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Abstract

Machine learning brings the hope of finding new biomarkers
extracted from cohorts with rich biomedical measurements.
A good biomarker is one that gives reliable detection of
the corresponding condition. However, biomarkers are of-
ten extracted from a cohort that differs from the target
population. Such a mismatch, known as a dataset shift,
can undermine the application of the biomarker to new
individuals. Dataset shifts are frequent in biomedical re-
search, e.g. because of recruitment biases. When a dataset
shift occurs, standard machine-learning techniques do not
suffice to extract and validate biomarkers. This article
provides an overview of when and how dataset shifts breaks
machine-learning extracted biomarkers, as well as detection
and correction strategies.

1 Introduction: dataset shift
breaks learned biomarkers

Biomarkers are measurements that provide information
about a medical condition or physiological state [Strimbu
and Tavel, 2010]. For example, the presence of an anti-
body may indicate an infection; a complex combination of
features extracted from a medical image can help assess
the evolution of a tumor. Biomarkers are important for
diagnosis, prognosis, and treatment or risk assessments.

Complex biomedical measures may carry precious medi-
cal information, as with histopathological images or genome
sequencing of biopsy samples in oncology. Identifying quan-
titative biomarkers from these requires sophisticated sta-

tistical analysis. With large datasets becoming accessi-
ble, supervised machine learning provides new promises
by optimizing the information extracted to relate to a spe-
cific output variable of interest, such as a cancer diagnosis
[Andreu-Perez et al., 2015, Faust et al., 2018, Deo, 2015].
These methods, cornerstones of artificial intelligence, are
starting to appear in clinical practice: a machine-learning
based radiological tool for breast-cancer diagnosis has re-
cently been approved by the FDA1.

Can such predictive biomarkers, extracted through com-
plex data processing, be safely used in clinical practice,
beyond the initial research settings? One risk is the poten-
tial mismatch, or dataset shift, between the distribution of
the individuals used to estimate this statistical link and
that of the target population that should benefit from the
biomarker. In this case, the extracted associations may not
apply to the target population [Kakarmath et al., 2020].
Computer aided diagnostic of thoracic diseases from X-ray
images has indeed been shown to be unreliable for individ-
uals of a given sex if built from a cohort over-representing
the other sex [Larrazabal et al., 2020]. More generally,
machine-learning systems may fail on data from different
imaging devices, hospitals, populations with a different age
distribution, etc. . Dataset biases are in fact frequent in
medicine. For instance selection biases –eg due to volun-
teering self-selection, non-response, dropout...– [Rothman,
2012, Tripepi et al., 2010] may cause cohorts to capture
only a small range of possible patients and disease mani-
festations in the presence of spectrum effects [Ransohoff
and Feinstein, 1978, Mulherin and Miller, 2002]. Dataset
shift or dataset bias can cause systematic errors that cannot

1https://fda.report/PMN/K192854
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be fixed by acquiring larger datasets and require specific
methodological care.

In this article, we consider predictive biomarkers identi-
fied with supervised machine learning. We characterize the
problem of dataset shift, show how it can hinder the use of
machine learning for health applications [Woo et al., 2017,
Wynants et al., 2020], and provide mitigation strategies.

2 A primer on machine learning for
biomarkers

2.1 Empirical Risk Minimization

Let us first introduce the principles of machine learning used
to identify biomarkers. Supervised learning captures, from
observed data, the link between a set of input measures
(features) X and an output (e.g. a condition) Y : for example
the relation between the absorption spectrum of oral mucosa
and blood glucose concentration [Kasahara et al., 2018]. A
supervised learning algorithm finds a function f such that
f(X) is as close as possible to the output Y . Following
machine-learning terminology, we call the system’s best
guess f(X) for a value X a prediction, even when it does
not concern a measurement in the future.

Empirical Risk Minimization, central to machine learning,
uses a loss function L to measure how far a prediction f(X)
is from the true value Y , for example the squared difference:

L(Y, f(X)) = (Y − f(X))2 . (1)

The goal is to find a function f that has a small risk, which is
the expected loss on the true distribution of X and Y , i.e. on
unseen individuals. The true risk cannot be computed in
practice: it would require having seen all possible patients,
the true distribution of patients. The empirical risk is used
instead: the average error over available examples,

R̂(f) =
1

n

n∑
i=1

L(yi, f(xi)) , (2)

where {(xi, yi) , i = 1, . . . , n} are available (X,Y ) data,
called training examples. The statistical link of interest
is then approximated by choosing f within a family of
candidate functions as the one that minimizes the empirical
risk R̂(f).

The crucial assumption underlying this very popular
approach is that the prediction function f will then be

applied to individuals drawn from the same population
as the training examples {xi, yi}. It can be important
to distinguish the source data, used to fit and evaluate
a machine-learning model (e.g. a dataset collected for
research), from the target data, on which predictions are
meant to be used for clinical applications (e.g. new visitors
of a hospital). Indeed, if the training examples are not
representative of the target population – if there is a dataset
shift – the empirical risk is a poor estimate of the expected
error, and f will not perform well on individuals from the
target population.

