Influence of exposure conditions on helium transport and bubble growth in tungsten - Archive ouverte HAL Access content directly
Journal Articles Scientific Reports Year : 2021

Influence of exposure conditions on helium transport and bubble growth in tungsten

Abstract

Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al. (Model Simul Mater Sci Eng 22:065010, 2018; Nucl Fusion 55:013014, 2015) is implemented with FEniCS and simplified in order to greatly reduce the number of equations. A parametric study is performed to investigate the influence of exposure conditions on helium inventory, bubbles density and size. Temperature is varied from 120 K to 1200 K and the implanted flux of 100 eV He is varied from 10{17}\,{\text{m}^{-2}\, \text{s}^{-1} 10 17 m - 2 s - 1 to 5 \times 10^{21}\, {\text{m}^{-2}\, \text{s}^{-1}}$$ 5 × 10 21 m - 2 s - 1 . Bubble mean size increases as a power law of time whereas the bubble density reaches a maximum. The maximum He content in bubbles was approximately 4 \times 10^{8} 4 × 10 8 He at 5 \times 10^{21}\,{\text{m}^{-2}\, \text{s}^{-1} 5 × 10 21 m - 2 s - 1 . After 1 h of exposure, the helium inventory varies from 5 \times 10^{16} \,{\text{m}^{-2}} 5 × 10 16 m - 2 at low flux and high temperature to 10^{25} \,{\text{m}^{-2}} 10 25 m - 2 at high flux and low temperature. The bubbles inventory varies from 5 \times 10^{12}$$ 5 × 10 12 bubbles m ^{-2} - 2 to 2 \times 10^{19} 2 × 10 19 bubbles m ^{-2} - 2 . Comparison with experimental measurements is performed. The bubble density simulated by the model is in quantitative agreement with experiments.
Fichier principal
Vignette du fichier
80ED5A45-87F8-4057-9581-ECD056F121D7.pdf (7.31 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03293417 , version 1 (27-09-2021)

Identifiers

Cite

Rémi Delaporte-Mathurin, Mykola Ialovega, Etienne Hodille, Jonathan Mougenot, Y. Charles, et al.. Influence of exposure conditions on helium transport and bubble growth in tungsten. Scientific Reports, 2021, 11 (1), ⟨10.1038/s41598-021-93542-9⟩. ⟨hal-03293417⟩
78 View
9 Download

Altmetric

Share

Gmail Facebook X LinkedIn More