luzula sieberi	1
29	Luzula sp.	0
30		1
31		1
32 22		1
33		1
35	Lysimachia nummularia	1
36	Lythrum salicaria	1
37	Maianthemum bifolium	1
38	Malus sylvestris	1
39	Marrubium sp.	0
40	Medicago lupulina	1
41	Medicago sp.	0
42	Melampyrum nemorosum	1
43	Melampyrum pratense	-
44 45	Melampyrum sylvaticum	1
46	Melice putons	1
47		1
48	Melica uniflora	1
49	Melittis melissophyllum	1
50	Mentha aquatica	1
51	Mentha arvensis	1
52	Mercurialis perennis	1
53	Mercurialis sp.	0
54 55	Mespilus germanica	1
56	Milium effusum	1
57	Minuartia laricifolia	1
58	Moehringia muscosa	- 1
59		1 1
60	ivioenringia trinervia	Ţ
	Molinia caerulea	1

1		
2	Molinia caerulea subsp. arundinacea	1
3	Monotropa hypopitys	1
4	Mycelis muralis	1
5	Myosotis alnestris	1
6	Myosotis scorpioidos	1
7	Myosotis scorpiolaes	1
8	Nyosotis sylvatica	1
9	Myosoton aquaticum	1
10	Narcissus bulbocodium	1
11	Nardus stricta	1
12	Neottia nidus-avis	1
14	Odontites verna	1
15	Orchis purpurea	1
16	Oreonteris limbosperma	1
17		1
18	Origanum vulgare	1
19	Ornithogalum pyrenaicum	1
20	Ornithopus perpusillus	1
21	Orobanche lutea	1
22	Orobanche rapum-genistae	1
23	Orobanche sp.	0
24	Orthilia secunda	1
25	Osmunda regalis	-
20 27	Osvris alba	1
27		1
29		1
30	Oxalis europaea	1
31	Paris quadrifolia	1
32	Pastinaca sativa	1
33	Petasites albus	1
34	Peucedanum gallicum	1
35	Peucedanum ostruthium	1
30 27	Phalaris arundinacea	1
38	Phegopteris connectilis	1
39	Phleum alninum	
40	Phyteuma betonicifolium	1
41	Phyteuma betomenonum	1
42	Phyteuma ovatum	
43	Phyteuma sp.	0
44	Phyteuma spicatum	1
45	Phytolacca americana	1
46	Picea abies	1
4/	Picris hieracioides	1
40 40	Picris sp.	0
	Pimpinella major	1
51	Pimpinella saxifraga	1
52	Pinus cembra	1
53	Dinus ninaster	⊥ 1
54	ninus pinaster Dinus pinaster suben, etlestice	1
55	Pinus pinaster subsp. atlantica	T
56	Pinus sp.	U
5/	Pinus sylvestris	1
58 50	Plantago alpina	1
59 59	Plantago lanceolata	1
	Plantago major	1

1		
2	Plantago maritima	1
3	Plantago media	1
4	Plantago sp.	0
5	Poa alpina	1
6	Poa annua	1
/	Poa hulhosa	1
0		1
10		1
11		1
12	Poa nemoralis	1
13	Poa pratensis	1
14	Poa sp.	0
15	Poa supina	1
16	Poa trivialis	1
17	Poa trivialis subsp. sylvicola	1
18	Polygala serpyllifolia	1
19	Polygonatum multiflorum	-
20	Polygonatum indicinorum	0
21	Polygonatum sp.	0
23	Polygonatum verticiliatum	1
24	Polygonum bistorta	1
25	Polygonum mite	1
26	Polygonum persicaria	1
27	Polygonum sp.	0
28	Polypodium vulgare	1
29	Polystichum aculeatum	1
30	Polystichum lonchitis	1
31	Polystichum setiferum	1
3Z 22	Polystichum settierum	1
34	Polysticitum sp.	0
35	Populus sp.	0
36	Populus tremula	1
37	Potentilla erecta	1
38	Potentilla grandiflora	1
39	Potentilla reptans	1
40	Potentilla sterilis	1
41	Prenanthes purpurea	1
42	Primula elatior	1
43	Primula veris	-
44 15	Drunella grandiflora	1
46		1
47	Prunella vulgaris	1
48	Prunus avium	1
49	Prunus laurocerasus	1
50	Prunus padus	1
51	Prunus serotina	1
52	Prunus sp.	0
53	Prunus spinosa	1
54 55	Prunus virginiana	1
55 56	Pseudarrhenatherum longifolium	1
57		-
58	r seudoruns albida	1 1
59	rseudotsuga menziesil	Ţ
60	Pteridium aquilinum	1
	Pulmonaria affinis	1