2.2 Evaluation: Independent test set and
cross-validation

Once a model has been estimated from training examples,
measuring its error on these same individuals results in
a (sometimes wildly) optimistic estimate of the expected
error on unseen individuals (Friedman et al. [2001, Sec. 7.4],
Poldrack et al. [2020, Sec. 1, “Association vs Prediction”]).
Indeed, predictors chosen from a rich family of functions
are very flexible and can learn rules that fit tightly the
training examples but fail to generalize to new individuals.
This is called overfitting.

To obtain valid estimates of the expected performance on
new data, the error is measured on an independent sample
held out during training, called the test set. The most
common approach to obtain such a test set is to randomly
split the available data. This process is usually repeated
with several splits, a procedure called cross-validation [Arlot
et al., 2010, Friedman et al., 2001, Sec. 7].

When training and test examples are chosen uniformly
from the same sample, they are drawn from the same distri-
bution (i.e. the same population): there is no dataset shift.
Some studies also measure the error on an independent
dataset [e.g. Beck et al., 2011, Jin et al., 2020]. This helps
establishing external validity, assessing whether the predic-
tor will perform well outside of the dataset used to define it
[Bleeker et al., 2003]. Unfortunately, the biases in partici-
pant recruitment may be similar in independently collected
datasets. For example if patients with severe symptoms
are difficult to recruit, this is likely to distort all datasets
similarly. Testing on a dataset collected independently is
therefore a useful check, but no silver bullet to rule out
dataset shift issues.
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3 False solutions to tackling dataset
shift

We now discuss some misconceptions and confusions with
problems not directly related to dataset shift.

“Deconfounding” does not correct dataset shift
for predictive models Dataset shift is sometimes con-
fused with the notion of confounding, as both settings
arise from an undesired effect in the data. Confounding
comes from causal analysis, estimating the effect of a treat-
ment –an intervention, sometimes fictional– on an outcome.
A confounder is a third variable –for example age, or a
comorbidity– that influences both the treatment and the
outcome. It can produce a non-causal association between
the two [See Hernán and Robins, 2020, Chap. 7, for a
precise definition]. However, the machine-learning methods
we consider here capture statistical associations, but do not
target causal effects. Indeed, for biomarkers, the association
itself is interesting, whether causal or not. Elevated body
temperature may be the consequence of a condition, but
also cause a disorder. It is a clinically useful measure in
both settings.

Tools for causal analysis are not all useful for prediction,
as pointed out by seminal textbooks: “if the goal of the data
analysis is purely predictive, no adjustment for confound-
ing is necessary [...] the concept of confounding does not
even apply.”[Hernán and Robins, 2020, Sec. 18.1], or Pearl
[2019]. In prediction settings, applying procedures meant
to adjust for confounding generally degrades prediction per-
formance without solving the dataset shift issue. Figure 1
demonstrates the detrimental effect of “deconfounding” on
simulated data: while the target population is shifted due
to a different age distribution, removing the effect of age
also removes the separation between the two outcomes of
interest. The same behavior is visible on real epidemio-
logic data with age shifts, such as predicting the smoking
status of participants in the UKBiobank study [Sudlow
et al., 2015], as shown in Figure 2. Drawing training and
testing samples with different age distributions highlights
the effect of these age shifts on prediction performance (see
Appendix B for details on the procedure). For a given
learner and test population, training on a different popula-
tion degrades prediction. For example, predictions on the
old population are degraded when the model is trained on
the young population. A flexible model (Gradient Boost-

ing) outperforms the linear model with or without dataset
shift. “Regressing out” the age (as in the second column
of Figure 1, “+ regress-out” strategy in Figure 2) degrades
the predictions in all configurations.

For both illustrations on simulated and real data (Figure 1
and 2), we also demonstrate an approach suitable for pre-
dictive models: reweighting training examples giving more
importance to those more likely in the test population. This
approach improves the predictions of the overconstrained
(misspecified) linear model in the presence of dataset shift,
but degrades the predictions of the powerful learner. The
non-linear model already captures the correct separation
for both young and old individuals, thus reweighting ex-
amples does not bring any benefit but only increases the
variance of the empirical risk. A more detailed discussion
of this approach, called importance weighting, is provided
in Section 5.

Training examples should not be selected to be
homogeneous To obtain valid predictive models that
perform well beyond the training sample, it is crucial to
collect datasets that represent the whole population and
reflect its diversity as much as possible [Kakarmath et al.,
2020, England and Cheng, 2019, O’neil, 2016]. Yet clinical
research often emphasizes the opposite: very homogeneous
datasets and carefully selected participants. While this
may help reduce variance and improve statistical testing,
it degrades prediction performance and fairness. In other
words, the machine-learning system may perform worse
for segments of the population that are under-represented
in the dataset, resulting in uneven quality of care if it is
deployed in clinical settings. Therefore in predictive settings,
where the goal is machine-learning models that generalize
well, large and diverse datasets are desirable.

