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NONUNIQUENESS AND NONLINEAR INSTABILITY OF

GAUSSONS UNDER REPULSIVE HARMONIC POTENTIAL

RÉMI CARLES AND CHUNMEI SU

Abstract. We consider the Schrödinger equation with a nondispersive loga-

rithmic nonlinearity and a repulsive harmonic potential. For a suitable range
of the coefficients, there exist two positive stationary solutions, each one gener-

ating a continuous family of solitary waves. These solutions are Gaussian, and

turn out to be orbitally unstable. We also discuss the notion of ground state
in this setting: for any natural definition, the set of ground states is empty.

1. Introduction

We consider the equation

(1.1) i∂tu+
1

2
∆u = −ω2 |x|2

2
u+ λu ln

(
|u|2
)
, x ∈ Rd,

in the case ω > 0 (repulsive harmonic potential) and λ < 0. The logarithmic
Schrödinger equation ((1.1) with ω = 0) was introduced in [6], and has been con-
sidered in various fields of physics since; see e.g. [4, 9, 18, 19, 24, 26, 33] and
references therein. A special feature of the logarithmic nonlinearity is that it leads
to very special solitary waves, called Gaussons in [6, 7]: if λ < 0, for any ν ∈ R,

eiνte
λd−ν
2λ eλ|x|

2

is a solution to (1.1) (with ω = 0). These solitary waves are orbitally stable, as
proved in [14] (radial case) and [2] (general case). In addition, still in the case
ω = 0, it is known that for λ < 0, no solution is dispersive ([14, Proposition 4.3]),
while for λ > 0, every solution is dispersive, with an enhanced rate compared to
the usual rate of the free Schrödinger equation ([12]).

The logarithmic Schrödinger equation in the presence of a confining harmonic
potential was considered in physics in [8],

(1.2) i∂tu+
1

2
∆u = ω2 |x|2

2
u+ λu ln

(
|u|2
)
, x ∈ Rd.

In the case λ < 0 ([3]) as well as in the case λ > 0 ([11]), generalized Gaussons
exist, and are orbitally stable, in the sense introduced in [16] (see Definition 1.1
below for the definition in the case of (1.1), the notion being the same for (1.2)).

The case of an inverted, or repulsive harmonic potential as in (1.1), does not seem
to correspond to a realistic model, but constitutes an interesting mathematical toy.

The potential V (x) = −ω2 |x|2
2 is unbounded from below, and goes to −∞ as fast as
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2 R. CARLES AND C. SU

possible in order to guarantee that the Hamiltonian − 1
2∆ +V (x) is essentially self-

adjoint on C∞0 (Rd); see [17, 28]. In the linear case λ = 0, classical trajectories go
to infinity exponentially fast in time, the solution disperses exponentially in time,
and the Sobolev norms grow exponentially in time (see e.g. [10]). Because of that,
there are no long range effects (scattering theory) when a power-like nonlinearity
is added ([10]), and at least in the case of an L2-critical focusing nonlinearity,

i∂tu+
1

2
∆u = −ω2 |x|2

2
u− |u|4/du, x ∈ Rd,

there exists no nontrivial solitary wave u(t, x) = eiνtφ(x) with φ ∈ L2(Rd) [22, 23].

In the case of (1.1), the mass and the energy are formally independent of time:
they are given by

(1.3)

M(u) = ‖u‖2L2(Rd),

E(u) =
1

2
‖∇u‖2L2(Rd) −

ω2

2
‖xu‖2L2 + λ

∫
Rd
|u|2

(
ln |u|2 − 1

)
dx.

The energy has no definite sign, for two reasons: the repulsive harmonic poten-
tial has a negative contribution in E, and the logarithmic nonlinearity induces a
potential energy with indefinite sign (entropy). Introduce the space Σ defined by

Σ = H1 ∩ F(H1) =
{
f ∈ H1(Rd), x 7→ |x|f(x) ∈ L2(Rd)

}
,

and equipped with the norm

‖f‖2Σ = ‖f‖2L2(Rd) + ‖∇f‖2L2(Rd) +

∫
Rd
|x|2|f(x)|2dx

= ‖f‖2L2(Rd) +
〈(
−∆ + |x|2

)
f, f
〉
.