1		
2	Pulmonaria longifolia	1
3	Pulmonaria montana	1
4	Pulmonaria obscura	1
5	Pulmonaria saccharata	1
6	Pulsatilla alpina subsp. apiifolia	1
/	Pyrola media	1
0 0	Pyrola minor	1
10		1
11		1
12	Quercus liex	1
13	Quercus petraea	1
14	Quercus pubescens	1
15	Quercus pyrenaica	1
16	Quercus robur	1
1/ 10	Quercus rubra	1
10	Quercus sp.	0
20	Quercus suber	1
21	Ranunculus aconitifolius	1
22	Ranunculus acris	1
23	Banunculus aduncus	1
24	Panunculus auricomus	1
25	Ranunculus ficaria	1
26		1
27		1
20	Ranunculus lanuginosus	1
30	Ranunculus montanus	1
31	Ranunculus platanifolius	1
32	Ranunculus pyrenaeus	1
33	Ranunculus repens	1
34	Ranunculus serpens subsp. nemorosus	1
35	Ranunculus sp.	0
36	Rhamnus catharticus	1
37 38	Rhododendron ferrugineum	1
39	Ribes alninum	
40	Ribes rubrum	1
41	Ribes una grispa	1
42	Ribes uva-crispa	
43	Rosa arvensis	1
44	Rosa canina	1
45	Rosa pendulina	1
40 47	Rosa pimpinellifolia	1
47	Rosa villosa	1
49	Rubia peregrina	1
50	Rubus caesius	1
51	Rubus canescens	1
52	Rubus fruticosus	1
53	Rubus idaeus	1
54 55	Rubus questieri	1
55 56	Ruhus saxatilis	-
57	Rubus sn	<u>_</u>
58	Nubus sp. Pubus ulmifolius	1
59		1
60	Rudus vestitus	1
	Rumex acetosa	1

1		
2	Rumex acetosella	1
3	Rumex alpestris	1
4	Rumex alpinus	1
5	Rumex obtusifolius	1
6	Rumex sanguineus	1
7		1
8	Rumex scutatus	1
9 10	Rumex sp.	0
11	Ruscus aculeatus	1
12	Salix atrocinerea	1
13	Salix caprea	1
14	Salix cinerea	1
15	Salix elaeagnos	1
16	Salix repens	1
17	Salix sp.	0
18	Sambucus ebulus	1
19	Sambucus nigra	1
20	Sambucus racomosa	1
21		1
23	Sambucus sp.	0
24	Sanguisorba minor	1
25	Sanicula europaea	1
26	Saxifraga cuneifolia subsp. robusta	1
27	Saxifraga granulata	1
28	Saxifraga rotundifolia	1
29	Scilla bifolia	1
30	Scirpus sylvaticus	1
31 20	Scorzonera humilis	1
32	Scrophularia alpectris	1
34	Scrophularia nodoca	1
35		1
36		1
37	Scutellaria sp.	0
38	Sedum anacampseros	1
39	Sedum montanum	1
40	Sempervivum arachnoideum	1
41	Sempervivum tectorum	1
4Z //3	Senecio adonidifolius	1
44	Senecio jacobaea	1
45	Senecio nemorensis subsp. fuchsii	1
46	Senecio sn	0
47	Senecio sulvaticus	1
48	Senecio sylvaticus	1
49		1
50	Senecio vulgaris	1
51	Serratula tinctoria	1
52 53	Seseli montanum	1
53	Sesleria albicans	1
55	Setaria sp.	0
56	Silene dioica	1
57	Silene nutans	1
58	Silene rupestris	1
59	Silene vulgaris	1
60	Simethis planifolia	- 1
		-