Simpler models are not less sensitive to dataset
shift Often, flexible models can be more robust to dataset
shifts, and thus generalize better, than linear models
[Storkey, 2009], as seen in Figures 1 and 2. Indeed, an
over-constrained (ill-specified) model may only fit well a
restricted region of the feature space, and its performance
can degrade if the distribution of inputs changes, even if the
relation to the output stays the same (i.e. when covariate
shift occurs, Section 7.1).

Dataset shift does not call for simpler models as it is not
a small-sample issue. Collecting more data from the same
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Figure 1. Classification with dataset shift – regressing out a correlate of the shift does not help generalization.
The task is to classify patients (orange) from healthy controls (blue), using 2-dimensional features. Age, indicated by the shade of
gray, influences both the features and the probability of disease. Left: generative process for the simulated data. Age
influences both the target Y and the features X, and Y also has an effect on X. Between the source and target datasets, the
distribution of age changes. The two arrows point towards increasing age and represent the Healthy and Diseased populations,
corresponding to the orange and blue clouds of points in the right panel. The grayscale gradient in the arrows represents the
increasing age of the individuals (older individuals correspond to a darker shade). Throughout their life, individuals can jump from
the Healthy trajectory to the Diseased trajectory, which is slightly offset in this 2-dimensional feature space. As age increases, the
prevalence of the disease increases, hence the Healthy trajectory contains more individuals of young ages (its wide end), and less at
older ages (its narrow end) – and vice-versa for the Diseased trajectory. Right: predictive models In the target data (bottom
row), the age distribution is shifted: individuals tend to be older. Elderly are indeed often less likely to participate in clinical
studies [Heiat et al., 2002]. First column: no correction is applied. As the situation is close to a covariate shift (Section 7.1), a
powerful learner (RBF-SVM) generalizes well to the target data. An over-constrained model – Linear-SVM – generalizes poorly.
Second column: wrong approach. To remove associations with age, features are replaced by the residuals after regressing them
on age. This destroys the signal and results in poor performance for both models and datasets. Third column: Samples are
weighted to give more importance to those more likely in the target distribution. Small circles indicate younger individuals, with
less influence on the classifier estimation. This reweighting improves prediction for the linear model on the older population.

sources will not correct systematic dataset bias.

4 Preferential sample selection: a
common source of shift

In 2017, competitors in the million-dollar-prize data science
bowl used machine learning to predict if individuals would
be diagnosed with lung cancer within one year, based on
a CT scan. Assuming that the winning model achieves
satisfying accuracy on left-out examples from this dataset,
is it ready to be deployed in hospitals? Most likely not.
Selection criteria may make this dataset not representative

of the potential lung cancer patients general population.
Selected participants verified many criteria, including being
a smoker and not having recent medical problems such as
pneumonia. How would the winning predictor perform on
a more diverse population? For example, another disease
could present features that the classifier could mistakenly
take for signs of lung cancer. Beyond explicit selection cri-
teria, many factors such as age, ethnicity, or socioeconomic
status influence participation in biomedical studies [Henrich
et al., 2010, Murthy et al., 2004, Heiat et al., 2002, Chas-
tain et al., 2020]. Not only can these shifts reduce overall
predictive performance, they can also lead to discrimina-
tive clinical decisions for poorly represented populations
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young  young
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SVC + reweighting
SVC + regress-out
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AUC for linear SVC
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.76 .77 .78 .79 .8 .81 .82
AUC for Gradient Boosting

Predicting smoking status in the UKBiobank (10-fold CV, n train = 90K, n test = 9K)

Figure 2. Predicting the smoking status of UKBiobank participants. Different predictive models are trained on 90K
UKBiobank participants and tested on 9K participants with a possibly shifted age distribution. “young → old” means the training
set was drawn from a younger sample than the testing set. Models perform better when trained on a sample drawn from the same
population as the testing set. Reweighting examples that are more likely in the test distribution (“+ reweighting” strategy, known
as Importance Weighting, Section 5) alleviates the issue for the simple linear model, but is detrimental for the Gradient Boosting.
Regressing out the age (“+ regress-out” strategy) is a bad idea and degrades prediction performance in all configurations.

[Oakden-Rayner et al., 2020, Gianfrancesco et al., 2018,
Barocas et al., 2019, Abbasi-Sureshjani et al., 2020, Cirillo
et al., 2020].

The examples above are instances of preferential selec-
tion, which happens when members of the population of
interest do not have equal probabilities of being included
in the source dataset: the selection S is not independent
of (X,Y ). Preferential sample selection is ubiquitous and
cannot always be prevented by careful study design [Barein-
boim and Pearl, 2012]. It is therefore a major challenge to
the identification of reliable and fair biomarkers. Beyond
preferential sample selection, there are many other sources
of dataset shifts, e.g. population changes over time, inter-
ventions such as the introduction of new diagnostic codes
in Electronic Health Records [Sáez et al., 2020], and the
use of different acquisition devices.

4.1 The selection mechanism influences the
type of dataset shift

The correction for a dataset shift depends on the nature
of this shift, characterized by which and how distributions
are modified [Storkey, 2009]. Knowledge of the mechanism
producing the dataset shift helps formulate hypotheses
about distributions that remain unchanged in the target
data [Schölkopf et al., 2012, Peters et al., 2017, Chap. 5].