It is proved in [11, Proposition 1.3] that for λ ∈ R and any u0 ∈ Σ, there exists a
unique solution u ∈ L∞loc(R; Σ) ∩ C(R;L2(Rd)) to (1.1), such that u|t=0 = u0. In
addition, the mass M and the energy E are independent of time. In [11], it is proved
in addition that in the case λ > 0, every solution to (1.1) disperses exponentially
fast: in particular, there is no solitary wave in this case.

The situation is different in the case λ < 0, and leads to features which appear to
be quite unique, in the context of the logarithmic Schrödinger equation (with poten-
tial), and more generally of nonlinear Schrödinger equations. In [32], it was proven
that (1.1) admits at least one positive bound state, under some conditions on the
coefficients, recalled below. Under suitable assumptions regarding the parameters
λ and ω, we exhibit two positive stationary solutions.

Due to the presence of the potential, (1.1) is not invariant by translation in
space, hence the definition below (as in [3]):

Definition 1.1. A standing wave u(t, x) = φ(x)eiνt solution to (1.1) is orbitally
stable in the energy space if for any ε > 0, there exists η > 0 such that if u0 ∈ Σ
satisfies ‖u0 − φ‖Σ < η, then the solution u to (1.1) exists for all t ∈ R, and

sup
t∈R

inf
θ∈R
‖u(t)− eiθφ‖Σ < ε.

Otherwise, the standing wave is said to be unstable.

The main result of this paper is the following:
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Theorem 1.2. (i). Let −λ > ω > 0. Then (1.1) possesses two positive stationary
solutions, which are Gaussons,

φk±(x) = e−
dk±
4λ e−k±|x|

2/2, where k± = −λ±
√
λ2 − ω2.

Each stationary solution generates a continuous family of solitary waves,

u±,ν(t, x) = φk±,ν(x)eiνt, φk±,ν(x) = e−
ν
2λφk±(x), ν ∈ R.

Every such solitary wave is unstable in the sense of Definition 1.1.

(ii). In the limiting case −λ = ω > 0, φk− = φk+ = φω = ed/4e−ω|x|
2/2 also

generates a continuous family of solitary waves,

uω,ν(t, x) = φω,ν(x)eiνt, φω,ν(x) = e
ν
2ω φω(x), ν ∈ R,

and every such solitary wave is unstable in the sense of Definition 1.1.

We note that φk− and φk+ are two positive solutions to the stationary equation

(1.4) − 1

2
∆φ− ω2 |x|2

2
φ+ λφ ln

(
|φ|2

)
= 0.

As evoked above, it is shown in [32] that (1.1) has at least one positive solution,
under suitable assumptions on the coefficients of the equation. More precisely, in
[32], a semiclassical parameter ε is present,

−ε2∆u− |x|2u = u ln |u|2.
A stationary, positive solution exists for sufficiently small values of the semiclassical
parameter ε. Actually a rescaling argument shows that this corresponds to (1.4) in
the case λ = −2, with ω = ε: for ε small, we indeed have −λ > ω > 0. In [1], it is
shown that for the logarithmic Schrödinger equation with a potential admitting a
global minimum reached in ` > 2 points sufficiently far one from another, there exist
at least ` positive stationary solutions, providing a situation where nonuniqueness
holds, which is quite different from ours.

Linearizing (1.1) around φk, for k = k− or k+, leads to:

(1.5) i∂tu+
1

2
∆u = −ω2 |x|2

2
u− dk

2
u− λk|x|2u = k2 |x|2

2
u− dk

2
u.

The underlying Hamiltonian is the (shifted) harmonic oscillator,

(1.6) Hk = −1

2
∆ + k2 |x|2

2
− dk

2
,

whose point spectrum is kN. This implies linear and spectral stability of the sta-
tionary states φk± , like e.g. for the Gausson in the case of the logarithmic KdV
equation [13, 20, 27]. From this perspective, the nonlinear instability stated in
Theorem 1.2 can appear surprising. We actually show several possible mechanisms
leading to instability.