1		
2	Sison amomum	1
3	Sisymbrium orientale	1
4	Solanum dulcamara	1
5	Solanum nigrum	1
6	Soldanella alpina	1
/	Solidago canadensis	1
8 0	Solidago gigantoa	1
9 10		1
11	Solidago sp.	0
12	Solidago virgaurea	1
13	Sonchus arvensis	1
14	Sonchus asper	1
15	Sonchus oleraceus	1
16	Sonchus sp.	0
17	Sorbus aria	1
18	Sorbus aucuparia	1
19	Sorbus domestica	1
20 21	Sorbus contestica	- 0
21	Sorbus sp.	1
23		1
24	Stachys alpina	1
25	Stachys officinalis	1
26	Stachys sylvatica	1
27	Stellaria graminea	1
28	Stellaria holostea	1
29	Stellaria media	1
30	Stellaria nemorum	1
31 20	Stellaria uliginosa	1
32 33	Succisa pratensis	1
34		1
35		
36	laraxacum officinale	1
37	laraxacum sp.	0
38	Taxus baccata	1
39	Teucrium scorodonia	1
40	Thalictrum aquilegiifolium	1
41	Thalictrum sp.	0
4Z 43	Thesium alpinum	1
43 44	Thlaspi alpestre	1
45	Tilia cordata	1
46		1
47	Tilia platyphyllos	1
48		1
49	Iorilis japonica	1
50	Iragopogon pratensis	1
51	Trifolium alpestre	1
52 52	Trifolium alpinum	1
55 54	Trifolium badium	1
55	Trifolium medium	1
56	Trifolium pratense	1
57	Trifolium repens	1
58	Trifolium sp.	0
59	Trisetum flavescens	-
60	Trochiccanthes nodiflora	1 1
		т

1		
2	Trollius europaeus	1
3	Tussilago farfara	1
4	Ulex europaeus	1
5	Ulex minor	1
6 7	Ulmus glabra	1
7 8	Ulmus minor	1
9	Urtica dioica	-
10	Vaccinium myrtillus	1
11	Vaccinium vitic idaga	1
12	Valcinium vitis-luded	1
13	valeriana montana	1
14	Valeriana officinalis	1
15	Valeriana officinalis subsp. sambucifolia	1
16	Valeriana tripteris	1
1/ 10	Veratrum album	1
10	Verbascum lychnitis	1
20	Verbascum nigrum	1
21	Verbascum sinuatum	1
22	Verbascum thapsus	1
23	Veronica anagallis-aquatica	1
24	Veronica boscabunga	1
25	Veronica beccabuliga	1
26		1
2/	Veronica hederifolia	1
20 20	Veronica hederifolia subsp. lucorum	1
30	Veronica montana	1
31	Veronica officinalis	1
32	Veronica serpyllifolia	1
33	Veronica serpyllifolia subsp. humifusa	1
34	Veronica sp.	0
35	Veronica urticifolia	1
36	Viburnum lantana	1
3/	Viburnum onulus	1
20 20	Vicia cracca	
40		1
41		
42		1
43	Vicia pisiformis	1
44	Vicia sativa	1
45	Vicia sativa subsp. nigra	1
46	Vicia sepium	1
47 78	Vicia sp.	0
49	Vicia sylvatica	1
50	Vicia tetrasperma	1
51	Vinca minor	1
52	Vincetoxicum hirundinaria subsp. intermedium	1
53	Viola hiflora	1
54	Viola canina	1
55	Viola hirta	1 1
50 57	viola III la	1
57 58		1
59	Viola odorata	1
60	Viola reichenbachiana	1
	Viola riviniana	1

1 ว	Viola sp.	0
3	Viola tricolor	1
4 5		
5 6		
7		
8		
10		
11		
12 13		
14		
15		
16 17		
18		
19		
20 21		
22		
23		
24 25		
26		
27 29		
28 29		
30		
31 32		
33		
34		
35 36		
37		
38		
39 40		
41		
42 43		
44		
45		
46 47		
48		
49 50		
50 51		
52		
53		
54 55		
56		
57 58		
58 59		