Figure 3 illustrates this process with a simulated example

of preferential sample selection. We consider the problem
of predicting the volume Y of a tumor from features X
extracted from contrast CT images. These features can
be influenced not only by the tumor size, but also by the
dosage of a contrast agent M . The first panel of Figure 3
shows a selection of data independent of the image and
tumor volume: there is no dataset shift. In the second
panel, selection depends on the CT image itself (for exam-
ple images with a low signal-to-noise ratio are discarded).
As selection is independent of the tumor volume Y given
the image X, the distribution of images changes but the
conditional distribution P (Y |X) stays the same: we face
a covariate shift (Section 7.1). The learned association re-
mains valid. Moreover, reweighting examples to give more
importance to those less likely to be selected can improve
predictions for target data (Section 5), and it can be done
with only unlabelled examples from the target data. In the
third panel, individuals who received a low contrast agent
dose are less likely to enter the training dataset. Selection
is therefore not independent of tumor volume (the output)
given the image values (the input features). Therefore we
have sample selection bias: the relation P (Y |X) is different
in source and target data, which will affect the performance
of the prediction.

As these examples illustrate, the causal structure of the
data helps identify the type of dataset shift and what in-
formation is needed to correct it. When such information
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Figure 3. Sample selection bias: three examples. On the
right are graphs giving conditional independence relations [Pearl
et al., 2016]. Y is the lesion volume to be predicted (i.e. the
output). M are the imaging parameters, e.g. contrast agent
dosage. X is the image, and depends both on Y and M (in this
toy example X is computed as X := Y +M+ε, where ε is additive
noise. S indicates that data is selected to enter the source
dataset (orange points) or not (blue points). The symbol ⊥⊥
means independence between variables. Preferentially selecting
samples results in a dataset shift (middle and bottom row).
Depending on whether Y ⊥⊥ S |X, the conditional distribution
of Y |X – here lesion volume given the image – estimated on
the selected data may be biased or not.

is available, it may be possible to leverage it in order to
improve robustness to dataset shift [e.g. Subbaswamy et al.,
2019].

5 Importance weighting: a generic
tool against dataset shift

Importance weighting is a simple approach to dataset shift
that applies to many situations and can be easy to imple-
ment.

Dataset shift occurs when the joint distribution of the
features and outputs is different in the source (data used
to fit the machine-learning model) and in the target data.
Informally, importance weighting consists in reweighting
the available data to create a pseudo-sample that follows
the same distribution as the target population.

To do so, examples are reweighted by their importance
weights – the ratio of their likelihood in target data over
source data. Examples that are rare in the source data but
are likely in the target data are more relevant and therefore
receive higher weights. A related approach is importance
sampling – resampling the training data according to the
importance weights. Many statistical learning algorithms –
including Support Vector Machines, decision trees, random
forests, neural networks – naturally support weighting the
training examples. Therefore, the challenge relies mostly in
the estimation of the appropriate sample weights and the
learning algorithm itself does not need to be modified.

To successfully use importance weighting, no part of
the target distribution should be completely unseen. For
example, if sex (among other features) is used to predict
heart failure and the dataset only includes men, impor-
tance weighting cannot transform this dataset and make
its sex distribution similar to that of the general popula-
tion (Figure 4). Conversely, the source distribution may be
broader than the target distribution (as seen for example
in Figure 1).

Importance weights can also be applied to validation
examples, which may produce a more accurate estimation
of generalization error on target data.

Importance weighting is a well-known approach and an
important body of literature focuses on its application and
the estimation of importance weights. It is illustrated on
small datasets for the prediction of breast cancer in Dud́ık
et al. [2006] and heart disease in Kouw and Loog [2019].
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Figure 4. Dataset shifts that may or may not be com-
pensated by reweighting – Left: distribution of sex can
be balanced by downweighting men and upweighting women.
Right: women are completely missing; the dataset shift cannot
be fixed by importance weighting.

However, it cannot always be applied: some knowledge
of the target distribution is required, and the source dis-
tribution must cover its support. Moreover, importance
weighting can increase the variance of the empirical risk es-
timate, and thus sometimes degrades performance – as seen
in Figure 2. It is therefore a straightforward and popular
approach to consider, but not a complete solution. It is
particularly beneficial when using a simple learning model
which cannot capture the full complexity of the data, such
as the linear models in Figure 1. Indeed, simple models are
often prefered in biomedical applications because they are
easy to interpret and audit.

In Appendix A, we provide a more precise definition of
the importance weights, as well as an overview of how they
can be estimated and used.

6 Other approaches to dataset shift

Beyond importance weighting, many other solutions to
dataset shift have been proposed. They are typically more
difficult to implement, as they require adapting or desig-
ing new learning algorithms. However, they may be more
effective, or applicable when information about the target
distribution is lacking. We summarize a few of these ap-
proaches here. A more systematic review can be found in
Kouw and Loog [2019]. Weiss et al. [2016] and Pan and
Yang [2009] give systematic reviews of transfer learning (a
wider family of learning problems which includes dataset
shift).