Ground states are often characterized as the unique positive solution to an elliptic
equation (typically when the nonlinearity is homogeneous, but not only, see e.g.
[21, 25]): we discuss more into details the notion of ground state in Section 4, and
show that neither φk− nor φk+ can be considered as a ground state according to
standard definitions. Note that the underlying operator −∆−ω2|x|2 is not elliptic,
since its symbol is |ξ|2 − ω2|x|2. In particular, we do not obtain a variational
characterization of the Gaussons in the present case, unlike in the case without
potential [2], or with a confining harmonic potential [3, 11]. This is consistent with
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the fact that these solutions are unstable. Note however that in view of the global
existence result [11, Proposition 1.3], the instability mechanism is not related to
finite time blow-up.

The rest of this paper is organized as follows. In Section 2, we show some special
invariances and discuss more into details special Gaussian solutions to (1.1). In
Section 3, we complete the proof of Theorem 1.2, by showing the instability of
φk− and φk+ ; several causes of instability are exhibited. Finally in Section 4, we
discuss the notion of ground state associated to (1.1), and show that it should be
considered that (1.1) admits no ground state.

2. Special solutions and invariances

2.1. Some invariances. (1.1) is invariant with respect to translation in time, but
not with respect to translation in space, due to the potential. It is gauge invariant:
if u is a solution, then so is eiθu for any constant θ ∈ R.

Size effect. The following invariance is a feature of the logarithmic nonlinearity: If
u solves (1.1), then for all c ∈ C, so does

(2.1) uc(t, x) := c u(t, x)e−itλ ln |c|2 .

Typically, if we find a stationary solution, then the above transform generates a
continuum of solitary waves, indexed by c ∈ (0,∞), or equivalently by

ν = −λ ln
(
c2
)
∈ R.

Note that the size of these solitary waves is arbitrary, as c ranges (0,∞).

Galilean invariance. Due to the repulsive harmonic potential, the Galilean invari-
ance reads are follows. If u(t, x) solves (1.1), then for any v ∈ Rd, so does

(2.2) u

(
t, x− v sinh(ωt)

ω

)
exp

(
i cosh(ωt)v · x− i|v|2

4ω
sinh(2ωt)

)
.

At t = 0, the above transform is just a multiplication by eiv·x.

Space translation. The absence of invariance with respect to translation in space
can be specified as follows. If u solves (1.1), then for any x0 ∈ Rd, so does

(2.3) u (t, x− x0 cosh(ωt)) exp

(
iω sinh(ωt)x0 · x−

iω|x0|2

4
sinh(2ωt)

)
.

At t = 0, the above transform corresponds to a shift in space.

Tensorization. The logarithmic nonlinearity was introduced in [6] to satisfy the fol-
lowing tensorization property: as the external potential decouples space variables,

−ω2 |x|2

2
= −ω

2

2

d∑
j=1

x2
j ,

if the initial datum is a tensor product,

u0(x) =

d∏
j=1

u0j(xj),
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then the solution to (1.1) is given by

u(t, x) =

d∏
j=1

uj(t, xj),

where each uj solves a one-dimensional equation,

i∂tuj +
1

2
∂2
xjuj = −ω2

x2
j

2
uj + λ ln

(
|uj |2

)
uj , uj|t=0 = u0j .

2.2. Gaussons. As announced in the introduction, for −λ > ω > 0, the stationary
Gaussons are given by

φk(x) = e−
dk
4λ e−k|x|

2/2,

where k is either of the solutions to

(2.4) k2 + 2λk + ω2 = 0, i.e. k± = −λ±
√
λ2 − ω2.

If −λ = ω > 0, then k− = k+ = ω, and we will see in the next subsection that
when ω > −λ > 0, there exists no Gausson. We compute

‖φk‖2L2(Rd) = e−
dk
2λ

(π
k

)d/2
.

We note that as ω → 0 with λ < 0 fixed, k− → 0, k+ → −2λ, hence

‖φk−‖2L2(Rd) →∞, whereas ‖φk+‖2L2(Rd) → ed
(

π

−2λ

)d/2
.

We have more generally

Lemma 2.1. Let −λ > ω > 0. We have

‖φk−‖L2(Rd) > ‖φk+‖L2(Rd).

Proof. It suffices to prove that

e−k−/λ

k−
>
e−k+/λ

k+
⇐⇒ e(k+−k−)/λ >

k−
k+

⇐⇒ e2
√
λ2−ω2/λ >

−λ−
√
λ2 − ω2

−λ+
√
λ2 − ω2

.