1								
2	(Intercept)	Age_1995	Disturbanc	Years	Stand_TypeE	xclosure eCumulate	ed Cumulated	Stand basa
3	0.838	0.145	-0.115	0.058		-0.1	.7	0.216
4	0.838	0.152	-0.113	0.059		-0.16	-0.042	0.207
5	0.811	0.16	-0.113	0.055	+	-0.16	5	0.208
6 7	0.83	0.145	-0.115	0.058	4	-0.1	.7	0.216
7 8	0.805	0.17	-0.11	0.055	+	-0.16	-0.045	0.196
9	0.838	0.121	-0.087			-0.11	_4	0.195
10	0.83	0.152	-0.113	0.059	+	-0.16	-0.042	0.207
11	0.838	0.127	-0.085			-0.11	-0.04	0.185
12	0.797	0.145	-0.087		+	-0.11	1	0.184
13 14	0.803	0.16	-0.113	0.055	+ +	-0.16	5	0.208
15	0.792	0.154	-0.084		+	-0.10	07 -0.044	0.172
16	0.797	0.17	-0.11	0.055	+ +	-0.16	-0.045	0.196
17	0.83	0.121	-0.087	0.000		-0.11	4	0.195
18	0.83	0.127	-0.085		4	-0.11	1 -0.04	0 185
19	0.89	0.127	-0.087		+ +	-0.11	1	0.184
20 21	0.784	0.113	-0.084		+ +	-0.10	. <u> </u>	0.172
22	0.704	0.134	-0.084			-0.0	19	0.172
23	0.037			0.033		-0.11	8	0.105
24	0.037		-0.104	0.033	т	-0.13	.0	0.150
25	0.877		0.104	0.041	T	-0.13		0.211
26	0.802		-0.085			-0.03	'4	0.195
27								
29								
30								
31								
32								
33 34								
35								
36								
37								
38								
39								
40 41								
42								
43								
44								

1								
2	Baseline te df	I	ogLik	AICc	delta	weight	R2_marg	R2_cond
3	0.766	11	-2304.28	4630.707	0	0.214	0.329	0.549
4	0.757	12	-2303.63	4631.446	0.738	0.148	0.331	0.547
5	0.778	12	-2304.07	4632.328	1.621	0.095	0.33	0.549
0 7	0.766	12	-2304.25	4632.681	1.974	0.08	0.329	0.549
8	0.77	13	-2303.34	4632.881	2.173	0.072	0.332	0.547
9	0.754	10	-2306.41	4632.955	2.248	0.07	0.325	0.543
10	0.757	13	-2303.61	4633.42	2.713	0.055	0.331	0.547
11	0.745	11	-2305.83	4633.804	3.097	0.046	0.326	0.541
12 13	0.773	11	-2305.95	4634.042	3.335	0.04	0.327	0.544
13	0.778	13	-2304.05	4634.305	3.597	0.035	0.33	0.549
15	0.765	12	-2305.22	4634.617	3.909	0.03	0.329	0.541
16	0.77	14	-2303.31	4634.858	4.15	0.027	0.332	0.547
17	0.754	11	-2306.39	4634.927	4.22	0.026	0.325	0.543
18 19	0.745	12	-2305.8	4635.777	5.07	0.017	0.326	0.541
20	0.773	12	-2305.92	4636.016	5.309	0.015	0.327	0.544
21	0.765	13	-2305.19	4636.592	5.884	0.011	0.329	0.541
22	0.698	9	-2310.65	4639.41	8.703	0.003	0.32	0.545
23	0.698	10	-2309.94	4640.008	9.301	0.002	0.322	0.548
24	0.691	11	-2309.39	4640,939	10.232	0.001	0.322	0.548
25 26	0.694	10	-2310.43	4640 978	10 271	0.001	0.32	0 545
20	0.00 .	10	2010.10			0.001	0.02	0.010

al. 201 et al. 201	.9	Global Ecology and Biogeography	CTI computed with the average of species temperature distributions (i.e. Wordclim) based on tree occurrence data (Forest inventory
et al. 201			databases of eastern North America)
	3	Nature	CTI based on the average of temperature preferences of marine fishes and invertebrates in fisheries catch
ne et al. 201	3	PNAS	CTI computed with temperature preference distributions of species (during growing season April to September) in permanent or semipermanent plots
et al. 200	8	PNAS	CTI calculated as the average of species thermal preferences
et al. 201	.2	Nature Climate Change	CTI calculated as the average of species thermal preferences
et al. 201	.2	Nature Climate Change	CTI calculated as the average of species thermal preferences
e et al. 201	.8	Nature	CTI calculated as the average of species thermal preferences
n et al. 201	.9	Ecography	CTI calculated as the average of species thermal preferences
e et al. 201	.8	Biodiversity and Conservation	CTI calculated as the average of species thermal preferences
et al. 201	.2	Nature Climate Change	Temperature index with ecological indicator
t al. 201	.9	Science of the Total Environment	CTI calculated as the average of species thermal preferences
m et al. 201	.3	Ecography	CTI calculated as the average of species thermal preferences
m	ı et al. 201	n et al. 2013	et al. 2013 Ecography