The most obvious solution is to do nothing – ignoring
the dataset shift. This approach should be included as a
baseline when testing on a sample of target data – which is
a prerequisite to clinical use of a biomarker [Storkey, 2009,
Woo et al., 2017]. With flexible models, this is a strong
baseline that can outperform importance weighting, as in

the right panel of Figure 2.

Another approach is to learn representations–
transformations of the signal— that are invariant to
the shift [Achille and Soatto, 2018]. Some deep-learning
methods strive to extract features that are predictive
of the target while having similar distributions in the
source and target domains [e.g. Long et al., 2015], or
while preventing an adversary to distinguish source and
target data [“domain-adversarial” learning, e.g. Tzeng
et al., 2017]. When considering such methods, one must
be aware of the fallacy shown in Figure 1: making the
features invariant to the effect driving the dataset shift can
remove valuable signal if this effect is not independent of
the outcome of interest.

It may also be possible to explicitly model the mapping
from source to target domains, e.g. by training a neural
network to translate images from one modality or imag-
ing device to another, or by relying on optimal transport
[Courty et al., 2016].

Finally, synthetic data augmentation sometimes helps –
relying on known invariances e.g. for images by applying
affine transformations, resampling, etc. . or with learned
generative models [e.g. Antoniou et al., 2017].

6.1 Performance heterogeneity and fair-
ness

It can be useful not to target a specific population, but
rather find a predictor robust to certain dataset shifts.
Distributionally robust optimization tackles this goal by
defining an ambiguity, or uncertainty set – a set of dis-
tributions to which the target distribution might belong –
then minimizing the worse risk across all distributions in
this set [see Rahimian and Mehrotra, 2019, for a review].
The uncertainty set is often chosen centered on the em-
pirical (source) distribution for some divergence between
distributions. Popular choices for this divergence are the
Wasserstein distance, f -divergences (e.g. the KL diver-
gence) [Duchi and Namkoong, 2018], and the Maximum
Mean Discrepancy [Zhu et al., 2020]. If information about
the target distribution is available, it can be incorportated
in the definition of the uncertainty set. An approach related
to robust optimization is to strive not only to minimize the
empirical loss L(Y, f(X)) but also its variance Maurer and
Pontil [2009], Namkoong and Duchi [2017].

It is also useful to assess model performance across values
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of demographic variables such as age, socioeconomic status
or ethnicity. Indeed, a good overall prediction performance
can be achieved despite a poor performance on a minority
group. Ensuring that a predictor performs well for all
subpopulations reduces sensitivity to potential shifts in
demographics and is essential to ensure fairness [Abbasi-
Sureshjani et al., 2020]. For instance, there is a risk that
machine-learning analysis of dermoscopic images under-
diagnoses malignant moles on skin tones that are typically
under-represented in the training set Adamson and Smith
[2018]. Fairness is especially relevant when the model output
could be used to grant access to some treatment. As similar
issues arise in many applications of machine learning, there
is a growing literature on fairness [see e.g. Barocas et al.,
2019, for an overview]. For instance, Duchi and Namkoong
[2018] show that distributionally robust optimization can
help performance on under-represented subpopulations.

6.2 Multi-site datasets

Often datasets are collected across several sites or hospitals,
or with different measurement devices. This heterogeneity
provides an opportunity to train models that generalize to
unseen sites or devices. Some studies attempt to remove
site effects by regressing all features on the site indicator
variable. For the same reasons that regressing out age is
detrimental in Figure 1, this strategy often gives worse
generalization across sites.

Data harmonization, such as compensating differences
across measurement devices, is crucial, but remains very dif-
ficult and cannot correct these differences perfectly [Glocker
et al., 2019]. Removing too much inter-site variance can
lead to loss of informative signal. Rather, it is important
to model it well, accounting for the two sources of variance,
across participants and across sites. A good model strives
to yield good results on all sites. One solution is to adapt
ideas from robust optimization: on data drawn from dif-
ferent distributions (e.g. from several sites), Krueger et al.
[2020] show the benefits of minimizing the empirical risk
on the worse site or adding penalties on the variance of the
loss across sites.

Measures of prediction performance should aggregate
scores at the site level (not pooling all individuals), and
check the variance across sites and the performance on the
worse site. Cross-validation schemes should hold out entire
sites [Woo et al., 2017, Little et al., 2017].

7 Special cases of dataset shift

Categorizing dataset shift helps finding the best approach
to tackle it Storkey [2009], Moreno-Torres et al. [2012]. We
summarize two frequently-met scenarios that are easier to
handle than the general case and can call for different ad-
justments: covariate shift (Section 7.1) and prior probability
shift (Section 7.2).