We view the above inequality as depending on the unknown ω ∈ (0,−λ), and change

the unknown as θ =
√
λ2 − ω2/|λ| ∈ (0, 1), so the above inequality becomes

e−2θ >
1− θ
1 + θ

⇐⇒ 1 + θ > (1− θ)e2θ.

The map f(θ) = 1 + θ − (1− θ)e2θ, defined for θ ∈ (0, 1), satisfies

f ′′(θ) = 4e2θ − 4(1− θ)e2θ > 0, hence f ′(θ) = 1 + e2θ − 2(1− θ)e2θ > 0,

and f(θ) > 0 for all 0 < θ < 1. �

In view of (2.1), with ν = −λ ln(c2), c > 0, we have a continuum of standing
waves:

u±,ν(t, x) = φk±,ν(x)eiνt, φk±,ν(x) = e−
ν
2λφk±(x), ν ∈ R.

Therefore, to understand the dynamical properties of u±,ν (orbital stability or
instability), it is enough to consider the stationary solutions φk± .
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2.3. Gaussian solutions. By Gaussian solutions, we mean solutions which are
Gaussian in the space variable, with time-dependent coefficients. We adapt the
computations presented in [12] in the case ω = 0. Suppose d = 1 (for d > 2, we

may invoke the above tensorization property). We seek u(t, x) = b(t)e−a(t)x2/2 (in
particular u0 is Gaussian). We find:

iḃ =
1

2
ab+ λb ln |b|2; iȧ = a2 + 2λRe a+ ω2.

The function b is given explicitly in terms of a and its initial value b0,

b(t) = b0 exp

(
−iλt ln

(
|b0|2

)
− i

2
A(t)− iλ Im

∫ t

0

A(s)ds

)
,

where we have denoted A(t) =

∫ t

0

a(s)ds. We may write a under the form

(2.5) a =
1

τ2
− i τ̇

τ
, τ ∈ R,

and the equation for a leads to

(2.6) τ̈ =
2λ

τ
+

1

τ3
+ ω2τ.

We note that the form (2.5) implies that b(t) can be written as

(2.7) b(t) = b0e
iθ(t)

√
τ(0)

τ(t)
, θ(t) ∈ R.

Multiplying (2.6) by τ̇ and integrating, we get

(2.8) (τ̇)2 + V (τ) = C0, V (τ) = −4λ ln |τ |+ 1

τ2
− ω2τ2,

where C0 = τ̇(0)2 − 4λ ln |τ(0)| + 1
τ(0)2 − ω2τ(0)2 is related to the initial data.

Noticing that V (q)→ +∞ when q → 0, this readily shows that τ remains bounded
away from zero, and thus may be supposed positive in view of (2.5):

∃δ > 0, τ(t) > δ, ∀t > 0.

Proposition 2.2. Let d = 1, λ < 0 < ω.
1. If −λ > ω > 0, then (2.6) has exactly two stationary solutions, τ∓ = 1/

√
k±.

The other solutions are either periodic, or unbounded, corresponding to time-periodic
and dispersive Gaussian solutions to (1.1), respectively.
2. If −λ = ω > 0, then (2.6) has exactly one stationary solution, τ0 = 1/

√
ω. All

the other solutions are unbounded. In other words, any Gaussian solution to (1.1)
which is not of the form

e(2ν+ω)/(4ω)eiνte−ωx
2/2, ν ∈ R,

is dispersive.
3. If ω > −λ > 0, then every solution to (2.6) is unbounded. More precisely,

eωt . τ(t) . eωt, t > 0,

and every Gaussian solution to (1.1) disperses exponentially fast.
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Proof. We remark that the righthand side of (2.6) can be rewritten as

τ̈ = P

(
1

τ2

)
τ, P (X) = X2 + 2λX + ω2.

When −λ > ω > 0, P has exactly two roots, k− and k+, so

τ̈ =

(
1

τ2
− k−

)(
1

τ2
− k+

)
τ.

According to the initial data for τ , the value of the constant C0 in (2.8) varies,
leading to bounded trajectories, in which case τ is periodic, or to unbounded tra-
jectories, in which case τ(t)→∞ as t goes to infinity. This is illustrated by Figure 1,
displaying the phase portrait for the equation (2.6) with ω = 1 and λ = −2, where
we find

τ− =
1√

2 +
√

3
≈ 0.518, τ+ =

1√
2−
√

3
≈ 1.932.