1 2	Savage et al.	2015	Ecography	CTI calculated as the average of
3 4 5 6 7 8 9 10	Elmendorf et al.	2015	PNAS	species thermal preferences CTI calculated as the average of species thermal preferences ; Repeated sampling of historical studies and warming experiments
11 12 13 14	Duque et al.	2015	PNAS	CTI calculated as the average of species thermal preferences
15 16 17 18	Zellweger et al.	2020	Science	CTI calculated as the average of species thermal preferences
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54 55 56 57 58 59 60				

2 3	Methods to compute the velocity of changes	Period
5 6 7 8 9	Differences between CTI from between 1965-1986 and 1987-2008 periods	1965-1986 and 1987-2008
11 12 13 14 15 16 17 18	Comparison between historical and contemporary periods	1970 - 2016
19 20 21 22 23 24	Slope of linear regression	1970 - 2006
25 26 27 28 29 30 31	Comparison between historical and contemporary periods	depending on forest plots and regions; overall, from 1940 (minimum) to 2009 (maximum)
32 33 34	Slope of linear regression	1989 - 2006
35 36 37	Slope of linear regression	1990 - 2008
38 39 40	Slope of linear regression	1990 - 2008
41 42 43	Slope of linear regression	2000 - 2015
44 45	Slope of linear regression	1990 - 2014
40 47 48	Comparison between historical and contemporary periods	1960 - 2011
49 50 51	Comparison between historical and contemporary periods	2001 - 2008
52 53 54 55	Slope of linear regression	1990 - 2014
56 57 58	Slope of linear regression	1975 - 2009

1 2 3	Comparison between historical and	1970 - 2012
4 5 6 7 8 9 10	Slope of linear regression	1970 - 2012
11 12 13 14 15	Rates calculated as the annualized change in the CTI values for each plot over the entire census period	2006-2014
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	change in the CTI values for each plot over the entire census period Comparison between baseline surveys and resurveys	depending on forest plots and regions; overall, from 1934 (minimum) to 2017 (maximum) ; median time interval between two surveys of 38 years
52 53 54 55 56 57 57		
20		

Taxonomic groups Forest understorey vegetation	Regions France	Thermophilization rates Δ0.02°C and Δ0.54°C between 1965-1986 and 1987-2008 in lowland and highland, respectively.
Tree communities	Canada, Québec	0.03°C / decade
Marine fishes and invertebrates	Global	0.19°C / decade
Forest understorey vegetation	29 regions of Europe and North America	0.041°C / decade
Birds	France	0.044°C / decade
Birds	Europe	0.044°C / decade
Butterflies	Europe	0.051°C / decade
palms, tree ferns and lianas (Trees (including	The Andes (Peru, Colombia, 7 Argentina, Ecuador)	0.066°C / decade
Marine fishes and invertebrates	Northeast U.S. continental shelf	in fall: 0.25°C / decade; in spring: 0.38°C / decade
Bumblebees	Norway	0.14°C / decade
Mountain vegetation	Europe	-
Stream invertebrate communities	Central Europe	0.22°C / decade (abundance data); 0.15°C / decade (occurrence data)
Birds	Norway	0.031°C / decade (Old monitoring scheme); 0.096°C / decade (New monitoring scheme)

1 2 3	Forest understorey vegetation	Canada, Québec	0.05° C / decade
4 5 6 7 8 9 10	Tundra vegetation	Canada, Québec	0.199° C / decade
11 12 13 14 15	Tree communities	Northern tropical Andes	adult trees: 0.11°C / decade; juvenile trees: 0.27°C / decade
$\begin{array}{c} 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 445\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 960 \end{array}$	Forest understorey vegetation	Europe	0.01°C / decade