7.1 Covariate shift

Covariate shift occurs when the marginal distribution of
X changes between the source and target datasets (i.e.
pt(x) 6= ps(x)), but P (Y |X) stays the same. This happens
for example in the second scenario in Figure 3, where sample
selection based on X (but not Y ) changes the distribution of
the inputs. If the model is correctly specified, an estimator
trained with uniform weights will lead to optimal predictions
given sufficient training data [prediction consistency Shi-
modaira, 2000, Lemma 4]. However the usual (unweighted)
estimator is not consistent for an over-constrained (misspec-
ified) model. Indeed, a over-constrained model may be able
to fit the data well only in some regions of the input feature
space (Figure 1). In this case reweighting training examples
(Section 5) to give more importance to those that are more
representative of the target data is beneficial [Storkey, 2009,
Schölkopf et al., 2012]. Figure 5 illustrates covariate shift.

7.2 Prior probability shift

Another relatively simple case of dataset shift is prior proba-
bility shift. With prior probability shift (a.k.a. label shift or
target shift), the distribution of Y changes but not P (X |Y ).
This happens for example when disease prevalence changes
in the target population but manifests itself in the same
way. Even more frequently, prior probability shift arises
when one rare class is over-represented in the training data
so that the dataset is more balanced, as when extracting a
biomarker from a case-control cohort, or when the dataset
is resampled as a strategy to handle the class imbalance
problem [He and Garcia, 2009]. Prior probability shift can
be corrected without extracting a new biomarker, simply
by adjusting a model’s predicted probabilities using Bayes’
rule [as noted for example in Storkey, 2009, Schölkopf et al.,
2012]. When the classes are well separated, the effect of
this correction may be small, i.e. the uncorrected classifier
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Figure 5. Covariate shift: P (Y |X) stays the same but the
feature space is sampled differently in the source and target
datasets. A powerful learner may generalize well as P (Y |X)
is correctly captured [Storkey, 2009]. Thus the polynomial fit
of degree 4 performs well on the new dataset. However, an
overconstrained learner such as the linear fit can benefit from
reweighting training examples to give more importance to the
most relevant region of the feature space.

may generalize well without correction. Figure 6 illustrates
prior probability shift.

8 Conclusion

Ideally, machine learning biomarkers would be designed
and trained using datasets carefully collected to be rep-
resentative of the targeted population – as in Liu et al.
[2020]. To be trusted, biomarkers ultimately need to be
evaluated rigorously on one or several independent and
representative samples. However, such data collection is
expensive. It is therefore useful to exploit existing datasets
in an opportunistic way as much as possible in the early
stages of biomarker development. When doing so, correctly
accounting for dataset shift can prevent wasting important
resources on machine-learning predictors that have little
chance of performing well outside of one particular dataset.

We gave an overview of importance weighting, a simple
tool against dataset shift. Importance weighting needs a
clear definition of the targeted population and access to a
diverse training dataset. When this is not possible, distribu-
tionally robust optimization may be promising alternative,
though it is a more recent approach and more difficult
to implement. Despite much work and progress, dataset
shift remains a difficult problem. Characterizing its impact

Balanced dataset

Target dataset

Decision boundary
Original fit
Corrected for label shift

Figure 6. Prior probability shift: when P (Y ) changes but
P (X |Y ) stays the same. This can happen for example when
participants are selected based on Y – possibly to have a dataset
with a balanced number of patients and healthy participants:

X ← Y → S . When the prior probability (marginal distri-
bution of Y ) in the target population is known, this is easily
corrected by applying Bayes’ rule. The output Y is typically
low-dimensional and discrete (often it is a single binary value),
so P (Y ) can often be estimated precisely from few examples.
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and the effectiveness of existing solutions for biomarker
discovery will be important for machine learning models to
become more reliable in healthcare applications.

We conclude with the following recommendations:

• be aware of the dataset shift problem and the difficulty
of out-of-dataset generalization. Do not treat cross-
validation scores on one dataset as a guarantee that a
model will perform well on clinical data.

• collect diverse, representative data.

• use powerful machine-learning models and large
datasets.

• consider using importance weighting to correct biases in
the data collection, especially if the learning model may
be over-constrained (e.g. when using a linear model).

• look for associations between prediction performance
and demographic variables in the validation set to
detect potential generalization or fairness issues.

• do not remove confounding signal in a predictive set-
ting.

These recommendations should help designing fair biomark-
ers and their efficient application on new cohorts.
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A Definition and estimation of im-
portance weights

We will implicitly assume that all the random variables we
consider admit densities and denote ps and pt the density
of the joint distribution of (X,Y ) applied to the source
and target populations respectively. If the support of pt
is included in that of ps (meaning that ps > 0 wherever
pt > 0), we have:

Esource[L(Y, f(X)) ] = Etarget

[
pt(X, Y )

ps(X, Y )
L(Y, f(X))

]
,

(3)
where L is the cost function and f is a prediction function,
Esource (resp. Etarget) the expectation on the source (resp.
target) data. The risk (on target data) can therefore be
computed as an expectation on the source distribution
where the loss function is reweighted by the importance
weights:

w(x, y) =
pt(x, y)

ps(x, y)
. (4)

If ŵ are empirical estimates of the importance weights w,
it is possible to compute the reweighted empirical risk:

R̂ŵ(f) =

n∑
i=1

ŵ(xi, yi)L(yi, f(xi)) . (5)

Rather than being weighted, examples can also be re-
sampled with importance or rejection sampling [Zadrozny
et al., 2003, Zadrozny, 2004]. Importances can also be taken
into account for model selection – for example in Sugiyama
et al. [2007] examples of the test set are also reweighted
when computing cross-validation scores. Cortes et al. [2008]
study how errors in the estimation of the weights affect the
prediction performance.