0 1 2 3 4 5
-3

-2

-1

0

1

2

3

Figure 1. Phase portraits for the ODE (2.6) with ω = 1 and λ = −2.

When −λ = ω > 0, P has exactly one double root ω, and

τ̈ =

(
1

τ2
− ω

)2

τ.

If τ is not constant (equal to 1/
√
ω), then τ is strictly convex. If τ(t0) = 1/

√
ω for

some t0 > 0, then τ̇(t0) 6= 0, for otherwise τ would be constant, by uniqueness for
(2.6): τ can’t remain close to 1/

√
ω, and assuming that τ is bounded leads to a

contradiction. As τ is positive and convex, τ(t) goes to infinity as t→∞. This is
illustrated in Figure 2.

When ω > −λ > 0, P is uniformly bounded from below on R, P (X) > δ > 0. If
τ is bounded, (2.6) would yield τ̈ & 1, since τ is bounded away from zero, hence a
contradiction. As τ is convex, τ(t) goes to infinity as t → ∞, see Figure 3. As a
consequence, for any ε > 0, picking T sufficiently large,

τ̈(t) > ω2τ(t)− ε, ∀t > T.
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0 1 2 3 4
-3

-2

-1

0

1

2

3

Figure 2. Phase portraits for the ODE (2.6) with ω = 2 and λ = −2.

0 1 2 3 4
-3

-2

-1

0

1

2

3

Figure 3. Phase portraits for the ODE (2.6) with ω = 2 and λ = −1.

The solution to

θ̈(t) = ω2θ(t)− ε, θ(T ) = τ(T ), θ̇(T ) = τ̇(T ),

is given by

θ(t) = τ(T ) cosh (ω(t− T )) + τ̇(T )
sinh (ω(t− T ))

ω
− 2ε

ω2
sinh2

(ω
2

(t− T )
)
.

As τ(T ) and τ̇(T ) go to infinity as T →∞, we infer that τ(t) & eωt. The converse
estimate is a direct consequence of (2.8), again because for t sufficiently large,
ln τ(t) > 0, and λ < 0. �
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Remark 2.3. In the linear case λ = 0 < ω, there is no solitary wave, as every
solution is dispersive. This can be seen for instance via the vector field J(t) =
ωx sinh(ωt) + i cosh(ωt)∇: as observed in [10, Lemma 2.3], if u solves

i∂tu+
1

2
∆u = −ω2 |x|2

2
u,

then so does Ju, and since J can be factorized as

(2.9) J(t) = i cosh(ωt)eiω
|x|2
2 tanh(ωt)∇

(
e−iω

|x|2
2 tanh(ωt)·

)
,

Gagliardo-Nirenberg inequality yields, for 2 6 p < 2d
(d−2)+

,

‖u(t)‖Lp(Rd) 6
C(p, d)

(cosh(ωt))δ(p)
‖u(t)‖1−δ(p)L2 ‖J(t)u‖δ(p)L2

=
C(p, d)

(cosh(ωt))δ(p)
‖u0‖1−δ(p)L2 ‖∇u0‖δ(p)L2 , δ(p) = d

(
1

2
− 1

p

)
,

since the L2-norm is preserved by the flow. Therefore, if u0 ∈ Σ, the Lp-norm of
u decreases exponentially in time, and no solitary wave exists. The existence of
solitary waves when −λ > ω > 0 is thus due to the presence of the logarithmic
nonlinearity, which is sufficiently strong (due to the singularity of the logarithm at
the origin) to counterbalance the exponential linear dispersion.

3. Orbital instability

The instability result that we prove is slightly stronger than instability in the
sense of Definition 1.1:

Lemma 3.1. Let ν ∈ R.
1. Suppose −λ > ω > 0. The solitary waves φk−,ν(x)eiνt and φk+,ν(x)eiνt are
unstable. More precisely, for any η > 0, there exists u0 ∈ Σ such that

‖u0 − φk+,ν‖Σ < η,

and the solution to (1.1) such that u|t=0 = u0 satisfies

sup
t>0

inf
θ∈R

∥∥u(t)− eiθφk+,ν
∥∥
L2(Rd)

>
1

2
‖φk+,ν‖L2(Rd).