A.1 Preferential Sample selection and In-
verse Probability weighting

In the case of preferential sample selection (Section 4), the
condition that requires for the support of pt to be included
in the support of ps translates to a requirement that all
individuals have a non-zero probability of being selected:
P (S = 1 |x, y) > 0 for all (x, y) in the support of pt. When
this is verified, by applying Bayes’ rule the definition of

importance weights in Equation (4) can be reformulated
[see Cortes et al., 2008, Sec. 2.3]:

w(x, y) =
P (S = 1)

P (S = 1 |X = x, Y = y)
(6)

These weights are sometimes called Inverse Probability
weights [Hernán et al., 2004] or Inverse Propensity scores
[Austin, 2011]. Training examples that had a low probability
of being selected receive higher weights, because they have
to account for similar individuals who were not selected.

A.2 Computing importance weights

In practice pt(x, y), which is the joint density of (X,Y ) in
the target data, is not known. However, it is not needed for
the estimation of pt/ps. More efficient estimation hinges on
two observations: estimation of both densities separately
is not necessary to estimate their ratio, and variables that
have the same distribution in source and target data can
be factored out.

Here we describe methods that estimate the true impor-
tance weights pt/ps, but we point out that reweighting the
training examples reduces the bias of the empirical risk
but increases the variance of the estimated model parame-
ters. Even when the importances are perfectly known, it can
therefore be beneficial to regularize the weights [Shimodaira,
2000].

A.2.1 Computing importance weights does not re-
quire distributions densities estimation

Importance weights can be computed by modelling sepa-
rately ps and pt and then computing their ratio [Sugiyama
and Kawanabe, 2012, Sec. 4.1]. However, distribution
density estimation is notoriously difficult; non-parametric
methods suffer from the curse of dimensionality and para-
metric methods depend heavily on the correct specification
of a parametric form.

But estimating both densities is more information than
is needed to compute the sample weights. Instead, one can
directly optimize importance weights in order to make the
reweighted sample similar to the target distribution, by
matching moments [Sun et al., 2016] or mean embeddings
[Huang et al., 2007, Zhang et al., 2013], minimizing the KL-
divergence [Sugiyama et al., 2008], solving a least-squares
estimation problem [Kanamori et al., 2009] or with optimal
transport [Courty et al., 2016].
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Alternatively, a discriminative model can be trained to
distinguish source and target examples. In the specific
case of preferential sample selection, this means estimating
directly the probability of selection P (S = 1) (cf Equa-
tion (6)). In general, the shift is not always due to selection:
the source data is not necessarily obtained by subsampling
the target population. In this case we denote T = 1 if an
individual comes from the target data and T = 0 if it comes
from the source data. Then, a classifier can be trained
to predict from which dataset (source or target) a sample
is drawn, and the importance weights obtained from the
predicted probabilities [Sugiyama and Kawanabe, 2012, Sec.
4.3]:

w(x, y) =
P (T = 1 |X = x, Y = y)P (T = 0)

P (T = 0 |X = x, Y = y)P (T = 1)
, (7)

The classifier must be calibrated (i.e. produce accu-
rate probability estimates, not only a correct decision),
see Niculescu-Mizil and Caruana [2005]. Note that con-
stant factors such as P (T = 0)/P (T = 1) usually do not
matter and are easy to estimate if needed. This discrim-
inative approach is effective because the distribution of
(T |X = x, Y = y) is much easier to estimate than the
distribution of (X,Y |T = t) : T is a single binary variable
whereas (X,Y ) is high-dimensional and often continuous.

The classifier does not need to distinguish source and
target examples with high accuracy. In the ideal situation
of no dataset shift, the classifier will perform at chance
level. On the contrary, a high accuracy means that there is
little overlap between the source and target distributions
and the model will probably not generalize well.

A.2.2 What distributions differ in source and tar-
get data?

When computing importance weights, it is possible to ex-
ploit prior knowledge that some distributions are left un-
changed in the target data. For example,

pt(x, y)

ps(x, y)
=

pt(y |x) pt(x)

ps(y |x) ps(x)
. (8)

Imagine that the marginal distribution of input X differs
in source and target data, but the conditional distribution of
the output Y given the input stays the same: pt(x) 6= ps(x)
but pt(y |x) = ps(y |x) (a setting known as covariate shift).

Then, the importance weights simplify to

w(x, y) =
pt(x)

ps(x)
. (9)

In this case, importance weights can be estimated using only
unlabelled examples (individuals for whom Y is unkown)
from the target distribution.