The same holds when k+ is replaced by k−.
2. Suppose −λ = ω > 0. The solitary wave φω,ν(x)eiνt is unstable in the same
sense as above.

Proof. We present the argument for φk+ , to shorten notations: considering φk±,ν
for ν ∈ R goes along the same lines, and the argument includes the limiting case
−λ = ω > 0. For all η > 0, then exists δ > 0 such that for |x0| < δ,

‖u0 − φk+‖Σ < η, u0(x) = φk+(x− x0).

In view of (2.3), the solution to (1.1) with initial datum u0 is given by

u(t, x) = φk+ (x− x0 cosh(ωt)) eiω sinh(ωt)x0·x− iω|x0|
2

4 sinh(2ωt)

Therefore, for any t > 0,

inf
θ∈R
‖u(t)− eiθφk+‖2L2(Rd) =

∫
Rd

∣∣φk+ (x− x0 cosh(ωt))− φk+(x)
∣∣2 dx.
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Indeed, denote u(t, x) = φk+ (x− x0 cosh(ωt)) eiα(x0,x,t) with α(x0, x, t) ∈ R given
by the above formula. Then

‖u(t)− eiθφk+‖2L2(Rd) = ‖φk+ (x− x0 cosh(ωt))− ei(θ−α(x0,x,t))φk+‖2L2(Rd)

= 2‖φk+‖2L2(Rd) − 2

∫
Rd

cos(θ − α(x0, x, t))φk+ (x− x0 cosh(ωt))φk+(x)dx,

which implies

inf
θ∈R
‖u(t)− eiθφk+‖2L2(Rd)

= 2‖φk+‖2L2(Rd) − 2 sup
θ∈R

∫
Rd

cos(θ − α(x0, x, t))φk+ (x− x0 cosh(ωt))φk+(x)dx

> 2‖φk+‖2L2(Rd) − 2

∫
Rd
φk+ (x− x0 cosh(ωt))φk+(x)dx

=
∥∥φk+ (x− x0 cosh(ωt))− φk+(x)

∥∥2

L2(Rd)
.

It becomes obvious that picking t sufficiently large (in terms of η) leads to

inf
θ∈R
‖u(t)− eiθφk+‖2L2(Rd) >

1

2
‖φk+‖2L2(Rd).

This rules out orbital stability, even in the L2-norm, for initial data close to φk+ in
the Σ-topology. �

Remark 3.2. We can adapt the above proof by using the Galilean invariance (2.2),
and consider instead

u0(x) = φk+(x)eiv·x, |v| � 1.

Remark 3.3. It is clear from the argument that u0 is close to φk+ in Σ, but also in
stronger norms, while orbital stability is ruled out by measuring only the L2-norm.

Remark 3.4 (Linearization). The argument of the proof can be compared to the
discussion around linearization after the statement of Theorem 1.2. Differentiating
(2.3) with respect to x0, the trace at x0 = 0 yields the infinitesimal generator
iJ(t), where the vector-field J is defined in Remark 2.3. Using (2.9) to shorten
computations, and the explicit expression of φk+ , we find that v(t, x) := iJ(t)φk+(x)
solves

i∂tv +
1

2
∆v = k2

+

|x|2

2
v − dk+

2
v + 2λk+

cosh(ωt)

k+ cosh(ωt) + iω sinh(ωt)
v.

So we see that the approach of the proof of Lemma 3.1 is different from the direct
linearization of (1.1) about φk+ , leading to (1.5).

The above arguments do not rule out orbital stability when the initial datum
are restricted to be radially symmetric. In [14], this restriction was considered es-
sentially to obtain compactness properties (the embedding of H1

rad(Rd) into Lp(Rd)
for 2 6 p < 2d

(d−2)+
is compact). Note that Σ is compactly embedded into Lp(Rd)

for 2 6 p < 2d
(d−2)+

. The lemma below shows instability for φk− even at the radial

level.

Lemma 3.5. Let ν ∈ R.
1. Suppose −λ > ω > 0. The solitary wave φk−,ν(x)eiνt is unstable even if we
restrict Definition 1.1 to radial solutions.
2. The same holds for φω,ν(x)eiνt in the case −λ = ω > 0.
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Proof. Assume −λ > ω > 0. We show that uk−,ν is unstable even as a Gaussian

solution centered at the origin, by linearizing (2.6) about τ− = 1/
√
k−: we compute

the linearization as

ḧ = ω2h− 2λk−h− 3k2
−h = Ωeffh,

where

Ωeff = ω2 − 2λk− − 3k2
− = −4k2

− − 4λk− = −4k−(k− + λ).

Since k− + λ < 0, the linearized operator is such that Ωeff > 0, so h grows ex-
ponentially. Of course linearizing makes sense only for sufficiently small h, but
this is enough to contradict the definition of orbital stability. Indeed, there exists
δ > 0 such that as long as |h(t)| 6 δ, we can write the solution τ to (2.6) with
τ(0) = τ− + h(0) and τ̇(0) = 0 as

τ(t) = τ− + h(t) + r(t), with |r(t)| 6 |h(t)|
2

.

For 0 < ε < δ, let h solve

ḧ = Ωeffh, h(0) = ε, ḣ(0) = 0.

As h(t) = ε cosh(t
√

Ωeff) grows exponentially, there exists t0 > 0 such that h(t0) =
δ, and the triangle inequality yields

|τ(t0)− τ−| >
δ

2
.

Now if u denotes the Gaussian solution associated with τ , we see that for all η > 0,
picking ε > 0 sufficiently small ensures

‖u(0)− φk−‖Σ < η,

while, in view of (2.7), setting k(t) = 1/τ(t)2,

sup
t>0

inf
θ∈R
‖u(t)− eiθφk−‖L2(Rd) > inf

θ∈R
‖u(t0)− eiθφk−‖L2(Rd)

> e−dk−/(4λ)

∥∥∥∥∥
(

τ−
τ(t0)

)d/2
e−k(t0)|x|2/2 − e−k−|x|

2/2

∥∥∥∥∥
L2(Rd)

> C(δ) > 0,

where C(δ) is independent of ε, hence independent of η. Thus, we have the same
instability results as in Lemma 3.1, at the level of radial Gaussian solutions.

In the case −λ = ω > 0, we find Ωeff = 0, hence h(t) = ḣ(0)t + h(0). We now

pick ḣ(0) = ε, h(0) = 0, so h is still unbounded as time grows. We thus consider the
solution τ to (2.6) with τ(0) = τ− (= 1/

√
ω) and τ̇(0) = ε, and the above argument

can be repeated. �

Remark 3.6. For −λ > ω > 0, the same argument is not conclusive in the case of
k+, since we then have

Ωeff = −4k+(k+ + λ) < 0.

The trajectories of the linearized operator are bounded (periodic). This is consistent
with the phase portrait corresponding to the Gaussian case, see Figure 1 (recalling
that k+ corresponds to the smaller value τ−). It is an open question to decide
whether φk+,ν(x)eiνt is stable or not under radial perturbations.
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4. On the notion of ground state

The most standard notions of ground state seem to be the following:

• Minimizer of the action E + νM .
• Minimizer of the energy E for a given mass M .
• Positive solution of dE + νdM = 0.

In the case of an homogeneous nonlinearity, the three notions coincide, and the
ground state is unique, up to the invariants of the equation; see e.g. [15, Chapter 8].
In the absence of potential (ω = 0), the Gausson is the only positive stationary
solution to (1.1) [31]. In the present case, we have seen already that for λ > ω > 0,
there are two distinct solutions to the stationary equation dE = 0, namely φk− and
φk+ : the last notion cannot be relevant. On the other hand, because the potential
is unbounded from below, the first two notions are not relevant either: given u ∈ Σ,

E(ux0
) −→
|x0|→∞

−∞, ux0
(x) := u(x− x0).

In [5], the second notion is adapted, by requiring in addition that the ground state
is a critical point of the energy on the set of function with a given mass M , which
is meaningful even when the energy is unbounded from below on this set. The
case of the logarithmic nonlinearity turns out to be rather specific: a solitary wave
eiνtφ(x) solves (1.1) if and only if φ solves

−1

2
∆φ+ νφ− ω2 |x|2

2
φ+ λφ ln |φ|2 = 0.