Often, the variables that influence selection
(e.g. demographic variables such as age) are lower-
dimensional than the full features (e.g. high-dimensional
images), and dataset shift can be corrected with limited
information on the target distribution, with importance
weights or otherwise. Moreover, even if additional
information Z that predicts selection but is independent
of (X,Y ) is available, it should not be used to compute
the importance weights. Indeed, this would only increase
the weights’ variance without reducing the bias due to the
dataset shift [Hernán and Robins, 2020, Sec. 15.5].

B Tobacco smoking prediction in
the UKBiobank

We consider predicting the smoking status of participants
in the UKBiobank study to illustrate the effect of dataset
shift on prediction performance.

6,000 participants are used in a preliminary step to iden-
tify the 29 most relevant predictive features (listed in ap-
pendix B.1), by cross-validating a gradient boosting model
and computing permutation feature importances. We then
draw two samples of 100K individuals from the rest of the
dataset, that have different age distributions. In the young
sample, 90% of individuals come from the youngest 20% of
the dataset, and the remaining 10% are sampled from the
oldest 20% of the dataset. In the old sample, these propor-
tions are reversed. We then perform 10-fold cross validation.
For each fold, both the training and testing set can be drawn
from either the young or the old population, resulting in
four tasks on which several machine-learning estimators are
evaluated. We use this experiment to compare 2 machine-
learning models: a simple one – regularized linear Support
Vector Classifier, and a flexible one – Gradient Boosting.
For each classifier, 3 strategies are considered to handle the
dataset shift: (i) baseline – the generic algorithm without
modifications, (ii) Importance Weighting (Section 5), and
(iii) the (unfortunately popular) non-solution: “regressing
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out the confounder” – regressing the predictive features on
the age and using the residuals as inputs to the classifier.

The results are similar to those seen with simulated
data in Figure 1. For a given learner and test population,
training on a different population degrades the prediction
score. For example, if the learner is to be tested on the
young population, it performs best when trained on the
young population. Gradient Boosting vastly outperforms
the linear model in all configurations. Regressing out the
age always degrades the prediction; it is always worse than
the unmodified baseline, whether a dataset shift is present
or not. Finally, Importance Weighting (Section 5) improves
the predictions of the over-constrained (misspecified) linear
model in the presence of dataset shift, but degrades the
prediction of the powerful learner used in this experiment.
This is due to the fact that the Gradient Boosting already
captures the correct separation for both young and old
individuals, and therefore Importance Weighting does not
bring any benefit but only reduces the effective training
sample size by increasing the variance of the empirical risk.

B.1 Features used for tobacco smoking sta-
tus prediction

The 30 most important features were identified in a prelimi-
nary experiment with 6,000 participants (that were not used
in the subsequent analysis). One of these features, “Date
F17 first reported (mental and behavioural disorders due to
use of tobacco)”, was deemed trivial – too informative, as
it directly implies that the participant does smoke tobacco,
and removed. The remaining 29 features were used for the
experiment described in Section 3.

• Forced expiratory volume in 1-second (FEV1), pre-
dicted percentage

• Lifetime number of sexual partners

• Age first had sexual intercourse

• Age when last took cannabis

• Ever taken cannabis

• Forced expiratory volume in 1-second (FEV1), pre-
dicted

• Acceptability of each blow result

• Mouth/teeth dental problems

• Coffee intake

• FEV1/ FVC ratio Z-score

• Alcohol intake frequency.

• Date J44 first reported (other chronic obstructive pul-
monary disease)

• Former alcohol drinker

• Average weekly spirits intake

• Year of birth

• Acceptability of each blow result

• Date of chronic obstructive pulmonary disease report

• Leisure/social activities

• Morning/evening person (chronotype)

• Mean sphered cell volume

• Lymphocyte count

• Townsend deprivation index at recruitment

• Age hay fever, rhinitis or eczema diagnosed

• Age started oral contraceptive pill

• White blood cell (leukocyte) count

• Age completed full time education

• Age at recruitment

• Workplace had a lot of cigarette smoke from other
people smoking

• Wheeze or whistling in the chest in last year
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C Glossary

Here we provide a summary of some terms and notations
used in the paper.

Target population the population on which the
biomarker (machine-learning model) will be applied.

Source population the population from which the sam-
ple used to train the machine-learning model is drawn.

Selection in the case that source data are drawn (with
non-uniform probabilities) from the target population,
we denote by S = 1 the fact that an individual is
selected to enter the source data (e.g. to participate in
a medical study).

Provenance of an individual when samples from
both the source and the target populations
(e.g. Appendix A.2.1) are available, we also de-
note T = 1 if an individual comes from the target
population and T = 0 if they come from the source
population.

Confounding in causal inference, when estimating the ef-
fect of a treatment on an outcome, confounding occurs
if a third variable (e.g. age, a comorbidity, the serious-
ness of a condition) influences both the treatment and
the outcome, possibly producing a spurious statistical
association between the two. This notion is not directly
relevant to dataset shift, and we mention it only to
insist that it is a different problem. See Hernán and
Robins [2020], Chap. 7, for a more precise definition.

Domain adaptation the task of designing machine-
learning methods that are resilient to dataset shift
– essentially a synonym for dataset shift, i.e. another
useful search term for readers looking for further infor-
mation on this problem.
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