Multiplying this equation by φ̄ and integrating shows that φ must solve

‖∇φ‖2L2 − ω2‖xφ‖2L2 + 2λ

∫
Rd
|φ|2 ln |φ|2dx+ 2ν‖φ‖2L2 = 0.

This Pohozaev identity defines the Nehari manifold. But we see that the above left
hand side differs from twice the energy

E(u) =
1

2
‖∇u‖2L2 −

ω2

2
‖xu‖2L2 + λ

∫
Rd
|u|2

(
ln |u|2 − 1

)
dx

only by the term 2(λ+ ν)M . Following [2, 3] (see also [30, 29]), we thus introduce
the action and the Nehari functional,

Sν(u) := E(u) + ν‖u‖2L2 ,

Iν(u) := ‖∇u‖2L2 − ω2‖xu‖2L2 + 2λ

∫
Rd
|u|2 ln |u|2dx+ 2ν‖u‖2L2 = 2Sν(u) + 2λ‖u‖2L2 ,

and consider the minimization problem

δ(ν) := inf{Sν(u) |u ∈ Σ \ {0}, Iν(u) = 0}
=− λ inf{‖u‖2L2 |u ∈ Σ \ {0}, Iν(u) = 0}.

The set of ground states is defined by

Gν := {φ ∈ Σ \ {0} | Iν(u) = 0, Sν(φ) = δ(ν)}.
We check that

I0(φk±) = 0 (hence Iν(φk±,ν) = 0).

In view of Lemma 2.1, φk− does not belong to G0, and should thus not be considered
as a ground state, even though it is a positive solution to (1.4).
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It turns out that φk+ is not a ground state either:

Proposition 4.1. Let λ < 0 < ω. For any ν ∈ R, δ(ν) = 0, and Gν = ∅.

Proof. Consider the two-parameter family of Gaussians

γε,x0
(x) = ε e−|x−x0|2/2.

Naturally, the parameter ε > 0 is aimed at being arbitrarily small, and we use the
center x0 to adjust the size of the momentum so that γε,x0

belongs to the Nehari
manifold. The choice of a variance equal to one is arbitrary, for the following
computation would lead to the same conclusion for any fixed variance. We compute:

‖γε,x0
‖2L2(Rd) = ε2πd/2, ‖∇γε,x0

‖2L2(Rd) =
dε2

2
πd/2,

‖xγε,x0
‖2L2(Rd) = ε2

∫
Rd
|y + x0|2e−|y|

2

dy = ε2 d

2
πd/2 + ε2|x0|2πd/2,∫

Rd
γ2
ε,x0

ln
(
γ2
ε,x0

)
= ln(ε2)‖γε,x0‖2L2(Rd) − ‖∇γε,x0‖2L2(Rd) = ε2πd/2

(
ln(ε2)− d

2

)
,

hence:

Iν (γε,x0) = ε2πd/2
(

(1− 2λ)
d

2
− ω2 d

2
− ω2|x0|2 + 2λ ln(ε2) + 2ν

)
.

For ε > 0 sufficiently small, 2λ ln(ε2)+(1−2λ)d2 −ω
2 d

2 +2ν > 0 (recall that λ < 0),

and we can find x0 ∈ Rd (with |x0| of order
√
− ln ε/ω) such that Iν (γε,x0

) = 0.
But of course ‖γε,x0

‖L2(Rd) is arbitrarily small, hence δ(ν) = 0. The second line in
the definition of δ(ν) obviously implies that Gν = ∅. �

The next natural question to complete the picture is then to ask whether φk+
is a local minimum or a saddle point of S0(u) at I0(u) = 0. Recalling (2.4), we
compute, for w = u+iv (u and v real-valued),

〈
S′′0 (φk+)w,w

〉
= 〈L1u, u〉+〈L2v, v〉,

where

L1u = −∆u+ k2
+|x|2u− dk+u+ 4λu = 2Hk+u+ 4λu, L2v = 2Hk+v,

where the shifted harmonic operator Hk is defined in (1.6). Its spectrum is kN, and
its eigenfunctions are Hermite functions. Since λ < 0, we infer that φk+ is a saddle
point.

Acknowledgments. The authors thank the referees for their careful reading of
the paper and their suggestions.
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